The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) - 2005 834

UNIVERSITY COURSE TIMETABLING: A GENERAL MODEL

Muhammad Rozi Malim', Ahamad Tajudin Khader’, Adli Mustafa®
ISchool of Computer Science, University of Science Malaysia,
11800 Minden, Penang, Malaysia
malimmr@celcom.net.my (Tel: 019-2124374)
2School of Computer Science, University of Science Malaysia,
11800 Minden, Penang, Malaysia
tajudin@cs.usm.my (Tel: 04-6533646)

ISchool of Mathematical Science, University of Science Malaysia,
11800 Minden, Penang, Malaysia
adli@cs.usm.my (Tel: 04-6533966)

Abstract: The university course timetabling is known to be a highly constrained combinatorial
optimization problem. Various course timetabling models have been described in the literature
but most of the models were developed for isolated problems. This paper discusses the
university course timetabling in general. The works on course timetabling available in the
literature are studied, and all constraints are gathered. The ultimate goal is to develop a general
model of university course timetabling problem. The general model is presented; each of the
constraints (hard and soff) is mathematically formulated as a 0-1 integer programming. For
future work, this model will be used to develop a unified model for university timetabling
problems,

Keywords: Course timetabling; timetabling constraints; general model.

1. Introduction

The university timetabling problems (UTPs) has attracted the attention of scientists from a
number of differing disciplines, including operations research and artificial intelligence, since
the 1950s. UTPs can be divided into two main categories: course timetabling - involves the
scheduling of courses within a given number of timeslots and their allocation into available
classrooms (weekly basis) while satisfying certain constraints [Burke et al. (2003)]; and
examination timetabling - involves the scheduling exams (one for each course) within a given
amount of time in a set of rooms. The main difference is, in course timetabling there cannot
be more than one course or event per classroom, while in examination timetabling there can
be more than one exam.

University course timetabling problem (UCTP) is known to be a highly constrained
combinatorial optimization problem (NP-hard). The UCTP can be viewed as a multi-
dimensional assignment problem [Carter and Laporte (1998)]. Given a set of courses, a set of
lecturers, a set of timeslots, a set of classrooms, and a set of student enrollments to courses,
the problem is to assign lecturers to courses, courses to timeslots, and courses to classrooms
subject to a set of hard and soft constraints. The main difficulty is to obtain a conflict-free
within a limited number of timeslots and classrooms. Conflicting objectives and the changing
set of constraints in different institutions makes the course timetabling problem (CTP) very
challenging. Various course timetabling models have been described in the literature, but
most of the models were developed for isolated problems, i.e. problem-based models.

This paper discusses the UCTP in general. The works on course timetabling available in the
literature are studied and all constraints (hard and soft) are gathered. The ultimate goal is to
develop a general model of the UCTP. This general model is presented in Section 4; all
constraints are mathematically formulated as 0-1 integer programming.

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) — 2005 835
2. Course Timetabling Constraints

The sets of constraints differ significantly from institution to institution. Different categories
of people have different priorities in the course timetabling process. There are three main
categories of people who are affected by the results of the process; administration, lecturers,
and students [Burke et al. (2001)]. Consequently, the quality of a timetable can be assessed
from various points of view and the importance of a particular constraint can very much
depend upon the priorities of the three categories.

Loo et al. [1986] set out four categories of constraints: room requirements (1-6), student-
group requirements (7-14), staff requirements (15-22), and class requirements (23-29).

(1) The utilization of classroom capacity should be maximized.

(2) Preferred rooms for each student-group should be used first; minimizes the need to change
rooms.

(3) Certain classrooms should be used as much as possible.

(4) Some rooms (e.g. conference rooms) should not be used unless there is no other room
available.

(5) Certain rooms (e.g. drawing rooms) should be used only for particular subjects.

(6) It should be possible to group rooms according to service packages (air-conditioning,
lighting, etc).

(7) Study workload for students should be evenly distributed over the week.

'(8) Certain student-groups may require a common free timeslot once a week for their project
works.

(9) The consecutive hours for lectures or tutorials should not exceed a predefined length of
time.

(10) There should be limits on the number of lectures and tutorials to be attended by
students each day.

(11) Lunch and dinner breaks should be provided for students.

(12) Each student group should have adequate chances to attend most of the optional
subjects. '

(13) Students should be able to be divided into groups for tutorials or combined for
common lectures.

(14) There should be a limit on the total number of first-period events attended by the
students each week.

(15) Teaching workload for staff should be evenly distributed over the week.

(16) Time constraints for lecturers from other faculties or part-time lecturers should be
considered.

(17) All full time lecturers may require a common free timeslots once a week for the
purpose of meetings.

(18) The consecutive hours for lecturing/tutoring by a lecturer should not exceed a
predefined length.

(19) There should be limits on the number of lectures and tutorials to be conducted by a
lecturer each day.

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) — 2005 836

(20) Lunch and dinner breaks should be provided for lecturers; these breaks may be staggered.

(21) Allowance should be made for several lecturers teaching different portions of a given
subject.

(22) There should be a limit on the total number of first-period classes conducted by a lecturer
each week.

(23) The morning should be free for lecturer or student having evening events later in the day.

(24) Repeated lectures (large enrollments) should not be conducted by the same lecturer in the
same day.

(25) Students from different departments may be grouped together for common lectures if
necessary.

(26) It is preferred that lectures and tutorials be conducted in the morning if possible.

(27) If possible, Saturday is to be scheduled as a free day for professor as well as students.
(28) Sometimes it is desirable to have at least a 15-minute break between events.

(29) Some events (e.g. ad hoc or make-up sessions) are to be arranged manually.

Corne et al. [1994] described the five kinds of constraints of general CTP: Unary Constraints
- involve just one event, fall into two classes: exclusions - an event must not take place in a
given room, must not start at a given time, or cannot be assigned to a certain agent;
specifications - an event must take place at a given time, in a given place, or must be assigned
to a given agent. Binary Constraints - involve restrictions on the assignments to a pair of
events, fall into two classes: edge constraints - arising because of the simple fact that people
cannot be in two places at once; juxtaposition constraints - the ordering and/or time gap
between two events is restricted in some way. Capacity Constraints - specify that some
function of the given set of events occurring simultaneously at a certain place must not exceed
a given maximum, e.g. room capacity. Event-Spread Constraints - the way that events are
spread out in time. It may require that multiple lectures on the same topic should be spread
out as evenly as possible during the week. Agent Constraints - involve restrictions on the total
time assigned for an agent in the timetable, and restrictions and specifications on the events
that each individual agent can be involved in.

In Alkan & Ozcan [2003], six different types of constraints can be identified for UCTP:
Exclusions represent the excluded members of resources for the variables; e.g. ‘Data
Structures should not be scheduled on Tuesdays’. Presets represent the predetermined
assignments for some variables; e.g. ‘Digital Electronics is scheduled on Fridays at 14:00-
17:00°. Edge constraints represent a pair of course meetings that should be scheduled without
a clash. Ordering constraints, also known as juxtaposition, represent an ordering between
course meetings. Event-spread constraints deal with the way how the course meetings are
spread out in time. Attribute constraints represent restrictions that apply between the attributes
of a course meeting and/or the attributes of its assignment; e.g., ‘total number of students
taking a course should not exceed the capacity of the classroom’.

The common hard constraints for UCTP that agreed by most researchers in the literature are
as follows:

(ordered by their importance):
(1) All events/courses must be assigned to lecturers.

(2) All lecturers must be assigned to events/courses.

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) - 2005 837

(3) No lecturer must be assigned to more than one event at the same time,

(4) A lecturer must not be assigned to events when he/she is unavailable.

(5) Each lecturer’s minimum teaching requirement must be accomplished.

(6) The lecturer's number of overtime hours should not exceed a specified maximum.

(7) One afternoon (e.g. Monday) is reserved for lecturer’ meetings.

(8) No student or student-group must be assigned to more than one event at the same time.
(9) Each event is assigned to at least one timeslot.

(10) No two or more events of required courses of a student-program can be scheduled at
the same time.

(11) No events of required and optional courses of a student-program can be scheduled at
the same time.

(12) Events of day courses must be scheduled during the day.

(13) Events of evening courses must be scheduled during the evening.

(14) Preassigned events must be scheduled at their preassigned timeslots.

(15) Some events are restricted to some specific timeslots and must not be assigned.

(16) Some events need to be held consecutively; consider a six-hour practical experiment.
(17) Each room must not host more than one event at any timeslot.

(18) The classrooms capacities assigned to events must equal to or larger than the student
enrollments.

(19) An event can only be assigned to a classroom if and only if the room is available.
(20) Preassigned events must be scheduled into their preassigned classrooms.

(21) Some events are restricted to some specific classrooms and must not be assigned.
(22) Certain events must be taught in the same classroom at the same time.

(23) Certain events should have exactly the same teaching time but different classrooms.

The common soft constraints for UCTP that agreed by most researchers in the literature are as
follows:

(ordered by their importance):

(1) A lecturer should not teach more than a specified number of the maximum weekly
teaching load.

(2) A lecturer should not teach more than a specified number of the maximum daily teaching
load. ,

(3) A lecturer should have at least one timeslot free between any two teaching timeslots.

(4) Some lecturers, by contrast, wish to have all their events scheduled to consecutive periods.
(5) Lecturers should be assigned to their preferred events/courses.

(6) An event should not be assigned to a certain lecturer.

(7) The morning should be free for lecturers having afternoon events on the same day.

(8) No student/student-group can attend more than x events in a day.

The 2nd International Conference on Research

and Education in Mathematics ICREM 2) — 2005 838

(9) A student should not have only one event in a day.

(10) Students or student-groups don’t like to have many free timeslots between two events.

(11) Events of optional courses of a student-program should be scheduled in fewest time
conflicts.

(12) Events of the same course and student-group should not be scheduled on the same day.

(13) Student-groups with the same event and student-program should be scheduled at the
same timeslot.

(14)Student-groups with the same event but different student-programs should not be
scheduled at the same time.

(15) All tutorials or lab sessions of any course should occur later in the week than the first
lecture.

(16) If an event is held more than once a week, there will always be a least one day in
between.

(17) Friday afternoon shall be used only after all other scheduling possibilities are
exhausted.

(18) Events should not be assigned during lunch time.

(19) Certain student-groups may require a common free timeslot once a week for their project
works.

(20) Events should be assigned to rooms in such a way that the room utilization can be
maximized

(21) Events should be scheduled into classrooms as close as possible to their lecturer.
(22) Events should be scheduled into the classrooms at their departments.

(23) Events should be scheduled into classrooms of the type specified by the department or
professor

(24) All events of the same student-group should be scheduled in the same classroom.

(25) There must be a limit on the total number of classrooms assigned to the first-timeslot
events (early morning).

(26) Classrooms should not be scheduled during those times they have been reserved.
(27) Students or student-groups should be assigned to their preferred classrooms.
(28) Sufficient time should be provided for students to move from one room to another..

3. Course Timetabling Models
Some of the course timetabling models, described in the literature, are presented as follows:

In Ross et al. [1994], the basic element of a UCTP is a set of events E={e,,...,e,}. Each
member of £ is a unique event requiring assignment of a time and a place. It may be a lecture,
a tutorial, a lab session or some other event which plays a part in the term timetable. Each
event e; has an associated length /; and an associated size s; which is either known or an
estimate of the number of students expected to attend that event. There is also a set of agents
A={ai,...,a;}; these are lecturers, tutors, technicians, etc. people with some kind of
distinguished role to play in an event. Finally, there is a set of places P={p;,...,p,}, and a set

The 2nd International Conference on Research
and Education in Mathematics ICREM 2) — 2005 839

of times 7={t,,...,t;}. An assignment is a four-tuple (@, b, ¢, d) in which acF, beT, ceP,
deA, with the interpretation ‘event a start at time b in place ¢ and is taught by agent d’. A.
lecture timetable is simply a collection of » assignments, one for each event.

In the weekly UCTP defined by Erben and Keppler [1995], each day of the week is divided
into 6 periods (of 90 minutes’ duration). There are 5 working days per week. Hence, the set P
of periods consists of 30 elements. These elements are denoted by
monl,...,mon6,tuel tuel,... fri6. A number of courses are offered in different departments, and
each course lasts eight semesters. A class consists of all students studying a given course in
the same semester. C denotes the set of all classes. For each class ceC the (estimated)
maximum number of students must be given as part of the input. T is the set of all reachers.
Each teacher requires a number of free-timeslots (or even one or two free days) where he or
she is unavailable. R is the set of all rooms available in the university. A room can be a
laboratory or a lecture theatre. Some rooms can only be used by the department to which they
belong. Each room has a maximum capacity which must be given. Each department offers a
number of course modules. A course module may be taken by students of one or more classes.
It may either be compulsory or optional. A course module consists of one or more /essons. A
lesson may be a lecture, a laboratory or a group exercise class, and it has duration of 90
minutes. The lessons belonging to one course module may be taught by different teachers.
The set of all lessons is denoted by L. For each /eL, its unique teacher and the coordinate list
of classes must be present.

In Alkan and Ozcan [2003], CTPs are defined as constraint optimization problems that can be
represented by a 3-tuple (V,D,C). V is a finite set of course meetings in a department, faculty
or university, V={w,...,vy}, D={d,....dy}, is a finite set of domains of variables. For
example, let G={1,,...,/a} represents a set of start times for a course meetings, then a possible
domain of each variable can be dicG and C is a set of constraints to be satisfied,
C={c,...,c1}. Domain of a variable can be a product of sets, each representing a different
resource. For example, d,cGxS can be a domain of a variable, where S represents the set of
classrooms. Resources other than time were ignored. UCTP can be described as a search for
finding the best assignment (v, t;) for each variable v;e ¥ such that all the constraints are
satisfied. The assignment implies that the course meeting of v; starts at #.

Avella and IVasil’ev [2003] introduced some notations and definitions for CTP as follows.
Let C={1,...,c} be a set of courses. For any ceC, let n. be the number of hours to be
scheduled per week and let #°yin and #°pax be the minimum and maximum daily number of
teaching hours. Let R={1,...,7 } be a set of rooms. Let T={1,...,7 } be a set of one-hour time
periods. Let D={1,...,d } be the days of the week when teaching is allowed. For any deD, let
74 and z; be the first timeslots of the morning and afternoon session in day 4. Let G={1,...,g}

be a set of classes. For any class geG, let C,cC denote courses that the class g should attend.
Let $={1,...,5 } be a set of teachers and, for any seS, let C;—C be a subset of courses taught
by teacher s. Let k; denote the maximum weekly number of teaching days for the teacher s.
Let /pax be the maximum daily number of teaching hours for any class geG. Let p, be a
penalty if the course ¢ is scheduled at the time £. Usually p., measures the ‘undesirability” of
the teacher s to teach the course ¢ at time . A timetable is an assignment of courses C to
rooms R and to time periods T,

The course timetabling model by Ozdemir and Gasimov [2003] involves assigning instructors
to courses. The instructors are grouped as tenured and recent faculty. The model parameters,
and decision variables are: I={1,...,m} courses; J={1,...,n} instructors;, Jo={1,...,k} tenured
instructors; J,={k+1,...,n} recent instructors; J=Jy.J, and k<n; h;: total number of lecture

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) — 2005 840

hours for the ith course in a week; /; and u;: lower and upper bounds for the jth instructor’s
weekly load, respectively; #;: preference level of the ith course by the jth instructor (7;21, 1
indicates the most desired course); a;: administrative preference level for the assignment of
the ith course to jth instructor. In this model the decision variable x; represents the
assignment of a course to an instructor and is defined x; = 1 if course i is assigned to
instructor j, 0 otherwise.

4. General Model of University Course Timetabling

Here, a general university course timetabling model (GUCTM) is presented. This model is
based on the models, and constraints, discussed in the literature. Each of the constraints (hard
and soft) is mathematically formulated as a 0-1 integer programming. UCTP is known to be a
highly constrained and complex optimization problem. To reduce the complexity of the
problem, it is normally divided into three subproblems; ‘course-professor assignment’,
‘event-timeslot assignment’, and ‘event-room assignment’. These three subproblems can be
modeled separately. In ‘course-professor assignment’, the professors are scheduled to courses
and events; in ‘event-timeslot assignment’, the events are scheduled into timeslots; and in
‘event-room assignment’, events (in each timeslot) are assigned to rooms. Hence, in a UCTP,
an assignment is an ordered 4-tuple (a, b, ¢, d), where acE, beT, ceR, deP, and is
interpreted as ‘event a starts at timeslot 4 in room c, and taught by professor &”. The main
components of a university course timetabling model are problem definition and initialization,
hard constraints, and soft constraints.

4.1 Problem Definition and Initialization

There are nine sets of variables that should be taken into account in a university course
timetabling:
Course: represents the course to be scheduled. The domain of this variable, C, is the set of all

courses in all student-programs. Each course c¢;, i€ {1,...,n1} has a list of events, a list of
student enrollments, preassigned professor(s), the number of weekly contact hours, and

type. There are two types of courses; required courses, c;, i€{l,...,az}, and optional
courses, ¢;, i€ {ap+t1,...,n}. Required courses can be subdivided into two subgroups, day
courses, c;, ie{l,..,a}, and evening courses, ¢;, ie{a+l,...,»}. Similarly, optional
courses can be subdivided into two subgroups, day courses, ¢;, i€ {antl,...,o5}, and
evening courses, ¢;, i€ {as+1,...,n }; where ai<ar<az<ny.

Event: represent the event (lecture, tutorial, lab, or seminar) to be timetabled. The domain of
this variable, E, is the set of all events in all courses. Each event, e;, je {1,...,n}, has type,
length (in hours), weekly frequency, preassigned professor(s), preassigned timeslot(s),
restricted timeslot(s), preassigned room, and restricted room(s). There are two groups of
events; events of required courses, ¢, je{l,....,/}, and events of optional courses, ¢,
je{A+l,..,m}. Events of required courses can be subdivided into two subgroups, day
event, e, je {1,....,/1}, and evening events, e;, j€ {fi+1....,5}. Similarly, event of optional
courses can be subdivided into two subgroups, day events, e, je {+1,..../:}, and evening
events, ¢;, j€ {3+1,...,nm}; where B < < B3 <ny.

Department: represents the department or faculty. The domain of this variable, D, is the set of
all departments or faculties at an institution. Each department dj, j& {1,...,n3}, has a list of
professors, a list of student-programs, and a list of rooms.

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) - 2005 841

Professor: represents the lecturer or tutor. The domain of this variable, P, is the set of all
teaching professors. Each professor p;, i€ {1,...,n4}, has a list of courses which he/she can
teach (each with a preference level), a list of timeslots during which he/she is unavailable,
lower and upper limits of weekly load, and type (junior or senior).

Student-program: represents the student academic program. The domain of this variable, M, is
the set of all student programs in all the departments or faculties at an institution. Each
student-program my, je{1,...,ns}, has a list required courses, a list of optional courses,
student-groups, and type. There are two types of student-programs; day student-programs,
m;, je{l,...,6}, and evening student-programs, m, j€ {&+1,...,ns}, < ns.

Student-group: represents the student-class group. For each student-program with a large
number of students, the students are allocated into a number of different student-groups or
classes. The domain of this variable, G, is the set of all student-groups in all student-
programs. Each student-group g;, i€ {1,...,n6}, has a list of students, a list of events, and a
list of preferred rooms. ‘

Student. represents the student enrolled for the courses in a student-program. The
domain of this variable, S, is the set of all students enrolled at an institution. Each student
si, i€{l1,...,m7}, has a list of required courses, a list of optional courses, and the total
number of weekly load (in hours), and type (day or evening).

Timeslot: represents the time occupied by an event. The domain of this variable, 7, is the set
of all (one-hour) timeslots (in a week) permitted in the timeslot system. Each timeslot #;,
ie{l,...,n}, has start time, finish time, a list of available rooms, and type. The timeslots
are divided into five groups (days) of equal number of timeslots, and for each day the
timeslots are subdivided into four types (morning, lunch, afternoon, evening). If each day
starts at 8am and finish at 10pm, then there are 14 timeslots per day: Monday: {#,..%s},
{te}, {1,110}, {t11,.014}; Tuesday: {tis,..ti0}, {t20}, {fa1,..,024}, {25,...128}; Wednesday:
{t20,.s133}, {134}, {ts5,.t38}, {t30,.ota2}; Thursday: {ta,..,ta7}, {tas}, {tao,..sts2}, {ts3,ot56};
Friday: {ts57,.st61}, {te2}, {te3s-stos}s {67,--»t70}; hence ng = 70.

Room: represents the room where an event to be held. The domain of this variable, R, is the
set of all rooms available to the system. Each room #;, je{l,...,n0}, has a room-type
(lecture hall, tutorial room, laboratories, seminar/conference room), seating-type, capacity,
and a list of reserved rooms.

The matrices are required to show the interrelationships between these sets of variables. These
matrices would assist the formulation of the hard and soft constraints as 0-1 integer
programming. There are two types of matrices, input matrices and output matrices. The input
matrices are the matrices where the values are known earlier and have been allocated or
preassigned, i.e. the timetabling data and preassignments. The output matrices are the
assignment matrices where the values need to be determined by solving the CTP.

4.1.1 Input Matrices

Course—event allocation matrix: each course consists of events; A=CxE, a;=1 if course c;
consists of event ¢;, 0 otherwise; na(c;) is the number of events in course c;, and n4(e;)=1 since
each event is belong to only one course.

Course-professor preference matrix: B=CxP, by represents the preference level of professor
pj to teach course c¢;; ‘1’ indicates the highest level of teaching preference, ‘2’ indicates the

second highest level, and so on.

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) - 2005 842

Course—professor preassignment matrix: D=CxP, d;=1 if course c; is preassigned to professor
Dj, 0 otherwise; sp(c;) is the number of preassigned professors for course c;, and np(p;) is the
number of courses preassigned to professor p;.

Course-student enrollment matrix: E=CxS, e;=1 if student s; is enrolled in course ¢;, 0
otherwise; ng(c;) is the number of students enrolled in course ¢;, and ng(s;) is the number of
courses enrolled by student s;.

Course—student-program matrix: F=CxM, f;=1 if course c; is offered in student-program m;, 0
otherwise; ng(c;) is the number of student-programs that offer course c;, and nr(m) is the
number of courses in student-program ;.

Event-professor preassignment matrix: G=ExP, g;=1 if event e; is preassigned to professor
Dj» 0 otherwise; ng(e;) is the number of professors that preassigned to event e;, and ng(p;) is the
number of events preassigned to professor p;.

Eventtimeslot preassignment matrix: H=ExT, h;~=1 if event e; is preassigned to timeslot #, 0
otherwise; nu(e;) is the number of timeslot that preassigned to event e;, and ng(#) represents
the number of preassigned events in timeslot #.

Event-timeslot restriction matrix: 1=ExT, i;=1 if event e; is restricted to timeslot #, 0
otherwise; nyi(e;) is the number of restricted timeslots for event e;, and ni(#;) represents the
number of restricted events for timeslot #.

Event-room preassignment matrix: J=ExR, j;=1 if event e; is preassigned to room 7;, 0
otherwise; ny(e;) is the number of rooms that preassigned to event e;, and ny(r;) represents the
number of preassigned events in room r;.

Event—room restriction matrix: K=ExR, k;=1 if event e; is restricted to room r;, 0 otherwise;
nk(e;) is the number of restricted rooms for event e;, and nk(r;) represents the number of
restricted events for room 7;.

Department-professor_matrix: L=DxP, ;=1 if professor p; belongs to department d;, 0
otherwise; nr(p;)=1 since each professor belongs to only one department, and ny(d;) is the
number of professors in department d.

Department—student-program matrix: M=DxM, m;=1 if department d; owns student-program
m;, 0 otherwise; nm(dj) is the number of student-programs in department dj, and rm(m;)=1,
only one department for each student-program.

Department-—room _matrix: N=DxR, n;=1 if room r; belongs to department dj, 0 otherwise;
nx(d;) is the number of rooms at department d;, and nn(r;) is the number of departments that
share the same room r;.

Professor-timeslot availability matrix: P=PxT, p;~1 if professor p; is available in timeslot #, 0
otherwise; np(p;) is the number of timeslots during which professor p; is available, and np(z) is
the number of available professors in #.

Student-program—student-group matrix: Q=MxG, g;=1 if student-group g; is registered under
student-program m;, 0 otherwise; no(m;) is the number of student-groups that registered under
student-program m;, and ng(g)=1 since each student-group is registered under only one
student-program.

Student-group—student matrix: R=GxS, ry=1 if student s; is allocated to student-group g;, 0
otherwise; nr(g;) is the number of students in student-group g;, and nr(s;)=1 since each
student must be allocated to only one student-group.

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) — 2005 843

Timeslot-room _availability matrix: S=TxR, s;=1 if room r; is available in timeslot #;, 0
otherwise; #g(#;) is the number of available rooms in timeslot #, and ng(r;) is the number of
timeslots during which room 7; is available.

1

Student-conflict matrix: C = ExE, c; is the number of students taking both event ¢; and event
€j.

We also have the length (in hours) of each event e;, n/(e;), the weekly frequency of each event
ei, nde;) (for most events nfe;))=1), the maximum number of courses for each professor p;,
Nmaxe(pi), the lower and upper limits (in hours) of weekly load for each professor pi, #mn(p:)
and nmax(p;), the maximum weekly excess load for all professors, #max(p), the maximum
number of events per day for each professor, Zmax(p:), the maximum daily load (in hours) for
each professor p;, Bmaxa(p;), the maximum weekly load (in hours) for all students, #maxy(s), the
maximum daily load (in hours) for all students, #max4(s), and the room-capacity of students for
each room, n.(r;).

4.1.2 Output Matrices
The following (six) output matrices will form a complete university course timetable.

Course~professor assignment matrix: T=CxP, t;=1 if course c; is assigned to professor p;, 0
otherwise; n1(c;) is the number of professors that are assigned to course c;, and ar(p;) is the
number of courses assigned to professor p;.

Event-—professor assignment matrix: U=ExP, u;=1 if event e; is assigned to professor p;, 0
otherwise; ny(e;) is the number of professors that are assigned to event e;, and ny(p;) is the
number of events assigned to professor p;.

Event—timeslot assignment matrix. V=ExT, vy=1 if event e; is assigned to timeslot #, 0
otherwise; nv(e;) is the number of timeslots that are assigned to event e;, and ny(z) is the
number of events that are assigned to timeslot #.

Event-room assignment matrix: W=ExR, w;=1 if event e; is assigned to room #;, 0 otherwise;
nw(e;) is the number of rooms that are assigned to event e;, and rw(r;) is the number of events

that are assigned to room #;.

Student-group—timeslot assignment matrix: X=GxT, x;=1 if student-group g; is assigned to
timeslot #, 0 otherwise; nx(g;) is the number of timeslots assigned to g;, and nx(#) is the

number of student-groups assigned to timeslot #.

Student-group—room assignment matrix: Y=GxR, y;=1 if student-group g; is assigned to room
¥;, 0 otherwise; ny(g;) is the number of rooms assigned to student-group g;, and ny(r;) is the
number of student-groups assigned to room ;.

4.2 Hard Constraints and Mathematical Formulation

Hard constraints must be satisfied in order to produce a feasible timetable. Any timetable
which fails to satisfy all these constraints is deemed to be infeasible. The hard constraints for
the three subproblems (course-professor assignment, event-timeslot assignment and event-
room assignment) will be considered separately. Each institution will apply some or all of
these hard constraints. However, each institution will have some unique combination of hard
constraints, as policies differ from institution to institution.

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) — 2005 844
4.2.1 Hard Constraints for Course-Professor Assignment
The common hard constraints for ‘course-professor assignment’ (ordered by their
importance):
H1) Course-professor: Each course must be assigned to at least one professor (formulated
using the matrix T);
Yixep (¢5p;) = 0, where xep(e;,p;) =0 if ity =1, and 1 otherwise.
H2) Professor-course: Each professor must be assigned to at least one course (formulated
using the matrix T);
Y xpc(c;,p;) =0, where xpc(ci,p;)=0if 3 71,4; 21, and 1 otherwise.

H3) Professor-clashing: A professor can only attend one event at a time (formulated using
the matrices U and V);

2 i x(e pysty) =0, where x(e;, p;.t)=0 if 372 u; vy <1, and 1 otherwise.

H4) Professor-availability: A professor must not be assigned to events in the timeslots
during which he/she is unavailable (formulated using the matrices P, U and V);

23212212:’;10 —Pj)uyvg=0.

HS5) Minimum-load: The total weekly load (in hours) of all events assigned to each
professor must not less than a specified number of the minimum weekly load of each
professor (formulated using the matrix U);

Z;;lxmin(eispj) =0, where Xmin(€, p;)=0 if ity -me) np(e) 2 nya(p)), and 1
otherwise.

H6) Excess-load: The number of excess load assigned to each professor must not exceed the
specified number of the maximum weekly excess load (formulated using the matrix U);

Z;:slxmul(eispj)=0! where Xoaxt (€1, P;) =0 if Z?i]uxj'nl(ei)'”f(ei)'w_i)s Bmaxp), 1
otherwise.

H7) Free-timeslot: All professors at each of the departments must have a common free period
(of timeslots) once a week for the purpose of meetings. This can easily be satisfied by
assigning a value ‘1’ to each of the corresponding event-timeslots in the event-timeslot
restriction matrix (I).

4.2.2 Hard Constraints for Event-Timeslot Assignment
The common hard constraints for ‘event-timeslot assignment’ (ordered by their importance):

HB) Student-clashing: No student should be assigned to two different events at the same time,
ie. no student conflicts (formulated wusing the matrices C and V);

ng ny-1 ny . . _
Zk=1 i=1 j=i+1€5 " Vik v =0.

H9) Event-frequency: The number of (one-hour) timeslots that assigned to each event must
equal to the event’s weekly frequency multiply by length (formulated using the matrix V),

X2 xgr (et;) = 0, where xgp(e,2;)=0 if 374, v; =n,(e) ni(e;), and 1 otherwise.

H10) Event-clashing I: Events of two required courses of the same student-program must not
be scheduled at the same timeslot (formulated using the matrices A, F and V);

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) — 2005 845

g -1
Zzs:IxCI(cbejamk):O, Where xCl(ci’ej!mk)=0 lf z:il azil+1ft']k'fl'zk'xCl(ej:mk)=0> 1

iy
otherwise,

xale,m)=0 if Y134 a4 -a,; -xqle;.e;,)=0, 1 otherwise, and xg(e;.e;,)=0 if 7, =7,), 1
e b} b ! ot R L P =ri A | S 24 : N b) R S “hpIt

otherwise.
H11) Event-clashing 2: Two events of a required course and an optional course of the same
student-program must not be scheduled at the same time (formulated using the matrices A,
F and V);
Thixca(ce;sm) =0, where xo(.em)=0 if 3230 . fu fir %cale;m)=0, 1 otherwise,
*o(g,m)=0
if Zf,,lz;z:ﬁzﬂam -8, "xca(ej0¢;,)=0, 1 otherwise, xc,(e;.e;,)=0 if 4,y =1, | otherwise.
H12) Day-event: Events of the day student-programs must be scheduled during the day (using
matrices A, F & V); S S S Xpg (Crnepty) =0, where
Xpay (Cpresty) = Zf.',laij “Xpgy (€:1) T Zfiﬂzﬂaif “Xpay(€jsti) 5
Xpay(epnte) =0 if T3k v =8 v =T ova = Titsva = Teesr Vi =0, and 1 otherwise.
H13) Evening-event. Events of the evening student-programs must be scheduled during the
evening (using the matrices A, F and V); Y5, 3™ fy xg.(ce;,t,)=0, where

X Eve (Ci’ejstk)=2fiﬁl+1ax_'i “Xgue(€) T

: 10 24 8 2
2 s Xevelepte)s Xme(e)f) =0 if Y Vi =XimsVie =23‘=29ij =25(=43ij =Z::s1"jk =0, 1
otherwise.

H14) Preassigned-timeslot: Some events must be assigned to some specific timeslots as in

event-timeslot preassignment matrix (formulated using the matrices H and V);
2 2y (- vy) = 0.

H15) Restricted-timeslot: Some events are restricted to some specific timeslots as in event-
timeslot restriction matrix (formulated wusing the matrices I and V)

T X iy -vy)=0.

H16) Consecutive-timeslot: The events with consecutive timeslots (with length two, three or
four hours) must not be interrupted (using the matrix V), 72 xcr(e;,t;)=0, where
xcrlg:t;)=0 if nfe;)=2 & Z’,ﬁ_-;lvij 'vij+l'=nf(ei) s
or if ni(e))=3 & z;;;’vij Vit Vgez =ns(e), of if nfe)=4 & z;;fv,.j Vi Visa Vs =np(e), 1
otherwise.

4.2.3 Hard Constraints for Event-Room Assignment

The common hard constraints for ‘event-room assignment’ (ordered by their importance):

H17) Room-clashing: A room can only host one event at a time (formulated using the
matrices V and W);

2 xre (et) =0, where xpc(e;,2;,n) =0 if 37 v, -wy <1, and 1 otherwise.

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) — 2005 846

H18) Room-capacity: There must be sufficient seats in each room to house all students
present (using the matrices A, E and W); Y02, 3% xc(c;.e;,7) = 0, Where xc(q.e;,1)=0 if
Ya; - wy - nglc;)<n(rr), and 1 otherwise.

H19) Room-availability: An event can only be assigned to a room (in any timeslot) if and only
if the room is available (formulated using the matrices S, V and W)
T X Zi A=) vy wy =0

H20) Preassigned-room: Some events must be assigned to special rooms as in event-room
preassignment matrix (formulated using the matrices J and W); 3272, 3%, j; (1- wy) = 0.

H21) Restricted-room: Some events are restricted to some specific rooms as in event-room
restriction matrix (formulated using the matrices K and W); > 72,37 k;(1-wy) =0.
H22) Same-room: Certain events must be held at the same time in the same room; for
instance, events e¢; and ¢ (formulated using the matrices V and W),
R Vi Vg Wy Wy 21

H23) Different-room: Certain events must be held at the same time but different rooms; e.g.
events e; and e; (using
the matrices V and W); Y7, vy - xpr(ee;n) 21, where xpp(ee;»n) =0 if 32wy wy=1, 1

otherwise.

4.3 Soft Constraints and Mathematical Formulation

Soft constraints are those which are desirable to be satisfied, but which in general cannot all
be wholly met. Soft constraints are generally more numerous and varied and are far more
dependent on the needs of the individual problem than the more obvious hard constraints. The
quality of a resulting timetable can be measured according to an objective function which
weights the violation of the soft constraints. The soft constraints for the three subproblems
will be considered separately. Each institution will apply some or all of these soft constraints.
The exact form (and penalty functions) will be dependent on the institution. However, each
institution will have some unique combination of soft constraints, as policies differ from
institution to institution. Furthermore, an institution may take different views on what
constitutes the quality of a course timetable.

4.3.1 Soft Constraints for Course-Professor Assignment

The common soft constraints for ‘course-professor assignment’ (ordered by their importance):

S1) Maximum-load: The total weekly load (in hours) for all events assigned to each professor
should not exceed a specified number of the maximum weekly load (formulated using the
matrix U);
f (Z'}ilxm (e:"spf))’ where xpu(e,p)=0 if Xi%uy-n(e)-ny(e)Snwp), and
[Z:'Zluij 'nl(ei)'nf(ex‘)'

Mmax(p;)] otherwise, and f; is a penalty function based on the total number of excess load.

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) - 2005 847

S2) Daily-load: The total daily load (in hours) for all events assigned to each professor per day
should not exceed a specified maximum for each professor (formulated using the matrices

U and V); ﬁ(Z;‘__.lxmu(eian:’k))’

Where xw(ei,pj,tk)=E;lxmwp(e,-,pj), xm“d,D(e,,pj)=0 if Zﬁx}'iz:luﬁ.vik Snmaxd(pj),].
otherwise, T; and T>

are the first and last timeslots for day D, and f; is based on the number of professors with
excess daily load.

S3) Free-timeslot: A professor should have at least one free timeslot between any two
teaching events, i.e. lectures - equivalent to minimizing the number of pairs of lectures in
adjacent timeslots (using the matrices U and V);

ﬁ(Z'};l 1=]‘ZZ‘=,,l+lu,- e -xF(e,.,tk)), where xg(e,z)=1 if |t ~te,1=0 & both events are lectures,
0 otherwise,

and f; is a function based on the total number of pairs of lectures in adjacent timeslots for
each of the professors.

S4) Event-compactness: Professors may prefer to have events in consecutive timeslots -
equivalent to minimizing the total number of free timeslots (1 or 2) between events that

assigned to each professor (using the matrices U and V),
ﬁ(z;;lzl',’z"zziwuilj-u,. zj-xEC(e,-,tk)) where xge(ent)= @1 if |1yt 1=t 1€{2,3}, 0

=1
otherwise,

the weight @, reflects the penalty of having 1 or 2 free timeslots, and f; is a function
based on the total weights.

S5) Preferred-course: Each professor should be assigned to the courses in such a way that the
total preference level is minimized (formulated using the matrices B and T);

fs (Z;LZ'}‘ by oty), where fs is a penalty function based on total preference levels for all

professors.

S6) Event-professor: An event should not be assigned to a certain professor; for instance,
event e; should not be assigned to professor p; (formulated using the matrix U),

fslxzp (e;, ,)), where xgp(es, pj) = 0 if uy= 0, and 1
otherwise, and fs is a penalty function that reflects the violation of this constraint.

S7) Morning-free: The morning should be free for professors having afternoon events on the
same day (formulated using the matrices U and V); £ % (&g, P ,)), where

xm(e,-,p,-)=ZL1xm,D(e;,p,), xm,D(eist)=1 if

>, Tty vy >0 and 3y 3wy - vy >0, 0 otherwise, for each day D, Ta; and Ta; are
respectively the

first and last afternoon timeslots, 7m; and Tm, are respectively the first and last morning
timeslots, and f7 is a function based on the total number of professor-days having morning
and afternoon events on the same day.

4.3.2 Soft Constraints for Event-Timeslot Assignment

The common soft constraints for ‘event-timeslot assignment’ (ordered by their importance):

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) — 2005 848

S8) Daily-event: A student should not be expected to attend more than x events in a day (using
matrices A, E & V);
f (227:1233:1 XpL (Ci’ejssk’tl))a where xDL(Cisej’sk’tl)___l if Zrir, a2 G Vi > X 0
otherwise, and

/s is a penalty function based on the number of student-days having more than x events in
a day.

S9)Student-event: A student should not have only one event in a day (formulated using the
matrices A, E and V);
fg(ZZLIka,xSE (c,-,ej,sk,t,)), where xg:(c;.e;.5.1)=1 if Zg';TXZLZ?:Ia,-j -ez-vy =1, 0 otherwise,
andfois a
penalty function based on the number of student-days having only one event in a day.

S10) Student-timeslot: Students prefer to have their events in consecutive timeslots —
equivalent to minimizing the number of free timeslots (1 or 2) between two timeslots
assigned to each student-group (using the matrix X);

FiolSe wsr (int 1), Where xgr(git;) =0if S %y X Xsr(tpt) =0, 1 otherwise,
xs7(t),0e) = @y

if |4-te|=t, te {2,3}, O otherwise, the weight ey reflects the penalty of having 1 or 2 free
timeslots, and fjo is a penalty function based on the total weights.

S11) Event-clashing: Two events of two optional courses of the same student-program should
not be scheduled at the same time (formulated using the matrices A, F and V);

S (Z:s:leCZ(Ci’ejsmk))’ where xgca(cps€j,my) =0

if 11 z;lﬂ'lﬂ ik .flzzk ' an(ej,mk) =0 s]. Otherwise, an(e]-,”&) =0 if

iy =cry +1
jl:82+12;=jl+lq.ljl "By, .an(efl’efz)=0’
1 otherwise, xsle;.¢,)=0 if #,,) =1, ,, | otherwise, and /i1 is a penalty function.

S12) Same-course: Events of the same course and student-group should not be scheduled on
the same day (formulated wusing the matrices A, F, Q and V),
Sz (ZI’EIE:‘HZI’:lfiI “Gim 'xSC(cl’ej’lk)): where xgc(c;,e;.4,) =1
if Zﬁ,slxsc(ej,tkpl, 0 otherwise, xs(e;,t,)=1 if Z{;EZJ?da,j-vjpl, 0 otherwise, and fi; is a
penalty function.

S13) Common-event 1: Two or more student-groups with the same event and student-program
should be scheduled at the same timeslot (using matrices A, F, Q, V, and X);

Sis (Z?QZ?;ZZL] ik fuva 'xCEl(mhgrn!tk))’
where xcg(m,gnt)=1 if ng(m)>1 and Tp¢ gy, - Xm <no(m;), 0 otherwise, and fi5 is a
penalty function.

S14) Common-event 2: Two student-groups with the same event but different student-
programs should not be scheduled at the same timeslot (using matrices A, F, Q, V & X);

Sia (Z?QZ;%Z:;%‘ Vi Xcg2 (€ 8 mott))s

The 2nd International Conference on Research
and Education in Mathematics (ICREM 2) - 2005 849

where xcp,(c;omy, gp0ty)=0 if 2’51212_1,»4 i S, Xce2(my, gmity)=0, 1 otherwise,
Xcg2 My, 8mst)= 0 if
a2 et@im *Dim, “¥mt - Xmy =0, 1 otherwise, and f14 is a penalty function.
S15) Tutorial-lab: All tutorials or lab sessions of any course should occur later in the week

than the week’s first lecture on that course (using the matrices A and V);
ﬁs (Z;=1 11_12,;_,,4-1 y, "2 'xn(ejlsejzitk))’Wherc

x(e;.¢;.1)= 0 if tep) <ty ande; is the first lecture, or Yl @0de;, is the first lecture,
the events are of the same course, 0 otherwise, and fis is a penalty function.

S516) Frequent-event: If an event is held more than once a week, there should be at least one
day in between (formulated using the matrix V); fi¢ (Z,_leE(€t J,tk)) where xpge,1;,4)=0 if
nie;)<2, otherwise xgz(g;.¢;,1)

""(”')Egﬁm(q) vie xep(tste) s Xppltyti) =1/nfe;) if |¢;-4,1<28, O otherwise, and fi¢ is a
penalty function.

S17) Friday-afternoon: Friday aftenoon shall be used only after all other scheduling
possibilities are exhausted (formulated using the matrix V); f;; (Z ny j‘i o vy.), where fi;
is a penalty function based on the number of
events that are assigned to timeslots on Friday afternoon.

S18) Lunch-time: Events should not be assigned during lunch time (formulated using the
matrix V); fig(>™, 5"_",‘,’,’,’,‘0’;:’?,2,1)vy) where fig is based on the number of events that are
assigned during the lunch time.

S19) Free-timesiot: Certain student-groups may require a common free timeslot once a week
for their project works; for instance, the student-groups g, and g: require a common free
timeslot # (formulated using the matrix X);

Sio(x(g,.g,))> where x(g,,g,)=0 if x,=x,=0, 1 otherwise, and fjo reflects the violation of
this constraint.

4.3.3 Soft Constraints for Event-Room Assignment

The common soft constraints for ‘event-room assignment’ (ordered by their importance):

S20) Room-utilization: Events are assigned to rooms in such a way that the room utilization
can be maximized, or spare seats in each room are minimized (using matrices A, E & W);

J20 (Z::l 2@y W Xpy (ejs"k)),
where xpi(e;,n)=[n.(rr)-ns(e)] if n.(ri)>ns(e;), 0 otherwise, ny(e;)=ng(c;), and fy is based on
the total spare seats.

S21) Room-professor: Events should be scheduled in the rooms as close as possible to their
professors (using the matrices L, N, U and W); £, (Z;'.;lz;'jlz Lk Uyl wy (1= n,k)),
where f51 s a penalty function.

The 2nd International Conference on Research
and Education in Mathematics ICREM 2) — 2005 850

S22) Room-department. Events should be scheduled in the rooms at their departments
(formulated using the matrices A, F, M, N and Ww);

S (Z:'n!=l P A e M+ iy Gy W - (1= nmlc)), where f2, is a penalty
function based on the number of events that are scheduled at different departments.

S23) Room-type: Events should be scheduled into rooms of the type specified by the
department or professor (formulated using the matrix W); f; (Z P X Wi XRr (e,,rj)),
where xgr (e;,7;) =0 if the type of room
assigned to event ¢; is equal to its preferred room-type, 1 otherwise, and f5; is a penalty
function.

S24) Same-group: All events of the same student-group should be scheduled in the same
room, or a student-group should be scheduled to only one room (using the matrix Y);

Jas (Z?:l x56(&i:7;)), where xg;(g;,7,)= 0 if

2 vy =1, 1 otherwise, and fo4 is based on the number student-groups that assigned to
more than one room.

S25) First-timeslot. There must be a limit on the total number of rooms assigned to the first-
timeslot events (early moming) on each day, e.g. to avoid traffic-jam; for instance, not
more than x% of the available rooms must be assigned to the first-timeslot events each day

(formulated using the matrices V and W); f35 (Z e ¥rr(€ist ;a1)),

where xpr(st;>1) =0 if P 2k Vi Wi S(ne-x/100), otherwise
xpr (€t ;ohe) = Di ok vy - Wy =(n9-x/100),
T = {t1,li5,t29,143,157}, and fs is a penalty function based on the number of assigned rooms
that exceed (rn9-x/100).

S26) Reserved-room: Reserved rooms should not be used unless there is no other room
available (using the matrix

W), fr (2212"’ w,-j), where ry, ke{r,...,no}, is the set of reserved rooms, and fy is a

j=r
penalty function.

S27) Preferred-room: Preferred rooms for each student-group should be used first, as this
minimizes the need for students to change rooms between events (formulated using the
matrices A, F, Q and W);

S (Z?:lz':l T Y i Sy Wi 'xPR(ej’rm))’ where xpp(e;,r,) = 0 if the room assigned
to event ¢;

is one of the preferred rooms of student-group g, 1 otherwise, and f;; is a penalty
function.

S28) Travel-time: Sufficient time should be provided for students to move from one room to
another. The simplest solution is all events should finish 15 minutes earlier. The distance
traveled will be minimized if the soft constraints (S22), (S24) and (S27) are minimized.

The 2nd International Conference on Research
and Education in Mathematics ICREM 2) — 2005 851

4.4 Course Timetabling Model

Quality measures of a course timetable are derived from the soft constraints, most frequently
from the professor and student restrictions. If several different quality measures are used
simultaneously, the objective function is a linear combination of these measures, with relative
penalty functions that reflect their perceived importance. If all of these measures are used, soft
constraints (S1) to (827), the objective function becomes extremely long and impossible to
evaluate. Similarly, if all of the hard constraints (H1) to (H23) are used simultaneously, a
feasible timetable would never be produced. Since the UCTP has been considered as three
separate subproblems, each will be separately modeled as a 0-1 integer programming.

4.4.1 ‘Course-Professor Assignment’ Model

The simplest model of ‘course-professor assignment’ may consist of the hard constraints
course-professor (H1), professor-clashing (H3) and minimum load (H5), and the soft
constraints maximum-load (S1) and preferred-course (S5). The (0-1 integer programming)
‘course-professor assignment’ model will be

TOMIZES (77 5 (e,) 15 (S0 218y 1) [(SD+(SS)]
subject to Yihxep(enp;)=0, (H1)
TS x(en pte) =0, (H3)
2t Xmin €, P;) =0, (H5)

all variables are integers 0-1.
4.4.2 ‘Event-Timeslot Assignment’ Model

The simplest model of ‘event-timeslot assignment’ may consist of the hard constraints
student-clashing (HS8), event-frequency (H9) and event-clashing 1 (H10), and the soft
constraints daily-event (S8) and event-clashing (S11). The (0-1 integer programming) ‘event-
timeslot assignment’ model would be

minimizefs (ZZLI ZL. xpr (¢ e;,5; Jz))"‘fil (ZZilecz(Ci,ej’mk)) [(S8)+(S11)]

subject to P T Gy e Ve =0, (H8)
Zfi) XEF (eis’j) =0, (H9)
Z:iGC](ciﬁejamk)=0’) (HIO)

all variables are integers 0-1.
4.4.3 ‘Event-Room Assignment’ Model

The simplest model of ‘event-room assignment’ may consist of the hard constraints room-
clashing (H17), room-capacity (H18), and room-availability (H19), and the soft constraints
room-utilization (S21) and first-timeslot (S25) and. The (0-1 integer programming) ‘event-
room assignment” model would be

minimizefso (S, 57, 5%, 0y Wy - xeepor))+ fos Sermertentyn) [(S21)1H(S25)]

subject to T2 xpe(et;n) =0, (H17)

The 2nd International Conference on Research

and Education in Mathematics (ICREM 2) — 2005 852
ZZ?ﬂZ;i]xC(ci,ej’rk):O: (H]'S)
:9=1 ;21221(1_517;)"’9' wy =0, (H19)

all variables are integers 0-1.

5. Discussion and Future Work

The GUCTM, presented in Section 4, would benefit those who are involved in course
timetabling. Since different institutions have different needs, requirements and goals, this
model shall be used as a guideline to develop an appropriate model for a given CTP; not some
rules that every institution must follow. Many of the presented hard constraints and soft
constraints will conflict either directly or indirectly. For many institutions, due to the
difficulty of the problem, many are ignored altogether.

The general model has considered 23 hard constraints and 28 soft constraints. These are the
common constraints used for solving CTPs in the literature. However, each of the hard
constraints may be transformed into a soft constraint by adding an appropriate penalty
function, or vice-versa, and there remain a huge number of other constraints depending on
institutions. When solving a CTP, it is advisable to start with a few number of hard constraints
(2 or 3), then other hard constraints may be added one at a time provided the timetable
remains feasible. If any hard constraint caused an infeasibility, it may be transformed into a
soft constraint. A similar approach should be used for the soft constraints; start with 2 or 3
soft constraints in the objective function, and then other soft constraints may be added one at a
time until no further evaluation can be made. The more constraints used to solve a CTP, the
more complex it would be. The number of hard constraints used in a CTP is usually more than
the soft constraints. The formulation of the constraints as 0-1 integer programming would be
much easier if more input matrices have been constructed, but more input matrices require
more times and work. Formulating the constraints as 0-1 integer programming doesn’t mean
that we are going to use this approach. The objective is to show that the CTPs, however
complex, are solvable.

The course timetabling model for a particular institution needs to be updated from time to
time. As the number of students increased, the needs and requirements will also change and
increase. Some hard constraints may need to be considered as soft constraints. As the
problems changed, and new problems arise, more types of hard constraints and soft
constraints should be added to the model so that it remains viable for solving the CTP for that
institution.

For future work, the GUCTM will be used to develop a unified model for university
timetabling problems. This unified model may be used to represent and solve all types of
university timetabling problems, especially course and examination.

6. References

[1] Alkan, A., and Ozcan, E. (2003) Memetic Algorithms for Timetabling. Proceedings of the
Congress on Evolutionary Computation 2003 (CEC'2003), Piscataway, New Jersey, Dec
2003, Volume 3, pp: 1796-1802.

[2] Avella, P., and Vasil’ev, I. (2003) Computational Study of a cutting plane algorithm for
University Course Timetabling. Technical Report 20-03, DIS Universita di Roma “La
Sapienza”.

The 2nd International Conference on Research
and Education in Mathematics ICREM 2) — 2005 853

[3] Burke, E.K., MacCarthy, B., Petrovic, S., and Qu, R. (2001) Case-Based Reasoning in
Course Timetabling: An Attribute Graph Approach. Proceedings of the 4th. International
Conference on Case-Based Reasoning (ICCBR-2001), Vancouver, Canada, 30 July - 2
August 2001, pp: 90-104.

[4] Burke, E.K., Bykov, Y., Newall, J., and Petrovic, S. (2003) A Time-Predefined Approach
to Course Timetabling. Research paper, Automated Scheduling, Optimization and
Planning Group, School of Computer Science & IT, University of Nottingham, UK.

[5] Carter, M.W. and Laporte, G. (1998) Recent Developments in Practical Course
Timetabling. Proceedings of the International Conference on Practice and Theory of
Automated Timetabling (PATAT'97), pp: 3-19.

(6] Corne, D., Ross, P., and Fang, H.L. (1994) Fast Practical Evolutionary Timetabling.
Lecture Notes in Computer Science, Vol. 865, Evolutionary Computing AISB Workshop;
Leeds, UK, Springer-Verlag, pp: 251-263.

[7] Erben, W., and Keppler, J. (1995) A genetic algorithm solving a weekly course-

timetabling problem. Proc. of the Ist Inter. Conference on the Practice & Theory of
Automated Timetabling ICPTAT '95), pp: 21-32.

[8] Loo, E.H., Goh, T.N.,, and Ong, HL. (1986) A Heuristic Approach to Scheduling
University Timetables. Journal of Computers and Education, Volume 10, pp: 379-388.

[9] Ozdemir, M.S., and Gasimov, R.N. (2003) The analytic hierarchy process and
multiobjective 0-1 faculty course assignment. European Journal of Operational Research
2003, Elsevier B.V.

[10] Ross, P., Come, D., and Fang, H.L. (1994) Successful Lecture Timetabling with
Evolutionary Algorithms. Applied Genetic and other Evolutionary Algorithms:
Proceedings of the ECAI'94 Workshop.

