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This paper compares the application of theMonte Carlo simulation in incorporating travel time uncertainties in ambulance location
problem using three models: Maximum Covering Location Problem (MCLP), Queuing Maximum Availability Location Problem
(Q-MALP), and Multiserver Queuing Maximum Availability Location Problem (MQ-MALP). A heuristic method is developed to
site the ambulances. The models are applied to the 33-node problem representing Austin, Texas, and the 55-node problem. For the
33-node problem, the results show that the servers are less spatially distributed inQ-MALP andMQ-MALPwhen the uncertainty of
server availability is considered using either the independent or dependent travel time. On the other hand, for the 55-node problem,
the spatial distribution of the servers obtained by locating a server to the highest hit node location is more dispersed in MCLP and
Q-MALP. The implications of the new model for the ambulance services system design are discussed as well as the limitations of
the modeling approach.

1. Introduction

In emergency medical services, a responsive and well-mana-
ged ambulance service is one of the key factors that can reduce
fatality and suffering in patients. For emergency patients,
eachminute passed by will increase the severity of illnesses or
injuries. Therefore, to provide a quick response, ambulances
must be positioned at appropriate locations that can cover
emergency demand within an acceptable response time. The
response time is the most common measure of ambulance
location performance, generally defined as the time between
the dispatch ofmedical personnel and arrival of the personnel
at the scene. It consists of the dispatch delay time plus
the travel time to the scene. Yet, from the literature, some
have also considered using the travel time as a surrogate
for response time in alleviating ambulance location problem
[1, 2]. This is a common practice and the most meaningful
measure because the only component that is affected by
changing the location of the ambulance is the travel time.

Traditional models have studied ambulance location
model using constant travel time, with the assumption that

travel time does not vary with time as there is no difference
in velocity and speed [3–5]. However, in reality, there are
variations in travel times and neglecting the variations could
lead to an inaccurate estimation of the optimal ambulance
fleet size. Variations in travel times from run to runwould still
occur even on an ambulance that traveled from a particular
facility site using the same route repeatedly under essentially
constant conditions such as same vehicle, driver, weather, and
time of day. Thus, the uncertainty of ambulance travel time
must be considered when doing analysis using travel time as
a performance measure.

Studies on ambulance location problems have a long
history in operations research. Among the many types of
the ambulance location models in the literature, most of
the models can be classified under the category of cov-
ering model. There are several types of covering model
ranging from a simple to a more complex model such as
the Location Set Covering Problem (LSCP) [6], Maximal
Covering Location Problem (MCLP) [7, 8], Double Standard
Model (DSM) [9], Maximum Expected Covering Location
Problem (MEXCLP) [10], Maximum Availability Location
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Problem (MALP) [11, 12], Queuing Maximum Availability
Location Problem (Q-MALP) [10], and Multiserver Queuing
Maximum Availability Location Problem (MQ-MALP) [12]
models. In all covering models, the aim is to find a set of
optimal locations of facilities, such as ambulances, that can
cover all or a maximum number of demand points, where
coverage is defined similarly in somemodels while differently
in others.

In this paper, with travel time used as a proxy to the
response time,we consider the application of theMonteCarlo
approach to incorporating travel times uncertainty in the
Maximum Covering Location Problem (MCLP), Queuing
Maximum Availability Location Problem (Q-MALP), and
Multiserver Queuing Maximum Availability Location Prob-
lem (MQ-MALP) models All three models are applied to the
33-node problem representingAustin, Texas, and the 55-node
problem.

The remainder of the paper is structured as follows.
Firstly, some pertinent literatures on ambulance location
models are presented. Next, a brief review of the MCLP,
MALP, and the MQ-MALP models is provided. This is then
followed by the Monte Carlo simulation of the MCLP, Q-
MALP, and MQ-MALP with travel time uncertainty and the
method used to site the ambulances. Analysis and discussion
on the obtained results are in the subsequent section. Finally,
a brief conclusion concludes the paper.

2. Ambulance Location Models

Ambulance locationmodels in the literaturemay be classified
into two categories. The first, descriptive in nature, are the
stochastic models which include queuing and simulation
studies. They are generally used to determine the perfor-
mance of a specified allocation and as such, it is often useful
in addressing the tactical issues of the deployment of the
vehicles. These approaches provide a richness of detail but
they are also significantly more complex and require huge
data.

Themost well-known and comprehensive queuingmodel
is the hypercube model created by Larson [13, 14]. In
attempting to get a more accurate estimate for the probability
of a vehicle being unavailable, Larson [13] developed a
hypercube queuing model that considers the dependency
among ambulances. Later, to reduce computational loads
of the original model, Larson [14] created an approximate
hypercube queuing model. The model can be used to assist
planning by describing the consequences of a proposed
change in terms of performance measures. Larson’s work was
followed by many studies that were aimed at incorporating
more realistic model features and integrating them into a
probabilistic location model [15–17].

In terms of simulation model, one of the earliest appli-
cations to the ambulance location problem was by Savas
[18]. Other simulation models were then developed in the
context of medical facility or resource location problems by
Fitzsimmons [19], Swoveland et al. [20], Berlin and Liebman
[21], Uyeno and Seeberg [22], Goldberg et al. [23], Henderson
and Mason [24], Gunes and Szechtman [25], and Aringhieri
et al. [26]. These simulation models were commonly applied

to evaluate the performance of solutions that were obtained
from mathematical models. Unlike the analytical models,
simulation models can evaluate rather complicated deploy-
ment strategies that do not require the restrictive assumptions
frequently needed in analytical models. However, there are
some practical challenges in simulation optimization such as
the difficulty of evaluating optimality of obtained solutions
and possibly long computation time that require considerable
computer resources.

The second category of relevant literature is the family
of deterministic location models based on a network. Pre-
scriptive in nature, these models require less data and less
computer time than the descriptive models. In this paper,
the deterministic models are intensively reviewed since our
implicit goal is to present a network based model that will fill
a gap between the stochastic and deterministic models. The
historical starting point of deterministic locationmodel is the𝑝-median problem proposed by Hakimi [27]. The two main
properties of the𝑝-median problem are the coverage distance
that is unrestricted and the number of resources to be located
is already identified [28]. The model seeks to locate facilities
in such a way that the average response time is minimized. A
major problem of this formulation is that solutions to these
problems tended to burden some portion of the region with
unacceptably long response times [29]. This problem led to
the notion of “demand covering.”

There are two types of covering problem. One is to
minimize the number of facilities to cover all demand points,
while the other type aims at locating a limited number of
resources that maximize the number of covered demand
points. The first type is originally proposed by Toregas et al.
[3], known as the Location Set Covering Problem (LSCP)
which sought to position the minimum number of servers in
such a way that each and every demand point on the network
had at least one server initially positioned some distance or
some standard time. However, as the nearest facility may not
always be available at the time a demand call is received,
the LSCP has been extended to locate a limited number
of resources that maximize the number of covered demand
points. Church andReVelle [4] introduced the firstmaximum
covering model known as the Maximal Covering Location
Problem (MCLP).

The MCLP seeks the placement of a fixed number of
servers so that the population or calls for service that have a
server positioned within the standard would be maximized.
There are a few extensions of MCLP that were applied to
solve problems related to ambulance location. Some suc-
cessful MCLP applications are the work done by Eaton et
al. [30], who managed to solve ambulance location problem
in Dominican Republic, and Dessouky et al. [31, 32] who
studied large scale MCLP focusing on multiple quality levels
and multiple quantities of the vehicles at the demand points.
Other extensions of MCLP were also successfully applied on
other areas such as gradual covering models by Berman et
al. [33] and integrated GIS with MCLP by Alexandris and
Giannikos [34].

The LSCP and MCLP, however, have a drawback; once
a resource is requested for service, other demand points
under its coverage are ignored and need to be catered by
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other resources. The drawback leads to the extensions and
modifications of the basic model formulations. Two types
of model were proposed to overcome the drawback. One
type of the covering model aims to provide multiple coverage
demand points by using more than one resource such as the
Double StandardModel (DSM), introduced by Gendreau [5].
The DSM attempted to allot resources among potential sites
using at least two vehicles to provide full coverage for longer
distance standard while at the same time maximizing cover-
age within a shorter distance standard [35]. In the basic DSM
model, demand is assumed equal for all nodes. However,
Doerner et al. [36] modified and extended the basic DSM
model by applying different capacity at the demand nodes.

The other type of the models attempted to take explicit
account of the probabilities of servers being busy to compute
the amount of redundancy actually needed, such as the
MEXCLP by Daskin [37] and MALP by ReVelle and Hogan
[38]. Daskin [37] extends the MCLP to account for the
possibility that a server may be unable to respond to new
demands. The objective of Daskin’s siting model was to
maximize the expected population covered given a limited
number of ambulances to be deployed. Later, ReVelle and
Hogan [38] enhanced the MEXCLP by introducing the local
estimate of the busy fraction, in the coverage area around
node. Instead of maximizing expected coverage as in Daskin,
they constrained the level of server availability to be greater
than or equal to a preset value, while minimizing the total
number of servers. The model, known as the Probabilistic
Location Set Covering Problem (PLSCP), was essentially a
version of the LSCP with a probabilistic constraint.

Before long realizing that solution to the PLSCP could
lead to a large number of servers, potentially larger than what
available funds could achieve, ReVelle andHogan [38] formu-
lated the Maximum Availability Location Problem (MALP).
It sought to maximize the population which had a service
available within a stated travel timewith a specified reliability,
given that only servers are to be located. The number of
servers needed for 𝛼-reliable coverage of node is computed
using the same reasoning as in PLSCP. Other researchers
also modified and enhanced the MEXCLP and PLSCP to
tackle other EMS location problems such as MOFLEET [39],
AMEXCLP [40], and TIMEXCLP [41].

The preceding models discussed so far made an assump-
tion that the probabilities of two vehicles being busy within
the same region are independent. Batta et al. [40] relaxed
the independence assumption through the use of Larson’s
approximated hypercube while still maintaining the system-
wide busy fraction. Marianov and ReVelle [42], on the other
hand, use the region-specific busy fraction in their model.
They formulated the Queuing-MALP (Q-MALP) in which
the assumption of independence of server availability is
relaxed and modeled the behavior of each region as an
M/M/s/s queuing system (Poisson arrivals, exponentially dis-
tributed service time, servers, and up to calls being serviced
at the same time). They later modified the model to include
the general service time distribution [43]. Noraida [12] later
extended the Q-MALP model by developing the MQ-MALP
that considers two types of demand (critical and noncritical)
with two types of servers, that is, advanced life support (ALS)

and basic life support (BLS).Though the BLS is not equipped
with ALS capabilities, this unit acts as a backup for the ALS
in providing coverage to critical calls. In addition, her model
takes into account the stochastic nature of the travel times.

Other studies of ambulance location problem were also
aware of the importance of taking into account the uncer-
tainty in the travel times, as it will significantly influence the
quality of the achieved solution.Mirchandani andOdoni [44]
extended the 𝑝-median problem to account for stochastic
travel times. Their model assumes travel times to be known
when a demand for service arises; however, the state of the
system (as described by the link travel times) changes over
time according to a Markov process. Daskin [45] formulated
a multiobjective model that simultaneously determines the
number of vehicles to deploy and their locations and iden-
tifies the appropriate dispatch policy and the routes vehicles
should use in traveling to emergency locations. His model
accounts for the effects of travel time variability on the system
performance measures.

3. MCLP, Q-MALP, and MQ-MALP Models

In covering models, a demand is considered covered if at
least one vehicle can serve the emergency call within a
standard distance. As stipulated in the EMS Act of 1973, the
standard distance required that 95% of demand calls in urban
areas should be reached within 10 minutes, whereas in rural
areas the calls should be reached not more than 30 minutes.
Adhering to the Act, many studies of ambulance location
problem had applied covering models. In this section, we
provide further description on the MCLP, Q-MALP, and the
MQ-MALP as the direction of this paper is based on these
three models.

3.1. MCLP Model Formulation. Church and ReVelle [4]
introduced theMCLP tomodify the assumption of unlimited
resources to serve the demand as considered in the LSCP.The
MCLP is formulated to maximize the number of demands
that can be coveredwithin the desired service distance or time
given a limited number of facilities. A demand is considered
covered if there is at least one ambulance stationed within
some distance away. The MCLP does not consider server
availability; hence, it is assumed that once stationed, the
ambulance is always available. The model can be stated as
follows:

max 𝑍 = ∑
𝑖∈𝐼

𝑓𝑖𝑦𝑖 (1)

Subject to 𝑦𝑖 ≤ ∑
𝑗∈𝑁𝑖

𝑥𝑗 ∀𝑖 ∈ 𝐼,
∑
𝑗∈𝐽

𝑥𝑗 = 𝑃,
𝑥𝑗, 𝑦𝑖 = 0, 1 ∀𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼,

(2)

where

𝐼 is set of demand nodes (indexed by 𝑖),
𝐽 is set of eligible facility sites (indexed by 𝑗),
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𝑡𝑖𝑗 is shortest time from potential facility site 𝑗 to
demand node 𝐶,
𝑆 is time or distance standard for coverage,
𝑓𝑖 is demand at node 𝑖.
𝑁𝑖 = {𝑗 | 𝑡𝑖𝑗 ≤ 𝑆}; that is, 𝑁𝑖 is the set of nodes𝑗 located within the time or distance standard of
demand node 𝑖 or the neighborhood of 𝑖. If a call for
service originating at this node is answered by avail-
able servers stationed inside this neighborhood, it will
be answered within the time or distance standard.

𝑥𝑗 = {{{
1 if a facility is located at node 𝑗,
0, otherwise,

𝑦𝑖
= {{{

1 if 1 or more facilities are within 𝑆 of demand node 𝑖,
0, otherwise.

(3)

3.2. Q-MALP Model Formulation. Marianov and ReVelle
[43] introduced the queuing maximal availability location
problem (Q-MALP) that relaxes the assumption that the
probability of different servers being busy is independent.
In the model, the arrival and servers activities within the
neighborhood were treated as M/G/s-loss queuing system.
The model allows dependency busy fraction between differ-
ent servers at a local neighborhood. Using queuing theory, 𝑏𝑖,
the smallest number of vehicles that must be located to cover
demand point 𝑖 with reliability coverage 𝛼 can be computed.
In the Q-MALP model, a demand is considered covered if
there is at least one ambulance stationedwithin somedistance
away. However, once stationed, the ambulance is not always
available to respond as it might be servicing other demands
or it might be down or under repair and server availability is
dependent on other servers in the system. The model can be
formulated as follows:

max 𝑍 = ∑
𝑖∈𝐼

𝑓𝑖𝑦𝑖𝑏𝑖
subject to

𝑏𝑖∑
𝑘=1

𝑦𝑖𝑘 ≤ ∑
𝑗∈𝑁𝑖

𝑐𝑗∑
𝑘=1

𝑥𝑘𝑗 ∀𝑖 ∈ 𝐼,
𝑦𝑖𝑘 ≤ 𝑦𝑖(𝑘−1) ∀𝑖, 𝑘 = 2, 3, . . . , 𝑏𝑖
∑
𝑗∈𝐽

𝑐𝑗∑
𝑘=1

𝑥𝑘𝑗 = 𝑝,
𝑥𝑘𝑗, 𝑦𝑖𝑘 = 0, 1 ∀𝑖, 𝑗, 𝑘,

(4)

where
𝐼 is set of demand nodes (indexed by 𝑖),
𝐽 is set of eligible facility sites (indexed by 𝑗),
𝑡𝑖𝑗 is shortest time from potential facility site to
demand node 𝑖,
𝑆 is time or distance standard for coverage,
𝑎 is reliability of a server,

𝑀𝑖 = {𝑘 | 𝑡𝑖𝑘 ≤ 𝑆, 𝑘 ∈ 𝐼}; that is, the set of demand
nodes located within 𝑆 of node 𝑖 or the neighborhood
of 𝑖,
𝑁𝑖 = {𝑗 | 𝑡𝑖𝑗 ≤ 𝑆, 𝑗 ∈ 𝐽}; that is, the set of
potential facility sites 𝑗 located within 𝑆 of node 𝑖 or
the neighborhood of 𝑖,
𝜆𝑖 is arrival rate (calls/day),
𝜇𝑖 is service rate (calls/day),
𝑝𝑖 = 𝜆𝑖/𝜇𝑖,
𝑏𝑖 is the smallest integer satisfying (1/𝑏𝑖!)𝑝𝑏𝑖𝑖 /(1 + 𝑝𝑖 +(1/2!)𝑝2𝑖 + ⋅ ⋅ ⋅ + (1/𝑏𝑖!)𝑝𝑏𝑖𝑖 ) ≤ 1 − 𝑎

𝑥𝑗 = {{{
𝑚 if𝑚 servers are positioned at location 𝑗,
0, otherwise,

𝑦𝑖𝑘
= {{{

1 if 𝑘 or more servers are within 𝑆 of demand area 𝑖,
0, otherwise.

(5)

3.3. MQ-MALP Model Formulation. Noraida [12] developed
the MQ-MALP to reflect two categories of ambulance, the
advanced life support (ALS) and basic life support (BLS). ALS
ambulances are manned by paramedic and are equipped to
handle life-threatening demands such as cardiac resuscitation
and airway management. BLS ambulances provide services
for noncritical problems that are managed by emergency
medical technician (EMT). The BLS also plays a role as a
“backup” for the ALS in providing coverage to critical calls.
A call of noncritical nature is considered covered if there is at
least one ALS/BLS unit stationed within time standard 𝑆with𝛼-reliability. Likewise, a call of critical nature is considered
covered if there is at least one ALS stationed within time
standard 𝑇with probability 𝛼. The concept of coverage in the
MQ-MALP is discussed in detail by Noraida [12].

The model can be stated as follows:

max 𝑍 = 𝑤𝑎∑
𝑖∈𝐼

𝑓𝑎𝑖𝑦𝑎𝑖𝑏𝑎𝑖 + 𝑤𝑏∑
𝑖∈𝐼

𝑓𝑏𝑖𝑦𝑏𝑖𝑏𝑏𝑖

subject to
𝑏𝑎𝑖∑
𝑘=1

𝑦𝑎𝑖𝑘 ≤ ∑
𝐽∈𝑁𝑠𝑖

𝑥𝑎𝑗 + ∑
𝐽∈𝑁𝑠𝑖

𝑥𝑏𝑗 ∀𝑖 ∈ 𝐼,
𝑏𝑏𝑖∑
𝑘=1

𝑦𝑏𝑖𝑘 ≤ ∑
𝐽∈𝑁𝑇𝑖

𝑥𝑏𝑗 ∀𝑖 ∈ 𝐼,
𝑦𝑎𝑖𝑘 ≤ 𝑦𝑎𝑖(𝑘−1) ∀, 𝑘 = 2, 3, . . . , 𝑏𝑎𝑖,
𝑦𝑏𝑖𝑘 ≤ 𝑦𝑏𝑖(𝑘−1) ∀, 𝑘 = 2, 3, . . . , 𝑏𝑏𝑖,
∑
𝑗∈𝐽

𝑥𝑎𝑗 = 𝑝𝑎

∑
𝑗∈𝐽

𝑥𝑏𝑗 = 𝑝𝑏
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𝑥𝑎𝑗 + 𝑥𝑏𝑗 ≤ 𝑐𝑗 ∀𝑗 ∈ 𝐽,
𝑥𝑎𝑗 + 𝑥𝑏𝑗 = integer ≤ 𝑐𝑗 ∀𝑗 ∈ 𝐽,
𝑦𝑎𝑖𝑘 + 𝑦𝑏𝑖𝑘 = 0, 1 ∀𝑖, 𝑘,
𝑁𝑠𝑖 = {𝑗 | 𝑡𝑖𝑗 ≤ 𝑠, 𝑗 ∈ 𝐽} ,
𝑁𝑇𝑖 = {𝑗 | 𝑡𝑖𝑗 ≤ 𝑇, 𝑗 ∈ 𝐽} ,

(6)

where

𝐼 is set of demand nodes (indexed by 𝑖),
𝐽 is set of eligible facility sites (indexed by 𝑗),
𝑡𝑖𝑗 is shortest time from potential facility site 𝑗 to
demand node 𝑖,
𝑆 is time standard for coverage of critical calls,
𝑇 is time standard for coverage of noncritical calls,
𝑓𝑎𝑖 is demand of critical nature at node 𝑖 (number of
calls per day),
𝑓𝑏𝑖 is demand of noncritical nature at node 𝑖 (number
of calls per day),

𝑎 is reliability of a server,
𝑏𝑎𝑖 is the minimum number of EMS (ALS or BLS)
units whichmust be locatedwithin 𝑆 unit of node 𝑖 for
node 𝑖 to be covered with reliability 𝑎, precomputed
using

(1/𝑏𝑎𝑖!) 𝑝𝑏𝑎𝑖𝑖1 + 𝑝𝑎𝑖 + (1/2!) 𝑝2𝑎𝑖 + ⋅ ⋅ ⋅ + (1/𝑏𝑎𝑖!) 𝑝𝑏𝑎𝑖𝑎𝑖 ≤ 1 − 𝑎, (7)

𝑏𝑏𝑖 is the minimum number of BLS units which must
be located within 𝑇 unit of node 𝑖 for node 𝑖 to be
covered with reliability, precomputed using

(1/𝑏𝑏𝑖!) 𝑝𝑏𝑏𝑖𝑖1 + 𝑝𝑏𝑖 + (1/2!) 𝑝2𝑏𝑖 + ⋅ ⋅ ⋅ + (1/𝑏𝑏𝑖!) 𝑝𝑏𝑏𝑖𝑏𝑖 ≤ 1 − 𝑎, (8)

𝑝𝑎 is number of available ALS units to locate,

𝑝𝑏 is number of available BLS units to locate,

𝑐𝑗 is capacity of site 𝑗.
𝑤𝑎, 𝑤𝑏 ≥ 0 are the weights associated with each objective:

𝑦𝑎𝑖𝑘 = {1 if at least 𝑘 EMS (AL or BLS) units are within 𝑆 of demand node 𝑖,
0, otherwise,

𝑦𝑏𝑖𝑘 = {1 if at least 𝑘 BLS units are within 𝑇 or demand node 𝑖,
0, otherwise,

𝑦𝑎𝑗 = {𝑚 if at least𝑚 ALS servers are located at side 𝑗,
0, otherwise,

𝑦𝑎𝑗 = {𝑚 if at least𝑚 BLS servers are located at side 𝑗,
0, otherwise.

(9)

To account for the stochastic nature of the travel times,
the above MQ-MALP model formulation was extended by
incorporating a probabilistic measure in 𝑁𝑆𝑖 and 𝑁𝑇𝑖 as
explained in Section 4.

It is better to calculate the average duration of critical
call originating from demand node 𝑖. However, as data is not
collected at that level, 𝑡𝑎 is used as an estimate instead. This
is where the assumption [see Marianov and ReVelle [43]] of
treating the demand neighborhoods as self-containing comes
into play.

As indicated by Figure 1, this assumption may not be
consistent as it is possible that facility node 𝑚 is part of the
response area of demand node 𝑖 as well as of demand node 𝑗.
Averaging with respect to critical calls to demand node 𝑖 (i.e.,
calculate 𝑡𝑎𝑖) would improve the apparent inconsistency as
this average would take into account the fact that responses to
critical calls originating at demand node 𝑖 are delayed because

servers at facility node𝑚 are also responding to demand node𝑗. However, even with this adaptation the minimum number
of servers required calculated in our model would still be a
lower bound on the number that is actually needed to arrive
at this reliability due to the self-containment assumption of
demand node 𝑖.

4. Monte Carlo Simulation of MCLP,
Q-MALP, and MQ-MALP Models with
Travel Time Uncertainty

In the formulations of MCLP, Q-MALP, and MQ-MALP, the
response time/travel times along the arcs of the network are
assumed to be deterministic. In other words, the probability
distribution of the response time, 𝑇𝑖𝑗, is degenerate. Suppose
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Figure 1: Example of facility site within 𝑆 neighborhood of node 𝑖
and node 𝑗.

now that the response times 𝑇𝑖𝑗 are nondegenerate random
quantities with probability distribution, 𝐹𝑇𝑖𝑗 (Figure 2).

By treating the response times as random quantities,
an improvement was made by Noraida [12] in the way𝑁𝑠𝑖 and 𝑁𝑇𝑖 are computed. This was done by choosing a
neighborhood of each node in such a way that, if a call for
service originating at this node is answered by an available
server located within the neighborhood, it will be answered
within time standards with probability 𝛾.𝑁𝑠𝑖 is redefined as

𝑁𝑠𝑖 = {𝑗 | 𝑝 (𝑇𝑖𝑗 ≤ 𝑆) ≥ 𝛾} = {𝑗 | 𝐹𝑇𝑖𝑗 (𝑆) ≥ 𝛾}
= {𝑗 | 𝑆 ≥ 𝐹−1𝑇𝑖𝑗 (𝛾)} = {𝑗 | 𝐹−1𝑇𝑖𝑗 (𝛾) ≥ 𝑆} .

(10)

Similarly, the same can be done with𝑁𝑇𝑖 and is redefined as

𝑁𝑇𝑖 {𝑗 | 𝐹−1𝑇𝑖𝑗 (𝛾) ≥ 𝑇} . (11)

However, the above are only applicable if and only if 𝐹−1𝑇𝑖𝑗
exists. Instead of redefining 𝑁𝑠𝑖 and 𝑁𝑇𝑖 in the formulation,
another approach towards taking travel time uncertainty into
account is to use a Monte Carlo regimen. Here, one would
sample the travel times from their respective distribution and
solve the MCLP, Q-MALP, and MQ-MALP model described
in Sections 3.1, 3.2, and 3.3, respectively. This constitutes one
iteration, resulting in an optimal solution for the sampled
travel times.

By following this approach repeatedly, a whole series of
optimal solutions can be generated. One would hope that
particular nodes would be members of optimal solutions
more frequently than other nodes. Those nodes that are hit
the most should be considered for placement of EMS (ALS or
BLS) units.

5. Results and Analysis

This section considers the application of the Monte Carlo
approach to incorporating travel times uncertainty in the
MCLP, Q-MALP, and MQ-MALP models. We will use this
approach to the 33-node problem and the 55-node problem.

i

j

k

5

Node

Demand generated at node

Link travel time distribution

10

5

4

tij

tik

tjk

Figure 2: A network with travel time distribution.

The 33-node problem from Daskin [46] represents
Austin, Texas, at the census tract level. Interzonal travel times
are given by travel matrix with intrazonal times taken to be
one minute. The weights associated with each zones are the
number of calls for ambulance services recorded in the census
tract during the five-month period for which the data were
available.

The 55-node problem is the test problem proposed by
Toregas [3]. The data is drawn from a common base com-
posed of 55 points identified by their coordinates and their
(𝑥, 𝑦) user population.The travel distancematrix is generated
by

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2. (12)

However, for the purpose of analysis, the following
modifications were made similar to Noraida [12]. First, for
each network, the population concentration at each node
was multiplied by a constant factor such that the resulting
average calls per day over the entire network are 0.4 calls
per day. These are used as estimates of the number of calls
per node per day. Second, we used the finding from Eaton
et al. [30] (only 20–25 percent of calls for ambulance service
in Austin require the advanced skills of paramedics) in order
to get estimates for the breakdown of these calls into critical
and noncritical calls. Thus, the population concentration at
each node was multiplied by a constant factor such that the
resulting average calls for ALS services per node per day over
the entire network are 0.1 calls per day. These are used as
estimates of the number of critical calls per node per day.The
differences between these two estimates are used as estimates
of the number of noncritical calls per node per day.Third, an
average duration of a single service of 3/4 of an hour was used
[43]. This figure was estimated based on the average of three
cases: firstly, the ambulance goes to the site of the call, stays
there for some time, and then goes back to the facility site;
secondly, the ambulance reaches the emergency site, takes the
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patient to a hospital, and returns to its assigned facility site;
finally, there is the case of possibility of a false alarm or the
event that the emergency is over when the ambulance reaches
the alarm site.

The distributions of the travel time were assumed to be
distributed as Weibull with scale and shape parameters, 𝛼
and 𝛽, chosen such that themeans equaled their counterparts
for the deterministic travel times. As for the variances, a
more realistic model would be to use the variances of the
travel time distributions itself. However, in the absence of
such data, one could use a standard coefficient of variation
to reflect the proportionality of the variances with the means.
However, for simplicity we will use a constant variance of
4 (a standard deviation of 2) for all travel times. Reliability
for server availability was set at 0.95 and 0.9 for the 33-
node problem and the 55-node problem.The number of ALS
and BLS servers to locate was set at 3 and 5, respectively. A
response time of 10 minutes was used in conformance with
stipulations of the EMSAct for urban areas for all servers with
the exception of 8 minutes for the ALS servers.

At each node, two sets of 1000 travel time samples each
were generated using Delphi version 4.0. In generating the
travel time (𝑋𝑖), a random number generator was used to
first generate 𝑈𝐼 ∼ 𝑈(0, 1), 𝑖 = 1, . . . , 1000. By letting 𝑋𝑖 =𝛽[− ln(1 − 𝑈𝑖)1/𝑎], the resulting 𝑋𝑖 ∼ Weibull (𝑎, 𝛽), 𝑖 = 1,. . . , 1000. The first set was generated assuming complete
independence of travel time between each pair of nodes,
while the second set was generated assuming complete
dependence of travel time between each pair of nodes. These
assumptions represent the two extremes of the relationship
of travel time between each pair of nodes. A different seed
number was used in the random number generator for each
pair of nodes in generating the complete independence of
travel time between each pair of nodes, while the same seed
number was used in the random number generator for all
pairs of nodes in generating the complete dependence of
travel time between each pair of nodes. The generated travel
timeswere used as inputs into the optimization problemMQ-
MALP and solved using Xpress-MP version 13.1.

Figures 3-4 display the percentage and cumulative per-
centage of EMS vehicle node location of the optimal solutions
of MCLP and Q-MALP models for the 33-node problem,
while Figures 5-6 show the percentage and cumulative
percentage of ALS and BLS vehicle node location of the
optimal solutions of MQ-MALP model for the 55-node
problem. In overall, Figures 3–6 show that the percentage
distribution of EMS vehicle node location of the optimal
solutions of theMCLP, Q-MALP, and theMQ-MALPmodels
appears steeper when dependent travel times between each
node were used. For example, in the 33-node problem, the
cumulative percentage of the three highest ranking nodes
(as identified by the optimal solution of the MCLP using
independent travel times) equals 31.1 percent, while the
cumulative percentage of the three highest ranking nodes
(as identified by the optimal solution of the MCLP using
dependent travel times) equals 44.8 percent. On the other
hand, the difference in the cumulative percentages of the

three highest ranking nodes is more pronounced in the
Q-MALP model (48% when using independent travel times
as opposed to 76.1% when using dependent travel times).

As for the MQ-MALP model, the cumulative percentage
of the three highest ranking nodes as identified by the optimal
solution of the model stands higher at approximately 60
percent for ALS node location and 80 percent for the BLS
node locationwhen using independent travel times, while the
cumulative distribution of the three highest ranking nodes
as identified by the optimal solution of the model stands
at approximately 77 percent for ALS node location and 89
percent for the BLS node location when using dependent
travel times.

Likewise, in the 55-node problem, the cumulative per-
centage of the three highest ranking nodes as identified by
the optimal solution of the MCLP using independent travel
times approximately equals 25 percent, while the cumulative
percentage of the three highest ranking nodes as identified
by the optimal solution of the MCLP using dependent travel
times approximately equals 35 percent. The difference in
cumulative percentages, however, is less pronounced when
Q-MALP model was employed (29.6% when using inde-
pendent travel times as opposed to only 33% when using
dependent travel times). As for the MQ-MALP model, the
cumulative distribution of the three highest ranking nodes
as identified by the optimal solution of the model stands
at approximately 27 percent for ALS node location and 52
percent for the BLS node location when using independent
travel times, while the cumulative distribution of the three
highest ranking nodes as identified by the optimal solution
of themodel stands at approximately 33 percent for ALS node
location and 56 percent for the BLS node location when using
dependent travel times.

In comparing the three models, the cumulative distribu-
tion of EMS vehicle node location appears to be the steepest
in the MQ-MALP model followed by the Q-MALP model
and the MCLP model. This can be partially explained by
the fact that the Q-MALP and the MQ-MALP allow for the
placement of more than one EMS vehicle at a particular node
to reflect the capacity of each node to site the vehicles while
the MCLP does not. In addition, the incorporation of server
availability in the definition of coverage for the Q-MALP and
MQ-MALP model at times calls for the placement of more
than one server at a particular node in its effort to maximize
coverage.

Tables 1 and 2 show the distribution of the servers for
the 33-node problem and the 55-node problem, respectively,
when the servers are located at the highest hit node location
as identified by the optimal solutions of the MCLP, Q-MALP,
and MQ-MALP models. Spatial distribution of the servers
corresponding to Tables 1 and 2 is as shown in Figures 7 and
8. From Tables 1 and 2, one can see that there is not any node
in common between the solutions obtained by all 6 models
in terms of server location. However, within each model
employed, the results obtained using independent travel
times and dependent travel times show that there are some
nodes that are in common in terms of server location. For
example, in the 33-node problem, only one node (node 25) is
in common when the MCLP model is employed, while two
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Figure 3: Bar graphs of the percentage and cumulative percentage of EMS vehicle node location of optimal solutions of MCLP and Q-MALP
with independent and dependent travel times applied to the 33-node problem. (a) MCLP: EMS vehicle node location with independent travel
times. (b) MCLP: EMS vehicle node location with dependent travel times. (c) Q-MALP: EMS vehicle node location with independent travel
times. (d) Q-MALP: EMS vehicle node location with dependent travel times.

nodes (nodes 11 and 20) are in common when the Q-MALP
model is employed. On the other hand, server placements
are identical when the MQ-MALP model is employed. The
same, however, cannot be said of theMQ-MALPmodel when
applied to the 55-node problem.

Figures 7 and 8 allow a comparison between the six
models employed in terms of the spatial pattern of the server
nodes chosen. As can be seen from these figures, whether
one is using the independent or dependent travel time
distribution, the servers are less spatially distributed in the
latter twomodels, that is, Q-MALP andMQ-MALP, when the
uncertainty of server availability is taken into account. While
the servers aremore spatially distributed in theMCLPmodel,

this model guarantee no more than the initial placement of
a server within the coverage standard and does not account
for the possibility that call volume and other factors can
frequently make the servers unavailable at the time of a call.

For the 33-node problem, in general, the spatial distribu-
tion of the servers obtained by locating a server to the highest
hit node location as identified by the optimal solutions of
the models employed is comparable to those by Noraida
[12], an approach in which the uncertainty of the travel time
in terms of a probability measure is incorporated into the
model formulation itself. If the placements of two servers are
close to each other, then from an economic point of view, it
makes sense to place both servers at only one of the locations
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Figure 4: Bar graphs of the percentage and cumulative percentage of ALS and BLS vehicle node location of optimal solutions of MQ-
MALP with independent and dependent travel times applied to the 33-node problem. (a) MQ-MALP: ALS vehicle node location with
independent travel times. (b) MQ-MALP: ALS vehicle node location with dependent travel times. (c) MQ-MALP: BLS vehicle node location
with independent travel times. (d) MQ-MALP: BLS vehicle node location with dependent travel times.

as one would have to build only one facility site instead of
two.

Likewise, for the 55-node problem, in general, the spatial
distribution of the servers obtained by locating a server to
the highest hit node location as identified by the optimal
solutions of the MCLP and Q-MALPmodel is comparable to
those obtained by Noraida [12]. The same, however, cannot
be said of the MQ-MALP model.

6. Conclusion

From the literature, covering models are the most prevalent
location models to alleviate the ambulance location problem
for long term planning. The concept of coverage stated that
a demand point is considered covered by an ambulance

location if the travel time between the ambulance location
and demand point is less than or equal to a standard arrival
time. However, estimating the expected coverage in reality is
not easy as it depends on the uncertainty of many elements
such as travel time, server availability, and demand. Thus,
incorporating these uncertainties into a covering model is
essential in obtaining a precise estimation of the coverage.
This paper proposed the application of the Monte Carlo
approach to incorporating travel times uncertainty in the
MCLP, Q-MALP, and MQ-MALP models. The MCLP does
not take into account server availability unlike the formu-
lation of Q-MALP and MQ-MALP. Further, MCLP and
Q-MALP assumed a single type of ambulance, while the
MQ-MALP model considered two types of ambulance, that
is, the ALS and BLS. The formulation of multiobjective
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Figure 5: Bar graphs of the percentage and cumulative percentage of EMS vehicle node location of optimal solutions of MCLP and Q-MALP
with independent and dependent travel times applied to the 55-node problem. (a) MCLP: EMS vehicle node location with independent travel
times. (b) MCLP: EMS vehicle node location with dependent travel times. (c) Q-MALP: EMS vehicle node location with independent travel
times. (d) Q-MALP: EMS vehicle node location with dependent travel times.

function provides several alternatives for the decision maker
in determining a good location for ambulances.

Results from the models show that the cumulative distri-
bution of EMS vehicle node location for MQ-MALP model
is the steepest followed by Q-MALP model. This may be
possibly due to the fact that the Q-MALP and theMQ-MALP
allow the position of more than one ambulance as allowed
by the capacity at a particular node to site the vehicles, while
the MCLP does not. In addition, the incorporation of server
availability in the definition of coverage for the Q-MALP and
MQ-MALP model at times calls for the placement or more
than one server at a particular node in its effort to maximize
coverage.

In terms of server location, results show that the solutions
obtained by all six models do not have any common nodes.

However, within each model employed, the results obtained
using independent travel times and dependent travel times
show that there are some nodes that are in common in terms
of server location. On the other hand, server placements
are identical when the MQ-MALP model is employed. The
same, however, cannot be said of theMQ-MALPmodel when
applied to the 55-node problem. From an economic point of
view, if the placements of two servers are close to each other
using our approach, it makes sense to place both servers at
only one of the locations as one would have to build only one
facility site instead of two.

While the model formulations progress the state of the
art of the emergency services modeling, there are a few
limitations which need to be considered in future works.
First, the models do not explicitly consider other stochastic
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Figure 6: Bar graphs of the percentage and cumulative percentage of ALS and BLS vehicle node location of optimal solutions of MQ-
MALP with independent and dependent travel times applied to the 55-node problem. (a) MQ-MALP: ALS vehicle node location with
independent travel times. (b) MQ-MALP: ALS vehicle node location with dependent travel times. (c) MQ-MALP: BLS vehicle node location
with independent travel times. (d) MQ-MALP: BLS vehicle node location with dependent travel times.

Table 1: Server location of optimal solution of MCLP, Q-MALP, and MQ-MALP with independent and dependent travel times applied to
the 33-node problem.

Model Travel time Node location
ALS BLS EMS

MCLP Independent 20, 25, 31
MCLP Dependent 11, 25, 28
Q-MALP Independent 7, 11, 20
Q-MALP Dependent 4, 11, 20
MQ-MALP Independent 25 7, 11
MQ-MALP Dependent 25 7, 11

natures that are often important in designing emergency
service such as demand for services. Hence, incorporating the
stochastic demand into the formulation would improve the
credibility of the optimized placement solution. Second, the
Monte Carlo uncertainty analysis in the model is performed

by assigning ambulances to the facility nodes that are “hit”
the most as optimal solutions. Such a solution may in
fact not satisfy the feasibility constraints of the original
model. Perhaps a solution could be suggested that maximizes
the percentage of times the nodes are optimal while still
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Figure 7: Spatial distribution of server node location of optimal solutions of MCLP, Q-MALP, and MQ-MALP with independent and
dependent travel times applied to the 33-node problem. (a) MCLP: EMS vehicle node location with independent travel times. (b) MCLP:
EMS vehicle node location with dependent travel times. (c) Q-MALP: EMS vehicle node location with independent travel times. (d) Q-
MALP: EMS vehicle node location with dependent travel times. (e) MQ-MALP: ALS and BLS vehicle node location with independent travel
times. (f) MQ-MALP: ALS and BLS vehicle node location with dependent travel times.
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Figure 8: Spatial Distribution of Server Node Location of Optimal Solutions of MCLP, Q-MALP and MQ-MALP with Independent and
dependent travel times Applied to the 55-Node Problem.

Table 2: Server location of optimal solution of MCLP, Q-MALP, and MQ-MALP with independent and dependent travel times applied to
the 55-node problem.

Model Travel time Node location
ALS BLS EMS

MCLP Independent 10, 16, 17, 20, 36
MCLP Dependent 10, 17, 21, 32, 36
Q-MALP Independent 2, 4, 8, 22, 42
Q-MALP Dependent 2, 4, 17, 22, 42
MQ-MALP Independent 17, 20 2, 4, 42
MQ-MALP Dependent 17, 36 2, 4, 42
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satisfying some efficiency and equity requirements. Although
the implementation of such a regimen is straightforward
given the original formulation, computations time may not
allow for a great number of iterations. Therefore, a second
tier could be added following the Monte Carlo approach
that takes both the feasibility of a suggested solution into
account as well as the probability distribution of facility nodes
being “hit” as optimal. Finally, the importance of some areas
may be different than other, such as area where schools are
located. To address the importance of those nodes perhaps
in the formulation, certain weightage can be adapted to the
nodes.
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