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In this paper, by applying the Hohlov linear operator, connections between the class SD(«), & > 0, and two subclasses of the class
A of normalized analytic functions are established. Also an integral operator related to hypergeometric function is considered.

1. Introduction

Let A denote the family of functions f that are analytic in the
open unit disk A = {z : |z| < 1} with the normalization

f)=z+ Ozo:anz". 1)
n=2

Let S denote the subclass of functions in A which are also
univalent in A. A well-known subclass of S is the class ST
(see, e.g., [1]) of starlike functions f of the form (1), satisfying
Re{zf'(z)/f(z)} > 0, z € A. Another class UCD(«x), « > 0,
introduced in [2], consists of functions f € A satistying
Re(f'(z)) > oclzf"(z)l, z € A. Various properties of this
class have been obtained in [2-4]. A related class SD(«) has
been recently considered in [5], initially introduced in [6]. A
function f of the form (1) is said to be in the class SD(«) if

Re{%}z(xlf’(z)—&

z

, fora=0. (2)

Theorem 1 (see [5]). A function f of the form (1) is in the class
SD(«) if

Yl+am-1]la,<1. (3)
n=2

Ponnusamy and Ronning [7] introduced and studied the class
Rﬂ(ﬁ) c S, (0 < B < 1) of functions f € A for which there

existsanumber# € (—m/2,7/2) such that Re{e" [f'(z)—,B]} >
0, z € A. Ifthe function f of the form (1) belongs to the class
R,,(ﬁ), then

2(1 -
la,| < 2(1-p)cosn (neN\{1}). (4)
n
For complex numbers a, b, and ¢ (¢ # 0,-1,-2,...), the

Gaussian hypergeometric function ,F,(z) is defined by

< (@), ), 2"
2F1 (Z) = 2F1 (a:ba C;Z) = r;)a(c—)n%> (5)

where (1), is the Pochhammer symbol given by

N 1, n=0

" aaenA ) A4n-1), neN ©
_T'(A+n)
T

It is known that

T'(c)T'(c—a-Db)

,Fi(a,b,c1) = T(c-a)T(c-b) 7)

Re(c—a-b)>0, c+0,-1,-2,....
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The Hadamard product (or convolutlon) of two functions f
defined by (1) and g given by g(2) = z + Yo, b,2" is defined

by

[ee]
(f*9)@) =2+ abz" (8)
n=2
Hohlov [8] introduced a linear operator I, : A — A,

corresponding to the Gaussian hypergeometric function ,F,
which is defined by the convolution

[Ia,b,c (f)] (2) = z,F, (a, b,c,z) * f(z), fe€A 9)
For a function f of the form (1), we have
(Lope (f) () =2 + EO:M%Z", zen. (10)

(C)n—l (l)n—l

n=2

The operator I, is a natural extension of several operators
such as Alexander, Libera, Bernardi, and Carlson-Shaffer
operators denoted, respectively, by &, &, 9B, and 2(a, ).
Motivated by the work of Thulasiram et al. [9], in this
paper, by applying the linear operator I,, ., we establish
some interesting connections between the class SD(«) and the
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by (1). Also we consider an integral operator related to the
hypergeometric functions.

2. Main Results
In the sequel the function f € A is given by (1).

Theorem 2. Let a,b € C\{0}. Also let ¢ be a real number such
that c > |al + |b| + 2. If f € ST and if the inequality

| (

+2(x+1>+1]§2

I'()T (c—la| - |b])
I'(c—la)T (c—1bl)

|ab]
bl - 1)

«(lal +1) (Ib] + 1)
bl -2)

(c—lal - (c—lal -

(11)

is satisfied, then 1, .(f) € SD(a).

Proof. Let f € ST. Applying the well-known estimate due to
Nevanlinna [10] for the coefficients of the functions f € ST,
in view of Theorem 1, we need to prove that

© (@)1 (),
r;zl’l(1+(x(l"l—1)) m <1 (12)

By virtue of the relation |(d),,| < (|d|),, and on writingn+2 =
m+D+1land(n+2)* = (n+1)*+2(n+1)+1and using the

classes ST and R, (B), (B < 1) consisting of functions f given fact that (),,,; = (a)(a + k), we have
e =)
- 2 {n+ D)+ afn+1? -+ 1)} —(lzﬂ))z ((llé;D
G i oS et
e e

(IaDns1 (18D

N (gD 1 (1D

+(1—oc)OZO:(n+1)
n=0

sz (bDnsr
(ns2 (1),

i |

n=0

a (lal), (1), <> (lal +

(C)n+1 (1)n+1 n=0 (C)n+1 (1)n+1

(©),

Z(l

a(lal), (1b]), T (c +2)

(c

n=0

al), (1),
(0), (1),

& (1aD)uy (BDper . S (lab), (bD),
1) oo "2 o,
2), (1b] + 2) |ab| Z (lal + 1), (1] + 1),
+2), (1), = (c+ 1) (1),
(e~ Jal - b] - 2)

(c),

I'(c—lal)T (c—[bl)
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(s ) T DT —lal bl =) | T(QT (e~ lal = bl) _
c I'(c—lal)T (c—lbl) I'(c—lal)T (c—[bl)
=r(c)r<c—|a|—|b|>{ jabl oc(|a|+1)(|b|+1)+2a+1]+1}_1
I'(c—la)T(c—1b) L(c—lal-bl-1) L (c—lal-1|bl-2)
<1,
(13)
which is satisfied by the hypothesis. O +2(1-)(1-p)
On setting b = a, an improvement of the assertion of .Cosnz((lal = D/ (lal = 1) (bl - 1), / (bl = 1)) _ 2a(1
Theorem 2 is obtained as given in Theorem 3. =) (c=1),/(e=1))M),
Theorem 3. Leta € C\ {0}. Also let ¢ be a real number such B) cosn {Z (al), (1bD), }
that ¢ > max{0,2Re(a) + 2}. If f € ST, and if the inequality Jn (D
S v
T(c-al(c-a) |(c-2Re(@-1)|c-2Re(@-2 ¢ n=0 T et
) =Dy gy [ LT ol )
+20¢+1]+1]»s2 (c-1) T e=TapTe=1e)
is satisfied, then I .(f) € SD(«). - 1]
Theorem 4. Leta,b € C\{0}. Also, let ¢ be a real number such 2(1-a)(1-B)(c-1)cosy [r (c=DT(c—lal - bl +1)
thatc > |al +1bl, |al # 1, |b] # 1. If f € R,(B), (B < 1) and (lal = 1) (1b] - 1) I'(c—la) T (c—1b])
the inequality e 1)] 1 e
-1) - n
2(1- p)cosny (LTl -b) i,y «
(lal = 1) (16l = 1) LT (c —1lal) T (c —bl) [ET (e~ lal - b]) 1]
[(c—lahT(c—1bl)
+a(labl +1—c¢)] - [c + |ab] — |a| — |b] 15)
2(1-a)(1-B)cosy {F(C)F(C— lal = 16]) - (c — |al - [b)
—oc(c—l)]] <1 (lal = 1) (16l - 1) [(c—lahT(c—1bl)
~(e= 1)~ (al =1 (bl ] =2(1- f)cosn
is satisfied, then I, .(f) € SD(x).
()T (c—lal - 1b]) [(H (A-a)(c—lal- Ibl)] 201
Proof. Let f be of the form (1) and let f € R,(f), (B < 1). I'(c—lal)T(c—1bl) (lal = 1) (Ibl - 1)
By virtue of Theorem 1and in view of (10), it remains to show (-a)(c—-1)
that “Beosn |-~ =y 0w
e (@), (), _ 2(1-pJcosn [L()T(c—lal-b) =~ b
N o R D=5 T e © 1
Using the inequality (4) and the relations (d),, = d(d + 1),,_, *a(labl+1-c)] = e+ labl - Jal = [b] — (e - 1)]] <1
and [(d),,| < (|dl),,, we obtain that a7)
§(1+a<n—1))Mns2(l—ﬁ) -
n=2 -t Wy On taking b = @, an improvement of the assertion of
o ?IOZO: (1+a(m=1)) (aDy s (bDsr _ 2(1- ) Theorem 4 is obtained as given in Theorem 5.

n (C)nfl (l)nfl

< (al),—; (16D,
- Cos r];i(c)n,l D, +2(1-a)(1-p)

< (Ual),oy (16D, 3 < (lal), (Ib]),,
- cos ’1,;27(1?)"71 o, 2a(1 - ) cos 117;7(6)” .

Theorem 5. Let a € C \ {0}. Further let ¢ be a real number

such that ¢ > max{0,2Re(a)}, a # 1. If f € R (B), (B<1
and the inequality
2(1-B)cosn [T (c)T (c — 2Re(a)) [ _2Re(a)

(a-1)@@a-1)|[ I'(c-=a)T(c—-a)



oc(lal2 +1- c)] - [c— |a|2 —2Re(a)

—a(c— 1)]] <1
(18)
is satisfied, then I, (f) € SD(«).

3. An Integral Operator

We now obtain results in connection with a particular integral
operator [11] G(a, b; ¢; z) defined by

Glab;c;z) = J Flab;c;t)dt, (19)
0

where F(a, b;c; z) = ,F,(z) is given by (5).

Theorem 6. Leta,b € C—{0}. Also let c be a real number such
that ¢ > |al +1bl, lal # 1, |b|] # 1. Let G(a, b; c; z) be given by
(19). If the hypergeometric inequality
()T (c—lal-1bl)
F(c—lal)T(c—1bl)
1-a)(c-1) -
(lal =1 (bl - 1)
is satisfied, then G(a, b, ¢, z) € SD(«).

c(l—a)+a(labl +1) - (la] + |b])
(lal = 1) (b - 1)

(20)

Proof. The function G(a, b; ¢; z) has the series representation
given by

Q@1 O o

" n=2 (C)n—l (1)n (21)
In view of Theorem 1, it is enough to prove that
iy (a)n—l (b)n—l
;2[1 +a(n-1)] OISt (22)
Now
= (@)1 (b),,-1
ngz[l +a(n-1)] m < (1 —06)
' i(lal)n_l (1611 +a§n(|a|)"_1 (16D _ (1

= (© (1), = (©,a (),

Z (lal - 1), (16| - 1), (¢ - 1)
5(lal = 1) (Ibl = 1) (¢ - 1), (1),

Z N (9D n-1 (16D,

(C n— 1(1)11 1
_ (d-a(-1) [i(lal—l)n(lbl—l)n_
(lal = 1) (Ibl - 1) (c-1),(1),

(lal = 1) (|b] = 1) < (lal),, (16)),,
S ]”‘[Z ©n (D), ]
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_T©@T(c—lal-1b]) [ (A -a)(c— |al - |b])

“T(e—laDT(c—bl) L (lal=1)(Ibl - 1)
_A-@e-1
(lal -1 (bl -1 7
(23)
by hypothesis. O

A result analogous to Theorem 6 can be stated for the class
UCD(«) in Theorem 7.

Theorem 7. Leta,b € C—{0}. Also let c be a real number such
that ¢ > |a| + |b| + 1. Let f € A and be of the form (1). If the
hypergeometric inequality

I(O)T (c - lal - b - 1)
—lal—|b bl -1
v GG L R C RU

<2

is satisfied, then G(a, b, ¢, z) € UCD(«).
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