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ABSTRACT: Air quality monitoring and forecasting tools are necessary for the purpose
of taking precautionary measures against air pollution, such as reducing the effect of a
predicted air pollution peak on the surrounding population and ecosystem. In this study a
single Feed-forward Artificial Neural Network (FANN) is shown to be able to predict the
Air Pollution Index (API) with a Mean Squared Error (MSE) and coefficient
determination, R? of 0.1856 and 0.7950 respectively. However, due to the non-robust
nature of single FANN, a selective combination of Multiple Neural Networks (MNN) is
introduced using backward elimination and a forward selection method. The results show
that both selective combination methods can improve the robustness and performance of
the API prediction with the MSE and R? of 0.1614 and 0.8210 respectively. This clearly
shows that it is possible to reduce the number of networks combined in MNN for API
prediction, without losses of any information in terms of the performance of the final
API prediction model.

ABSTRAK: Pemantauan dan ramalan kualiti udara adalah perlu bagi mengambil langkah
berjaga-jaga ternadap pencemaran udara, seperti untuk meramalkan mengurangkan kesan
puncak pencemaran udara terhadap penduduk sekitar dan ekosistem. Dalam kajian ini
rangkaian tiruan tunggal neural suap depan (FANN) ditunjukkan masing-masing dapat
meramalkan indek pencemaran udara (IPU) dengan purata ralat kuasa dua (MSE) dan
pekali penentuan, R? daripada 0.1856 dan 0.7950. Namun disebabkan oleh sifat tidak
mantap FANN tunggal, gabungan terpilih pelbagai rangkaian neural (MNN)
diperkenalkan dengan menggunakan penghapusan ke belakang dan kaedah pemilihan ke
hadapan. Keputusan kajian menunjukkan bahawa kedua-dua kaedah gabungan terpilih
bolen meningkatkan keteguhan dan prestasi ramalan APl masing-masing dengan MSE
dan R? daripada 0.1614 dan 0.8210. Ini jelas menunjukkan bahawa ia adalah mungkin
untuk mengurangkan bilangan rangkaian digabungkan dalam MNN untuk ramalan API,
tanpa menjejaskan keupayaan mana-mana maklumat dari segi prestasi model ramalan
akhir API.
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1. INTRODUCTION

Air quality is monitored continuously and manually to detect any changes in the
ambient air quality status that may cause harm to human health or the environment. The
Malaysian Department of Environment (DOE) monitors the ambient air quality via a
network of 51 monitoring stations across Malaysia [1]. These monitoring stations are
strategically located in residential, traffic, and industrial areas to detect any significant
changes in the air quality which could be harmful to human health and the environment.
The ambient air quality measurement in Malaysia is described in terms of the Air Pollutant
Index (API), which is a simple way to describe and report the air quality instead of using
the actual concentration of air pollutants. This API also reflects effects on human health,
ranging from good to hazardous, and can be categorized according to its action criteria as
specified in the National Haze Action Plan Malaysia.

Efficient methods for the assessment of air quality are needed in order to establish
mechanisms for managing pollutant concentration and preventing illness in health-
sensitive people. The criterion for good air quality varies with the kind of ecosystem and is
established at different levels. Several methodologies for the assessment and monitoring of
air pollutants have been implemented by organizations such as the Department of
Environment (DOE) of Malaysia which has developed indexes for air quality. In response
to this concern, several studies on air quality prediction using artificial neural networks
have been done [2, 3]. Unlike other modelling techniques, artificial neural networks
(ANN) make no prior assumptions concerning the data distribution and require no
mechanistic knowledge. ANN is capable of modelling highly nonlinear relationships and
can be trained to accurately generalize when presented with a new data set. An air quality
prediction model based on neural networks had also been applied on a short-term and
long-term basis. Viotti et al [4] has applied this prediction model to predict the vehicular
air pollutant levels in the city of Perugia, Italy, while Sabri and Tarek [5] have applied it in
the region of Annaba, Algeria. However, the latter have combined a radial basis function
(RBF) network and multiple layer perceptron (MLP) in their model to predict the air
pollutant concentrations. In addition to the emission sources, meteorological factors (wind
speed and direction, temperature, precipitation and boundary layer heights), can govern
the variability of atmospheric PMyo [6, 7] as well. In fact, urban and industrialized areas
tend to record their highest PM1o concentrations under stable meteorological conditions
coupled with thermal inversions or during long range transport events [8, 9] while the
lowest readings tend to occur during windy and rainy periods [10]. Many researchers have
studied the prediction of particulate matter concentration in the environment. Perez et al.
[11] and Yan and Jian [12] have focused their study on the prediction of the PMas
(particulate matter with a diameter smaller than 2.5 micrometers) concentration using an
ANN model.

Some of the researchers have developed an air quality prediction model based on
neural networks with a multilayer perceptron structure. Gardner and Dorling [13] and
Perez and Trier [14] have adopted this model to predict the NO and NO concentration
based on meteorological data in Central London and traffic junctions in Santiago City in
Chile respectively. They have also concluded that the MLP has better performance
compared to their previously developed regression models. Feed-forward artificial neural
networks (FANN) have also been applied by Sousa et al. [15] to predict hourly ozone
concentration based on meteorological data while Ul-Saufie et al. [16] has applied it by
combining with PCA to predict PMio concentration in Negeri Sembilan, Malaysia.
Cigizoglu and Kisi [17] have also applied FANN. Chelani et al. [18] have predicted SO-
values at three sites in Delhi, India, using neural networks and compared the results with
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those of multivariate regression models. Wind speed, wind direction index, relative
humidity and temperature variables have been used as inputs for their developed recurrent
neural network.

Even though there were successes in many applications of ANN and considerably less
restrictions on the environmental input data, large training data sets are usually required to
improve the accuracy and minimize uncertainty in the output data, which up to now has
been a significant disadvantage of these models. Gardner and Dorling [19] have reviewed
the limitations and problems associated with the training of ANNs and emphasized that
fundamental understanding of the basic theory is the key in developing ANNS. It is well
known that a neural network can approximate any smooth nonlinear function between
model inputs and outputs by selecting a suitable set of connecting weights and transfer
functions [19]. Therefore in this paper, selective combination of multiple neural networks
(MNN) is introduced to improve the single feed-forward neural artificial network (FANN)
prediction for the APl model as shown in Fig. 1 [20]. This paper is organized as follows:
Section 2 presents the case study concerning the APl sampling area and location in
Malaysia. The concept of single FANN and MNN combination using FS and BE method
are presented in Section 3. The results and discussions of the proposed MNN with
selective combination are presented in Section 4. Finally, the last section concludes this

paper.
_’

i

Fig. 1: Combining multiple neural networks.

2. CASE STUDY: PERAK AIR PULLUTION INDEX MONITORING
STATIONS, MALAYSIA

Most air quality data are obtained from air quality monitoring stations directly or
through remote sensing instruments. Here, the air quality data from 4 monitoring stations
around Perak State were collected by the Department of Environment (DOE), Malaysia,
which is stationed at CA0020, CA0041, CA0045 and CAOQ046, as illustrated in Fig. 2.
These Continuous Air Quality Monitoring (CAQM)-type monitoring stations, are
strategically located in residential, traffic, and industrial areas to detect any significant
changes in the air quality that may be harmful to human health and the environment [1].
The air quality data was recorded for 4 years, from 2006 to 2009 for eight variables. For
the API modelling, variables involved are the concentrations of the air pollutants and
meteorological variables, and are divided into groups of input and output variables for the
FANN model. However for this study, 6 air pollutant inputs are selected for model
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development as shown in Table 1. A total of 1388 samples were used for the modelling
and analysis in this study and the raw data for the modelling of year 2006 is shown in Fig.
3.
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Fig. 2: Perak air monitoring stations [1].
Table 1: Air quality variables for APl modelling
Input variables Output variables
(average hourly)
»0zone, O3 (mg/l) n

» Particulate matter with size less
than 10 microns, PMio (mg/l)
» Carbon monoxide, CO (mg/l) = API
»Wind speed (km/hr)
» Air temperature (°C)
» Relative humidity (%) .

3. FEED-FORWARD ARTIFICIAL NEURAL NETWORK MODEL
DEVELOPMENT

In this case study, an hourly average of 1388 data samples were taken from
Malaysia’s Department of Environment database from year 2006 to year 2009. All the
data was normalized to zero mean and unit standard deviation to cope with the different
magnitudes in the input and output data. Then, the input data were divided randomly using
the Matlab™ divideint command into three sets of data, namely 70% (972 samples) as
training data, 15% (208 sample) as testing data, and 15% (208 samples) as unseen
validation data. Then the individual networks were trained using the Levenberg-Marquardt
optimization algorithm with regularization and “early stopping”. The networks are single
hidden layer feed-forward neural networks (FANN). Hidden layer neurons use the
logarithmic sigmoid activation function whereas output layer neurons use the linear
activation function. In this study, 20 networks with fixed identical structure were
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Fig. 3: Raw data for input and output for FANN model prediction for year 2006.
(a) Average wind speed, (b) Average ambient temperature, (c) Average relative humidity,
(d) Average CO, (e) average PMo, (f) average Os, (g) API.

developed from bootstrap re-samples of the original training and testing data. If the
number of networks for combination is too small we might not get the optimum reduction
of the MSE in the combination. In re-sampling the training and testing data, a bootstrap re-
sampling technique was applied where the training and testing data were first transformed
into the discrete time functions, therefore re-sampling the discrete time data does not
affect the input-output mapping of the models. The FANN is developed based on the
discrete time of the process as the prediction output at time (t), y(t), is predicted based on
the process inputs at time t, u(t), as follows:

Y1) = Fu, (1) Uy (0)..., uy (V)] (1)
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where u(t) is the process input at time (t), y(t)is the predicted process output at time t,
which is the API, and m is the number of the process inputs and for this case study is 6 as
shown in Table 1. Then the forward selection (FS) and backward elimination (BE)
approach combined with simple averaging method was developed. The FS and BE method
was developed in our previous paper with the different application of the prediction [21].
Generally, in FS, the individual networks are added one at a time to the aggregated
network where when the network is combined or included in the aggregated network it
will produces the greatest decrease in model prediction MSE. This process starts with an
empty aggregated model and the first network to be chosen in the aggregated network is
the single network that has the least MSE in training and testing data or what we call the
best individual network. The second network added is the one, when combined with the
first added network, produces the largest reduction in MSE on the original training and
testing data. This procedure is repeated until the MSE on the training and testing data
cannot be further reduced by adding more networks.

On the other hand, in the BE, the aggregated network begins with combining all the
individual networks in the pool of networks and removes one network at a time until the
MSE on the training and testing data cannot be further reduced. The network deleted at
each step is selected such that its deletion results in the largest reduction in the aggregated
network MSE on the training and testing data. The detailed procedures for the FS and BE
method can be found in [21]. The simple average method is used in combining the
selected networks in both approaches as shown in Eqn. (2) where, if all n networks are
combined, the aggregated network output is:

V=13, 2)
Nz

The performances of the actual and predicted models are based on the MSE and
coefficient determination, R%. The advantages of using the MSE include its easy
calculation and that it penalizes large errors in each observation. Therefore the average
sum square error in each sample observation is able to determine the quality of the
prediction of the model. On the other hand, the R? provides the inconsistency measure of
the data reproduced or predicted and the fitness of the model to capture the actual process.
The higher the values of R?, or closest to 1, and the smallest of the MSE, or closest to zero,
the better the model.

4. RESULTS AND DISCUSSION

The inputs of these network models are the hourly average of carbon monoxide, wind
speed, air temperature, relative humidity, PM1o and Oz and their output is the API values
as shown in Eqn. (1). The single FANN network with a single hidden layer was applied
with the Levenberg-Marquardt training algorithm with a sigmoid activation function in the
hidden layer and a linear activation function in the output layer. The structure of the single
FANN is represented by the number of nodes in each layer. The number of nodes in the
input layer is 6, which represents the input variables, while the outer layer has only one
node representing one model output variable. However, the fitted model was assured by
the number of nodes in the hidden layer.

Therefore, the determination of the number of nodes in the hidden layer was carried
out by calculating the MSE for the combination of training and testing data. The number
of nodes in the hidden layer was varied between 1 and 20 in order to find the “best”
number of nodes for the model. Figure 4 shows the performance of the model prediction
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with different numbers of nodes in the hidden layer. The lowest MSE value on the
combination of the training and testing data was 0.1652, recorded by the model with 9
hidden nodes in the hidden layer. Thus, the network with 9 hidden nodes was selected as
the final model structure or network architecture, i.e. the topology of the network is 6-9-1.
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Fig. 4: MSE on the training and testing data with different numbers of hidden nodes.

Figure 5 shows the neural network model prediction performances on the training and
testing data. In Figure 4, the solid lines represent the scaled true values of API and the
dotted lines represent the model predictions. It can be seen that the predicted values are
very close to the actual values for both sets of data. The MSE and the R? for training and
testing data are 0.1988, 0.1613 and 0.7962, 0.8257 respectively. Figure 6 shows the model
prediction performance on the unseen validation data from the single FANN. In Fig. 6, the
scaled true values of API are represented by the solid line while the model predictions are
represented by the dotted line. The single FANN model clearly emulates the patterns of
process accurately on the unseen validation data. The MSE and the R? values on the
unseen validation data are 0.1856 and 0.7950 respectively. Figure 6 clearly shows that the
predicted and the actual values are close to each other. Thus, it showed in the intricate
model that the API process can be modelled and generalized quite well using single
FANN.

However, even though single FANN is shown to be able to predict the API quite
accurately, single FANN models sometimes lack robustness as shown in Fig. 7a and 7b.
Single FANNs sometimes suffer badly when applied to unseen data where some neural
network might fail to deliver the correct result due to the network training converged to
undesired local minima or over-fitting of noise in the actual data. In Fig. 7a, one of the
best single FANNSs in training and testing data was network number 14 but its
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Fig. 6: Actual and predicted values on the unseen validation data from single FANN.

performance on the unseen data was not among the best. Figure 7b shows that the best
network on unseen validation data is network number 7, but its performance on the
training and testing data is not among the best at all. There is no guarantee that the best
model on the training and testing data will be the best on the unseen data. Therefore the
combination of multiple neural networks is proposed in this study with the aim of

enhancing the neural network robustness on unseen data.




IIUM Engineering Journal, Vol. 18, No. 1, 2017 Ahmad et al.

0.25 T T T T T T T T T T

Il

0.2+

MSE Testing and training data

0.150
No. of networks
@

0.25 T T T T T T T T T T
.%
2 02r bl
<
>
w
9]
=

2 4 6 8 10 12 14 16 18 20

No. of networks

(b)

Fig. 7: MSE for single FANN.
(a) MSE for Training and Testing data, (b) MSE for Validation data.

Aggregated Multiple Neural Network : Aggregated Multiple Neural Network :
2 BE Method © FS Method
A 018 — © 0.18 [=
o o
£ M )] _
g I g i
= 0175 @
° o 0.175
© c
o [
£ =2
.% 0.17 g
= ‘® 017
w H =
%) L
= 0.165 2

0 5 10 15 20 0 5 10 15 20

Network Eliminated Network Added
Aggregated Multiple Neural Network : Aggregated Multiple Neural Network :
BE Method FS Method
0.17 T T 0.17 -
8
@©
Q 0.168 So.168
5 e
T 0.166 50.166
2 ®
° °
= 0.164 1 50.164
L >
Q L
= 0.162 1 ©0.162
1 =, L
0.16 0.16
0 5 10 15 20 0 5 10 15 20
Network Eliminated Networks Added

Fig. 8: MSE for aggregated multiple neural networks on the unseen validation data
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Figure 8 shows the multiple neural network performance using selective combinations
with BE and FS methods. The performance of aggregated networks on training and testing
data is consistent with the performance on the unseen validation data for both selective
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combination methods. The reduction of MSE in training and testing data for BE and FS
combinations are consistent with the reduction of MSE in the unseen/validation data. It
shows the robustness of the proposed modelling techniques as compared to the single
FANN where the best network performance in training and testing data will not guarantee
the best performance in the unseen validation data. The numbers of networks for the final
combination are reduced to 3 networks for both methods which show the minimum MSE
in Training and testing data that also correspond to MSE in validation data. The final
result analysis is shown in Table 2. In this particular case, the FS and BE approaches led to
the same individual networks being combined. Even though the number of networks
combined was quite small for both selective methods, the most important thing is that both
combination approaches perform better than the single FANN.

Table 2: Statistical Analysis of MNN performance on the unseen validation data

Number of networks MSE R?
combined
Single FANN 1 0.1856 0.7950
Combined all MNN 20 0.1649 0.8170
FS Aggregated MNN 3(12,15,20) 0.1635 0.8200
BE Aggregated MNN 3(12,15,20) 0.1635 0.8200

As for comparison, Azid et al. [22, 23] did carry out APl modelling for the Southern
region of Malaysia with 2 different sets of data containing 202,050 and 232,505
observations respectively. In [22] the input was reduced to 10 from 12 possible inputs with
the R? and RMSE of 0.724 and 7.562 for unseen validation data respectively. On the other
hand, in [23], the input was reduced to 5 from a possible 8 with the R? and RMSE of 0.618
and 10.017 for unseen data respectively. Therefore, the MNN did perform better than the
[22] and [23] API modelling for Malaysia as shown in Table 2 with the R? and RMSE of
0.8200 and 0.160 for unseen validation data respectively. This performance was obtained
with fewer sample data (1388 observations) as compared in [22] and [23].

5. CONCLUSION

This study proposes single FANN and multiple neural networks to model API based
on the environmental monitoring data to get reliable and fast API predictions in order to
mitigate the problems related to API. The single FANN does model the API quite well
with relatively small MSE and high R? values on the unseen data. However, in order to
overcome the non-robust nature of single FANN, multiple neural networks are proposed
with two selective combination methods. Both selective combination methods further
improve the model prediction as compared to single FANN and combining all networks.
This clearly shows that it is possible to reduce the number of networks combined for the

API prediction without losses in performance.
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NOMENCLATURE
ANN Acrtificial Neural Network -
API Air Pollution Index -
BE Backward Elimination -
CO carbon monoxide mg/I
FANN  Feed-forward Artificial Neural Network -
FS Forward Selection -

MLP Multi-Layer Perceptron -
MNN Multiple Neural Networks -
MSE Mean sum square error -

n Number of networks combined -

NO Nitrogen monoxide mg/I
NO2 Nitrogen Oxide mg/I
Os Ozone mg/I

PCA Principle Component Analysis -
PM1o Concentration of particulate matter with a

size less than 10 microns mg/I
PM2s Concentration of particulate matter with a

size less than 2.5 microns mg/I
R? Coefficient determination g/mol
X Input data -
X Input data after resampling -
Y Output data -
Y Network Prediction Output -
Subscript

i Number of network

12





