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Abstract: The microwave-assisted three-component reactions of 3,5-bis(E)-arylmethylidene]
tetrahydro-4(1H)-pyridinones, acenaphthenequinone and cyclic α-amino acids in an ionic liquid,
1-butyl-3-methylimidazolium bromide, occurred through a domino sequence affording structurally
intriguing diazaheptacyclic cage-like compounds in excellent yields.
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1. Introduction

Achieving molecular complexity and diversity from common starting materials with a minimum
number of synthetic steps and short reaction time is a major challenge for synthetic chemists [1–5].
Multi-component reactions (MCR) have proven to be one of the most effective and attractive methods to
achieve this goal [6–8]. These reactions allow several bond-forming or bond-breaking transformations
to occur in a single step, thereby obviating the time-consuming and costly processes of isolation or
purification of various intermediates formed in each steps, and also the tedious operations of protection
or deprotection of functional groups. Consequently, these reactions are environmentally benign and
often proceed with excellent stereoselectivities [9]. Therefore, the design of new selective MCRs for the
synthesis of diverse heterocycles of biological significance is a continuing challenge at the forefront of
synthetic organic chemistry.

On the other hand, the choice of an appropriate reaction medium is crucial for a successful
synthesis. Recently, more emphasis has been focused on the use of eco-friendly solvents. In this regard,
ionic liquids are widely recognized as “green” solvents as an alternative to the volatile organic solvents
and are suitable for executing diverse organic reactions [10,11]. The development of multicomponent
reactions in ionic liquids, although relatively unexplored [12], is of great interest.
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Furthermore, microwave-assisted reactions have been reported to proceed in dramatically
shortened reaction times as compared to reactions under conventional heating. Under these conditions,
the reactions are usually cleaner, affording enhanced product yields and avoiding the formation
of unnecessary side products. Microwave-assisted synthesis has significant advantages in several
chemical transformations [13,14], including cycloadditions [15].

The synthesis of cage-like compounds has received considerable attention in view of their
biological activities and applications as artificial receptors [16]. Gambogic acid, a naturally occurring
cage-like compound has been identified as a potent antitumor agent [17] and has recently finished
phase IIa clinical trials [18]. The biological evaluation of Gambogic acid derivatives indicated that the
peripheral moieties were suitable sites for diverse modification while the α,β-unsaturated moiety in the
caged ring was essential for antitumor activity [19]. A recent study from our laboratory revealed that
several polycyclic cage compounds embedded with an α,β-unsaturated moiety displayed promising
AChE inhibitory activity [20,21]. Several reports pertaining to the synthesis of polycyclic caged
structures are available in the literature. However, these methods have mostly relied on multi-step
sequences and therefore the development of greener, step-economic routes is imperative. Herein
we report the stereoselective synthesis of structurally diverse heptacyclic cage-like frameworks from
the three-component domino reactions of 3,5-bis(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones 1,
acenaphthenequinone 2 and cyclic α-amino acids 3 or 5 in ionic liquid under microwave conditions
(Scheme 1) with the aim of studying their pharmacological profiles in the near future. Furthermore,
the present work also stems from our ongoing investigation aimed at synthesizing novel heterocycles
employing green chemical protocols [20–31].
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2. Results and Discussion

Initially, the precursor 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones 1 was
synthesized following a literature method [32]. Then, the optimized reaction condition established
in our earlier report for the synthesis of analogous cage-like compounds [23] was employed in the
present investigation for the synthesis of two series of novel diazaheptacycles 4 and 6 (Scheme 1 and
Table 1). In a typical reaction, an equimolar mixture of the starting materials 1, 2 and 3 or 5 in 100 mg
of ionic liquid [bmim]Br was subjected to microwave irradiation at 100 ˝C for 4–8 min (Scheme 1
and Table 1). After completion of the reaction, the products 4 and 6 were isolated by extraction and
crystallization. After extraction of the product, the ionic liquid [bmim]Br was dried under vacuum,
and its recyclability was investigated by successive syntheses of compounds 4 or 6, which revealed
that its efficacy was not significantly diminished after up to three subsequent runs. Furthermore, these
reactions gain importance from the viewpoint of green chemistry as the crude reaction products were
clean enough to be purified just by crystallization, thereby eliminating the need for chromatography,
the main source of waste from synthetic activities.
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Table 1. Reaction time, yield and melting point of diazaheptacycles 4a–n and 6a–m.

Entry Ar Comp. Reaction
Time (min)

Yield
(%) a m.p. (˝C) Comp. Reaction

Time (min)
Yield
(%) a m.p. (˝C)

1 C6H5 4a 4 92 140–142 6a 4 93 135–137
2 2-CH3C6H4 4b 6 90 127–129 6b 6 90 179–181
3 2-OCH3C6H4 4c 8 85 166–168 6c 8 84 175–177
4 2-BrC6H4 4d 4 91 184–186 6d 4 92 172–174
5 2-ClC6H4 4e 4 90 146–148 6e 6 87 134–136
6 2-FC6H4 4f 6 88 150–152 6f 6 90 162–164
7 3-NO2C6H4 4g 6 91 176–178 6g 4 89 180–182
8 2,4-Cl2C6H3 4h 4 90 144–146 6h 6 91 146–147
9 4-CH3C6H4 4i 4 93 141–143 6i 6 92 190–192
10 4-OCH3C6H4 4j 6 87 137–139 6j 6 86 144–146
11 4-BrC6H4 4k 4 92 171–173 6k 4 90 156–158
12 4-ClC6H4 4l 4 95 154–156 6l 4 92 164–166
13 4-FC6H4 4m 6 93 132–134 6m 6 91 136–138
14 1-Naphthyl 4n 6 89 158–160 - - - -

a Isolated yield.

The arbitrary atom numbering of heptacyclic cage compounds 4 and 6 are shown in Scheme 2.
The structures of cage compounds 4 and 6 were elucidated using Infrared (IR) and Nuclear Magnetic
Resonance (NMR) spectroscopic studies (vide Supplementary Materials) as discussed for 4i. In the
IR spectrum, the absorptions at 3416, 1723, 1682 and 1594 cm´1 were attributed to the O-H, C=H
(arylmethylidene), C=O and C=H (aromatic ring) stretching frequency, respectively. In the 1H-NMR
spectrum of 4i, the singlet at 6.29 ppm was readily assigned to the arylmethylidene proton (H-25) on
the basis of its multiplicity. Furthermore, H-25 showed HMBCs with the carbon signal at 53.3 ppm
assignable to C-12 besides showing correlation with C-10 and C-11, the ipso and ortho carbons of the
p-methylphenyl ring. From the C,H-COSY correlation of C-12, the doublet at 3.34 ppm (J 17.6 Hz) and
the doublet of doublets at 3.68 ppm (J 17.6, 2.0 Hz) was assigned to H-12a and H-12b, respectively.
The other doublets at 3.43 ppm and 3.81 ppm (J 11.2 Hz) were due to H-24a and H-24b. The multiplet
in the range 4.24–4.31 ppm was due to H-8 and the C,H-COSY assigned the carbon at 51.0 ppm to
C-8. The multiplet in the range 4.65–4.69 ppm was assigned to H-7 as it showed H,H-COSY with H-8.
The multiplet in the range 3.03–3.09 ppm accounting for two protons was assigned to H-4a and H-6a.
The doublet of doublets at 3.21 ppm (J 12.0, 6.4 Hz) was assigned to H-6b, whereas H-4b appeared as
multiplet in the range 4.24–4.31 ppm. The two CH3 protons appeared as singlets at 2.23 and 2.33 ppm
and the aromatic protons appeared as multiplet in the range 6.34–7.83 ppm. The carbon signals at 73.0
and 96.2 ppm was assigned to the spiro-carbons C-9 and C-2, respectively (Scheme 3). Similarly, the
structure of the other heptacyclic cage-like compounds 6 was also assigned using NMR spectroscopy
and X-ray crystallographic studies.
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would increase the electrophilicity of the carbonyl carbon, facilitating the nucleophilic attack of the
NH of thiaproline 3. Subsequent dehydration and concomitant decarboxylation furnishes azomethine
ylide 7, which may exist in the resonating forms 7a and 7b [35]. The interaction of [bmim]Br with the
carbonyl group of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones 1 presumably activates
the exocyclic double bond, allowing the initial addition reaction with the azomethine ylide that, in
principle, can take place via reaction of 7a (route A) or 7b (route B) with the more electron deficient
β-carbon of 1 to afford the spiropyrrolothiazoles 8 or 9, respectively. However, the exclusive formation
of 4 in the above reaction proves the selective cycloaddition of 7a with 1 via route A to form 8.
Subsequently, the interaction of [bmim]Br with the second carbonyl group of the acenaphthenequinone
ring of spiropyrrolothiazole 8 presumably increases the electrophilicity of that carbonyl carbon,
facilitating further annulation by the reaction of amino function of piperidone ring with the proximate
carbonyl group resulting in the formation of the cage framework 4. In addition, the cycloaddition via
route B is also ruled out from the fact that the dispiro intermediate 9 may not favor the subsequent
annulation step to afford cage-like compounds in view of the higher distance between the reacting
groups in 9.
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3. Experimental Section

3.1. General Methods

Melting points were taken using open capillary tubes and are uncorrected. 1H, 13C and
two-dimensional NMR spectra were recorded on a Bruker 400 or 300 MHz instruments (Faellanden,
Switzerland) in CDCl3 using Tetramethylsilane (TMS) as internal standard. Standard Bruker software
was used throughout. Chemical shifts are given in parts per million (δ-scale) and the coupling
constants are given in Hertz. IR spectra were recorded on a Perkin Elmer system 2000 FT-IR instrument
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(KBr) (Shelton, AL, USA). Single crystal X-ray data set for 4j and 6f was collected on Bruker APEXII
DUO CCD area detector diffractometer (Karlsruhe, Germany) with Mo Kα (λ = 0.71073 Å) radiation.
Elemental analyses were performed on a Perkin Elmer 2400 Series II Elemental CHNS analyzer
(Waltham, MA, USA).

3.2. General Procedure for the Synthesis of Diazaheptacyclic Cage Compounds 4a–n or 6a–m

An equimolar mixture of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinone 1,
acenaphthenequinone 2 and thiaproline 3 or 5 in 100 mg of [bmim]Br was irradiated in a
CEM microwave synthesizer at 100 ˝C for 4–8 min. After completion of the reaction (TLC), ethyl
acetate (10 mL) was added and the reaction mixture stirred for 15 min. The ethyl acetate layer was
then separated, washed with water (50 mL) and the solvent evaporated under reduced pressure. The
resultant precipitate was dried in vacuum and subjected to crystallization from petroleum ether–ethyl
acetate mixture (2:8) to obtain pure 4 or 6. The ionic liquid [bmim]Br after extraction of the product
was dried under vacuum and reused for subsequent reactions.

14-Hydroxy-8-(phenyl)-11-[(E)-phenylmethylidene]-5-thia-3,13-diazaheptacyclo-[13.7.1.19,13.02,9.02,14.03,7.
019,23] tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4a) White solid, 92% (0.175 g), m.p. 140–142 ˝C,
IR (KBr) υmax 3420, 1721, 1685, 1602 cm´1; 1H-NMR (300 MHz, CDCl3): δH 3.03–3.12 (m, 2H, H-4a
and H-6a), 3.22 (dd, J = 12.0, 6.3 Hz, 1H, H-6b), 3.35 (d, J = 17.4 Hz, 1H, H-12a), 3.44 (d, J = 11.4 Hz,
1H, H-24a), 3.68 (dd, J = 17.4, 1.8 Hz, 1H, H-12b), 3.81 (d, J = 11.4 Hz, 1H, H-24b), 4.27–4.35 (m, 2H,
H-4b and H-8), 4.67–4.73 (m, 1H, H-7), 6.27 (s, 1H, H-25), 6.39–6.42 (m, 2H, ArH), 7.06–7.11 (m, 3H,
ArH), 7.25–7.38 (m, 4H, ArH), 7.50–7.60 (m, 5H, ArH), 7.74 (d, J = 8.1 Hz, 1H, ArH), 7.83 (d, J = 6.9 Hz,
1H, ArH); 13C-NMR (75 MHz, CDCl3): δc 38.1, 51.4, 53.4, 56.4, 57.0, 72.7, 73.2, 96.3, 104.1, 121.6, 125.2,
126.2, 126.8, 127.8, 128.0, 128.2, 128.4, 128.8, 129.1, 129.6, 130.0, 131.2, 133.2, 134.2, 134.5, 136.2, 136.9,
137.0, 138.5, 196.7. Anal. calcd for C34H28N2O2S: C, 77.24; H, 5.34; N, 5.30. Found: C, 77.39; H, 5.23;
N, 5.38%.

14-Hydroxy-8-(2-methylphenyl)-11-[(E)-(2-methylphenyl)methylidene]-5-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4b) Pale yellow solid, 90% (0.165 g),
m.p. 127–129 ˝C, IR (KBr) υmax 3422, 1725, 1680, 1598 cm´1; 1H-NMR (300 MHz, CDCl3): δH 1.56
(s, 3H, CH3), 2.82 (s, 3H, CH3), 2.98 (d, J = 12.3 Hz, 1H, H-6a), 3.14 (dd, J = 12.3, 6.3 Hz, 1H, H-6b),
3.32–3.44 (m, 3H, H-4a, H-12a and H-24a), 3.72 (d, J = 17.4 Hz, 1H, H-12b), 3.83 (d, J = 11.4 Hz, 1H,
H-24b), 4.47–4.65 (m, 3H, H-4b and H-8 and H-7), 6.03 (d, J = 7.5 Hz, 1H, ArH), 6.53 (s, 1H, H-25),
6.84–7.04 (m, 3H, ArH), 7.18–7.45 (m, 5H, ArH), 7.57–7.69 (m, 3H, ArH), 7.78 (d, J = 8.1 Hz, 1H, ArH),
7.89 (d, J = 6.9 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3): δc 19.6, 21.2, 37.2, 46.3, 52.8, 56.6, 57.4, 73.9,
74.9, 96.6, 103.8, 121.8, 125.1, 125.4, 126.1, 126.3, 126.8, 126.9, 127.7, 128.2, 128.4, 128.5, 128.9, 130.1, 131.3,
131.8, 132.7, 133.4, 134.4, 135.4, 135.8, 137.1, 137.5, 138.7, 139.3, 196.2. Anal. calcd for C36H32N2O2S: C,
77.67; H, 5.79; N, 5.03. Found: C, 77.80; H, 5.70; N, 5.12%.

14-Hydroxy-8-(2-methoxylphenyl)-11-[(E)-(2-methoxylphenyl)methylidene]-5-thia-3,13-diazaheptacyclo
[13.7.1.19,13.02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4c) Pale yellow solid, 85%
(0.149 g), m.p. 166–168 ˝C, IR (KBr) υmax 3426, 1722, 1683, 1600 cm´1; 1H-NMR (300 MHz, CDCl3): δH

3.03 (d, J = 12.0 Hz, 1H, H-6a), 3.12 (dd, J = 12.0, 6.3 Hz, 1H, H-6b), 3.28–3.40 (m, 3H, H-4a, H-12a and
H-24a), 3.56 (s, 3H, OCH3), 3.68 (dd, J = 17.7, 2.1 Hz, 1H, H-12b), 3.81 (d, J = 11.1 Hz, 1H, H-24b), 3.96
(s, 3H, OCH3), 4.59–4.83 (m, 3H, H-4b and H-8 and H-7), 5.99 (dd, J = 7.8, 1.2 Hz, 1H, ArH), 6.47 (s, 1H,
H-25), 6.57–6.63 (m, 2H, ArH), 6.93–7.11 (m, 3H, ArH), 7.22–7.37 (m, 2H, ArH), 7.48 (dd, J = 8.1, 1.8 Hz,
1H, ArH), 7.55–7.60 (m, 3H, ArH), 7.74 (d, J = 8.1 Hz, 1H, ArH), 7.90 (d, J = 6.9 Hz, 1H, ArH); 13C-NMR
(75 MHz, CDCl3): δc 37.6, 47.1, 53.1, 55.2, 56.2, 56.3, 57.6, 71.8, 73.8, 96.0, 103.5, 110.3, 112.0, 119.8, 121.1,
121.4, 123.4, 125.2, 125.5, 126.0, 126.6, 127.8, 128.3, 129.1, 129.9, 130.4, 131.3, 131.8, 131.9, 133.0, 134.5,
137.1, 138.7, 157.7, 158.9, 196.5. Anal. calcd for C36H32N2O4S: C, 73.45; H, 5.48; N, 4.76. Found: C,
73.63; H, 5.39; N, 4.89%.
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8-(2-Bromophenyl)-11-[(E)-(2-bromophenyl)methylidene]-14-hydroxy-5-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4d) White solid, 91% (0.144 g), m.p.
184–186 ˝C, IR (KBr) υmax 3424, 1725, 1680, 1595 cm´1; 1H-NMR (300 MHz, CDCl3): δH 3.11
(dd, J = 12.3, 6.3 Hz, 1H, H-6b), 3.20 (d, J = 12.3 Hz, 1H, H-6a), 3.36–3.42 (m, 3H, H-4a, H-12a and
H-24a), 3.68 (dd, J = 17.7, 3.0 Hz, 1H, H-12b), 3.82 (d, J = 11.4 Hz, 1H, H-24b), 4.37–5.07 (m, 3H, H-4b
and H-8 and H-7), 5.82–5.87 (m, 1H, ArH), 6.51 (s, 1H, H-25), 6.93–7.00 (m, 2H, ArH), 7.12–7.18 (m, 1H,
ArH), 7.27–7.50 (m, 4H, ArH), 7.57–7.76 (m, 4H, ArH), 7.82 (d, J = 8.1 Hz, 1H, ArH), 7.96 (d, J = 6.9 Hz,
1H, ArH); 13C-NMR (75 MHz, CDCl3): δc 36.6, 49.3, 52.4, 56.3, 57.2, 74.0, 74.7, 96.3, 103.5, 121.6, 124.2,
125.4, 126.5, 126.9, 127.4, 127.7, 127.9, 128.2, 128.3, 128.7, 129.3, 129.5, 130.0, 131.5, 132.9, 133.7, 133.9,
134.6, 134.7, 135.3, 137.0, 137.1, 138.5, 195.3. Anal. calcd for C34H26Br2N2O2S: C, 59.49; H, 3.82; N, 4.08.
Found: C, 59.64; H, 3.70; N, 4.21%.

8-(2-Chlorophenyl)-11-[(E)-(2-chlorophenyl)methylidene]-14-hydroxy-5-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4e) White solid, 90% (0.156 g), m.p.
146–148 ˝C, IR (KBr) υmax 3418, 1720, 1681, 1601 cm´1; 1H-NMR (300 MHz, CDCl3): δH 3.12–3.14
(m, 2H, H-6a and H-6b), 3.34–3.42 (m, 3H, H-4a, H-12a and H-24a), 3.69 (dd, J = 17.7, 2.7 Hz, 1H,
H-12b), 3.81 (d, J = 11.4 Hz, 1H, H-24b), 4.39–5.06 (m, 3H, H-4b and H-8 and H-7), 5.98 (d, J = 7.5 Hz,
1H, ArH), 6.51 (s, 1H, H-25), 6.90–7.13 (m, 3H, ArH), 7.19–7.29 (m, 2H, ArH), 7.37–7.62 (m, 5H, ArH),
7.69 (d, J = 8.1 Hz, 1H, ArH), 7.80 (d, J = 8.4 Hz, 1H, ArH), 7.95 (d, J = 6.9 Hz, 1H, ArH); 13C-NMR
(75 MHz, CDCl3): δc 36.9, 46.5, 52.7, 56.3, 57.4, 74.0, 74.4, 96.3, 103.6, 121.6, 125.3, 126.2, 126.5, 127.3,
127.4, 128.0, 128.3, 128.7, 129.0, 129.7, 130.0, 131.2, 131.4, 132.7, 132.9, 133.7, 134.2, 134.4, 135.3, 136.6,
137.0, 138.4, 195.5. Anal. calcd for C34H26Cl2N2O2S: C, 68.34; H, 4.39; N, 4.69. Found: C, 68.50; H, 4.48;
N, 4.52%.

8-(2-Fluorophenyl)-11-[(E)-(2-fluorophenyl)methylidene]-14-hydroxy-5-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4f) Light brown solid, 88% (0.160 g),
m.p. 150–152 ˝C, IR (KBr) υmax 3419, 1724, 1680, 1598 cm´1; 1H-NMR (300 MHz, CDCl3): δH 3.02
(d, J = 12.3 Hz, 1H, H-6a), 3.16–3.31 (m, 3H, H-4a, H-6b and H-12a), 3.43 (d, J = 11.1 Hz, 1H, H-24a),
3.67 (dd, J = 17.7, 1.8 Hz, 1H, H-12b), 3.82 (d, J = 11.4 Hz, 1H, H-24b), 4.46–4.77 (m, 3H, H-4b and H-8
and H-7), 6.12–6.22 (m, 3H, H-25 and ArH), 6.76–6.86 (m, 2H, ArH), 7.08–7.31 (m, 4H, ArH), 7.51–7.62
(m, 4H, ArH), 7.79 (d, J = 8.4 Hz, 1H, ArH), 7.88 (d, J = 6.9 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3):
δc 37.7, 46.3, 53.3, 56.3, 57.3, 71.6, 73.8, 96.0, 103.7, 115.5, 116.8, 121.5, 122.1, 123.6, 123.8, 124.7, 125.2,
126.2, 127.1, 127.8, 128.2, 128.5, 129.7, 130.5, 130.9, 131.2, 131.9, 134.1, 135.1, 137.0, 138.4, 159.5, 162.8,
196.2. Anal. calcd for C34H26F2N2O2S: C, 72.32; H, 4.64; N, 4.96. Found: C, 72.20; H, 4.75; N, 4.80%.

14-Hydroxy-8-(3-nitrophenyl)-11-[(E)-(3-nitrophenyl)methylidene]-5-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4g) Dark brown solid, 91% (0.154 g),
m.p. 176–178 ˝C, IR (KBr) υmax 3424, 1716, 1686, 1616 cm´1; 1H-NMR (400 MHz, CDCl3): δH 3.02–3.09
(m, 2H, H-4a and H-6a), 3.23 (d, J = 17.6Hz, 1H, H-12a), 3.28 (dd, J = 12.4, 6.4 Hz, 1H, H-6b), 3.48
(d, J = 11.6 Hz, 1H, H-24a), 3.65 (dd, J = 17.6, 2.8 Hz, 1H, H-12b), 3.85 (d, J = 11.6 Hz, 1H, H-24b),
4.37–4.40 (m, 2H, H-4b and H-8), 4.75–4.80 (m, 1H, H-7), 6.16 (s, 1H, H-25), 6.69 (d, J = 8.0 Hz, 1H, ArH),
7.12 (s, 1H, ArH), 7.24–7.30 (m, 2H, ArH), 7.50–7.51 (m, 3H, ArH), 7.65–7.69 (m, 1H, ArH), 7.84–7.88
(m, 2H, ArH), 7.95 (d, J = 7.6 Hz, 1H, ArH), 7.99 (dd, J = 8.0, 1.6 Hz, 1H, ArH), 8.18 (dd, J = 7.2, 1.2 Hz,
1H, ArH), 8.46–8.48 (m, 1H, ArH); 13C-NMR (100 MHz, CDCl3): δc 37.9, 50.9, 53.2, 56.4, 56.9, 72.2, 73.5,
96.3, 104.1, 121.8, 123.2, 123.3, 124.2, 124.5, 125.2, 126.2, 127.2, 128.1, 128.7, 129.2, 130.2, 131.3, 133.1,
134.1, 134.9, 135.1, 135.9, 136.0, 136.9, 138.2, 139.0, 148.0, 148.9, 196.4. Anal. calcd for C34H26N4O6S: C,
66.01; H, 4.24; N, 9.06. Found: C, 66.19; H, 4.45; N, 9.19%.

8-(2,4-Dichlorophenyl)-11-[(E)-(2,4-dichlorophenyl)methylidene]-14-hydroxy-5-thia-3,13-diazaheptacyclo
tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4h) Light brown solid, 90% (0.145 g), m.p. 144–146 ˝C,
IR (KBr) υmax 3409, 1686, 1605 cm´1; 1H-NMR (300 MHz, CDCl3): δH 3.07–3.16 (m, 2H, H-4a
and H-6a), 3.27–3.49 (m, 3H, H-6b, H-12a and H-24a), 3.67 (dd, J = 18.0, 3.0 Hz, 1H, H-12b), 3.82
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(d, J = 11.4 Hz, 1H, H-24b), 4.36–4.99 (m, 3H, H-4b, H-7 and H-8), 5.92 (d, J = 8.4 Hz, 1H, ArH), 6.40
(s, 1H, H-25), 6.93 (dd, J = 8.4, 2.1 Hz, 1H, ArH), 7.15–7.48 (m, 3H, ArH), 7.43–7.48 (m, 1H, ArH),
7.54–7.64 (m, 3H, ArH), 7.71 (d, J = 8.1 Hz, 1H, ArH), 7.81 (d, J = 8.1 Hz, 1H, ArH), 7.91 (m, J = 6.6 Hz,
1H, ArH); 13C-NMR (75 MHz, CDCl3): δc 36.8, 46.1, 52.6, 56.3, 57.2, 74.0, 74.2, 96.2, 103.6, 121.6, 125.3,
126.5, 126.7, 127.4,127.6, 128.2,128.7, 129.1, 129.6, 130.3, 131.0, 131.1, 131.3, 131.7, 133.5, 133.8, 134.3,
134.6, 135.1, 135.2, 136.9, 137.3, 138.3, 195.3. Anal. calcd for C34H24Cl4N2O2S: C, 61.28; H, 3.63; N, 4.20.
Found: C, 61.46; H, 3.49; N, 4.33%.

14-Hydroxy-8-(4-methylphenyl)-11-[(E)-(4-methylphenyl)methylidene]-5-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4i) Light brown solid, 93% (0.170 g),
m.p. 141–143 ˝C, IR (KBr) υmax 3416, 1723, 1682, 1594 cm´1; 1H-NMR (400 MHz, CDCl3): δH 2.23
(s, 3H, CH3), 2.33 (s, 3H, CH3), 3.03–3.09 (m, 2H, H-4a and H-6a), 3.21 (dd, J = 12.0, 6.4 Hz, 1H, H-6b),
3.34 (d, J = 17.6 Hz, 1H, H-12a), 3.43 (d, J = 11.2 Hz, 1H, H-24a), 3.68 (dd, J = 17.6, 2.0 Hz, 1H, H-12b),
3.81 (d, J = 11.2 Hz, 1H, H-24b), 4.24–4.31 (m, 2H, H-4b and H-8), 4.65–4.69 (m, 1H, H-7), 6.29 (s, 1H,
H-25), 6.35 (d, J = 8.0 Hz, 2H, ArH), 6.88 (d, J = 8.0 Hz, 2H, ArH), 7.17 (d, J = 8.0 Hz, 2H, ArH),
7.30–7.34 (m, 1H, ArH), 7.43 (d, J = 8.0 Hz, 2H, ArH), 7.52–7.61 (m, 3H, ArH), 7.72 (d, J = 8.0 Hz, 1H,
ArH), 7.82 (d, J = 6.8 Hz, 1H, ArH); 13C-NMR (100 MHz, CDCl3): δc 21.5, 21.7, 38.1, 51.0, 53.3, 56.4,
56.8, 72.7, 73.0, 96.2, 104.1, 121.5, 125.2, 126.3, 126.7, 127.9, 128.4, 129.0, 129.4, 129.8, 130.2, 131.2, 131.5,
132.1, 133.9, 134.5, 136.5, 137.0, 137.6, 138.5, 139.2, 196.4. Anal. calcd for C36H32N2O2S: C, 77.67; H,
5.79; N, 5.03. Found: C, 77.79; H, 5.68; N, 5.12%.

14-Hydroxy-8-(4-methoxyphenyl)-11-[(E)-(4-methoxyphenyl)methylidene]-5-thia-3,13-diazaheptacyclo
[13.7.1.19,13.02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4j) Pale yellow solid, 87%
(0.152 g), m.p. 137–139 ˝C, IR (KBr) υmax 3422, 1720, 1684, 1600 cm´1; 1H-NMR (300 MHz, CDCl3): δH

3.03–3.11 (m, 2H, H-4a and H-6a), 3.22 (dd, J = 12.0, 6.6 Hz, 1H, H-6b), 3.34 (d, J = 17.1 Hz, 1H, H-12a),
3.42–3.49 (m, 1H, H-24a), 3.68–3.70 (m, 2H, H-12b and H-24b), 3.73 (s, 3H, OCH3), 3.79 (s, 3H, OCH3),
4.23–4.30 (m, 2H, H-4b and H-8), 4.63–4.68 (m, 1H, H-7), 6.27 (s, 1H, H-25), 6.47 (d, J = 8.7 Hz, 2H,
ArH), 6.62 (d, J = 8.7 Hz, 2H, ArH), 6.89 (d, J = 8.7 Hz, 2H, ArH), 7.31–7.36 (m, 1H, ArH), 7.45–7.63
(m, 5H, ArH), 7.71 (d, J = 8.1 Hz, 1H, ArH), 7.82 (d, J = 6.9 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3):
δc 38.0, 50.6, 53.4, 55.6, 55.7, 56.4, 56.8, 72.7, 72.9, 96.1, 104.1, 113.8, 114.4, 121.5, 125.1, 126.2, 126.6, 127.1,
127.9, 128.3, 129.0, 130.5, 131.0, 131.2, 132.1, 134.7, 136.1, 137.0, 138.6, 159.3, 160.2, 196.7. Anal. calcd for
C36H32N2O4S: C, 73.45; H, 5.48; N, 4.76. Found: C, 73.31; H, 5.34; N, 4.87%.

8-(4-Bromophenyl)-11-[(E)-(4-bromophenyl)methylidene]-14-hydroxy-5-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4k) Light brown solid, 92% (0.146 g),
m.p. 171–173 ˝C, IR (KBr) υmax 3418, 1724, 1680, 1597 cm´1; 1H-NMR (300 MHz, CDCl3): δH 3.00–3.06
(m, 2H, H-4a and H-6a), 3.20–3.30 (m, 1H, H-6b and H-12a), 3.44 (d, J = 11.4 Hz, 1H, H-24a), 3.63
(dd, J = 17.7, 2.1 Hz, 1H, H-12b), 3.81 (d, J = 11.4 Hz, 1H, H-24b), 4.22–4.29 (m, 2H, H-4b and H-8),
4.62–4.68 (m, 1H, H-7), 6.16 (s, 1H, H-25), 6.26 (d, J = 8.4 Hz, 2H, ArH), 7.21–7.60 (m, 10H, ArH), 7.75
(d, J = 8.1 Hz, 1H, ArH), 7.80 (d, J = 6.9 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3): δc 38.0, 50.7, 53.2,
56.4, 56.8, 72.4, 73.1, 96.2, 104.1, 121.7, 122.1, 123.3, 125.1, 126.3, 126.9, 128.1, 128.5, 130.4, 131.2, 131.4,
131.5, 132.2, 133.0, 133.7, 134.9, 135.9, 135.4, 136.9, 138.3, 196.5. Anal. calcd for C34H26Br2N2O2S: C,
59.49; H, 3.82; N, 4.08. Found: C, 59.62; H, 3.90; N, 4.21%.

8-(4-Chlorophenyl)-11-[(E)-(4-chlorophenyl)methylidene]-14-hydroxy-5-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4l) Brown solid, 95% (0.165 g), m.p.
154–156 ˝C, IR (KBr) υmax 3402, 1719, 1686, 1601 cm´1; 1H-NMR (400 MHz, CDCl3): δH 2.99–3.04
(m, 2H, H-4a and H-6a), 3.19–3.29 (m, 2H, H-6b and H-12a), 3.43 (d, J = 11.6 Hz, 1H, H-24a), 3.62
(dd, J = 17.6, 2.4 Hz, 1H, H-12b), 3.80 (d, J = 11.2 Hz, 1H, H-24b), 4.23–4.27 (m, 2H, H-4b and H-8),
4.61–4.66 (m, 1H, H-7), 6.17 (s, 1H, H-25), 6.32 (d, J = 8.4 Hz, 2H, ArH), 7.05 (d, J = 8.4 Hz, 2H, ArH),
7.27–7.35 (m, 3H, ArH), 7.48 (d, J = 8.4 Hz, 2H, ArH), 7.55–7.69 (m, 3H, ArH), 7.73 (d, J = 8.4 Hz, 1H,
ArH), 7.79 (d, J = 6.8 Hz, 1H, ArH); 13C-NMR (100 MHz, CDCl3): δc 38.0, 50.7, 53.2, 56.4, 56.8, 72.4,



Molecules 2016, 21, 165 9 of 14

73.1, 96.2, 104.1, 121.7, 125.1, 126.3, 126.9, 128.1, 128.4, 128.5, 128.8, 129.3, 130.9, 131.2, 132.5, 133.6,
133.9, 134.3, 134.8, 134.9, 135.4, 136.9, 138.3, 196.5. Anal. calcd for C34H26Cl2N2O2S: C, 68.34; H, 4.39;
N, 4.69. Found: C, 68.45; H, 4.51; N, 4.78%.

8-(4-Fluorophenyl)-11-[(E)-(4-fluorophenyl)methylidene]-14-hydroxy-5-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4m) White solid, 93% (0.169 g), m.p.
132–134 ˝C, IR (KBr) υmax 3416, 1682, 1601 cm´1; 1H-NMR (400 MHz, CDCl3): δH 3.02–3.09 (m, 2H,
H-4a and H-6a), 3.21–3.26 (m, 1H, H-6b), 3.30 (d, J = 17.6 Hz, 1H, H-12a), 3.45 (d, J = 11.2 Hz, 1H,
H-24a), 3.67 (dd, J = 17.2, 2.0 Hz, 1H, H-12b), 3.82 (d, J = 11.6 Hz, 1H, H-24b), 4.25–4.31 (m, 2H, H-4b
and H-8), 4.64–4.68 (m, 1H, H-7), 6.20 (s, 1H, H-25), 6.39–6.42 (m, 2H, ArH), 6.76–6.81 (m, 2H, ArH),
7.04–7.08 (m, 2H, ArH), 7.31–7.34 (m, 1H, ArH), 7.51–7.56 (m, 3H, ArH), 7.59 (d, J = 6.8 Hz, 2H, ArH),
7.74 (d, J = 8.4 Hz, 1H, ArH), 7.81 (d, J = 7.2 Hz, 1H, ArH); 13C-NMR (100 MHz, CDCl3): δC 38.0, 50.6,
53.3, 56.4, 56.9, 72.6, 73.1, 96.2, 104.1, 115.4, 116.0, 121.6, 125.1, 126.2, 126.8, 128.0, 128.4, 130.3, 131.0,
131.2, 131.9, 132.5, 133.0, 134.5, 135.0, 137.0,138.4, 161.5,163.9, 196.7. Anal. calcd for C34H26F2N2O2S: C,
72.32; H, 4.64; N, 4.96. Found: C, 73.20; H, 4.79; N, 4.78%.

14-Hydroxy-8-(naphthyl)-11-[(E)-naphthylmethylidene]-5-thia-3,13-diazaheptacyclo-[13.7.1.19,13.02,9.02,14.03,7.
019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (4n) White solid, 89% (0.149 g), m.p. 158–160 ˝C, IR
(KBr) υmax 3423, 1721, 1684, 1590 cm´1; 1H-NMR (300 MHz, CDCl3): δH 2.96 (d, J = 12.3 Hz, 1H, H-6a),
3.13 (dd, J = 12.3, 6.3 Hz, 1H, H-6b), 3.30 (d, J = 18.0 Hz, 1H, H-12a), 3.41–3.52 (m, 2H, H-4a and H-24a),
3.73 (dd, J = 18.0, 2.1 Hz, 1H, H-12b), 3.88 (d, J = 11.4 Hz, 1H, H-24b), 4.66–4.77 (m, 2H, H-4b and H-7),
5.32 (d, J = 10.2 Hz, 1H, H-8), 6.22 (d, J = 6.9 Hz, 1H, ArH), 6.69 (d, J = 8.4 Hz, 1H, ArH), 6.93 (s, 1H,
H-25), 7.11–7.91 (m, 16H, ArH), 8.15 (d, J = 6.9 Hz, 1H, ArH), 8.92 (d, J = 8.7 Hz, 1H, ArH); 13C-NMR
(75 MHz, CDCl3): δc 37.6, 44.8, 53.2, 56.6, 57.8, 73.8, 75.5, 97.0, 104.0, 121.6, 124.8, 125.0, 125.2, 125.4,
126.1, 126.3, 126.4, 127.0, 127.1, 128.1, 128.4, 128.5, 128.8, 129.2, 129.4, 131.2, 131.3, 131.4, 133.3, 133.6,
134.0, 134.1, 134.4, 134.7, 134.8, 137.2, 138.5, 196.4. Anal. calcd for C42H32N2O2S: C, 80.23; H, 5.13; N,
4.46. Found: C, 80.38; H, 5.29; N, 4.35%.

14-Hydroxy-8-(phenyl)-11-[(E)-phenylmethylidene]-6-thia-3,13-diazaheptacyclo-[13.7.1.19,13.02,9.02,14.03,7.
019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6a) White solid, 93% (0.178 g), m.p. 135–137 ˝C, IR
(KBr) υmax 3418, 1721, 1692, 1599 cm´1; 1H-NMR (300 MHz, CDCl3): δH 2.79–2.99 (m, 5H, H-4a, H-4b,
H-5a, H-24a and H-24b), 3.40 (d, J = 17.4 Hz, 1H, H-12a), 3.67 (dd, J = 17.4, 2.7 Hz, 1H, H-12b), 4.25
(dd, J = 12.6, 2.1 Hz, 1H, H-5b), 4.91 (d, J = 6.9 Hz, 1H, H-8), 5.70 (d, J = 7.2 Hz, 1H, H-7), 5.94 (brs, 1H,
OH), 6.28 (s, 1H, H-25), 6.40–6.43 (m, 2H, ArH), 7.05–7.15 (m, 3H, ArH), 7.25–7.39 (m, 4H, ArH),
7.51–7.62 (m, 6H, ArH), 7.74 (dd, J = 6.9, 2.1 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3): δc 33.9, 53.1,
53.5, 53.9, 57.6, 75.2, 78.0, 95.1, 103.8, 121.7, 124.2, 126.3, 126.8, 127.8, 128.1, 128.2, 128.5, 128.9, 129.0,
129.1, 130.0, 131.2, 133.3, 134.1, 136.0, 136.5, 137.2, 137.3, 138.2, 196.4. Anal. calcd for C34H28N2O2S: C,
77.24; H, 5.34; N, 5.30. Found: C, 77.43; H, 5.20; N, 5.17%.

14-Hydroxy-8-(2-methylphenyl)-11-[(E)-(2-methylphenyl)methylidene]-6-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6b) Pale yellow solid, 90% (0.165 g),
m.p. 179–181 ˝C, IR (KBr) υmax 3398, 1719, 1680, 1598 cm´1; 1H-NMR (300 MHz, CDCl3): δH 1.56
(s, 3H, CH3), 2.79–2.96 (m, 7H, CH3, H-4a, H-4b, H-24a and H-24b), 3.23 (d, J = 12.6 Hz, 1H, H-5a),
3.38 (d, J = 18.0 Hz, 1H, H-12a), 3.77 (dd, J = 17.7, 2.7 Hz, 1H, H-12b), 4.63 (d, J = 12.6 Hz, 1H, H-5b),
5.07 (d, J = 7.8 Hz, 1H, H-8), 5.46 (d, J = 8.1 Hz, 1H, H-7), 6.06 (d, J = 7.5 Hz, 1H, ArH), 6.55 (s, 1H,
H-25), 6.84–6.91 (m, 2H, ArH), 7.00 (d, J = 7.2 Hz, 1H, ArH), 7.15–7.26 (m, 3H, ArH), 7.39 (d, J = 6.9 Hz,
1H, ArH), 7.44 (d, J = 7.8 Hz, 1H, ArH), 7.56–7.62 (m, 3H, ArH), 7.67 (d, J = 8.1 Hz, 1H, ArH), 7.78
(dd, J = 6.3, 2.7 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3): δc 19.6, 21.0, 33.4, 50.4, 52.8, 53.1, 57.7, 75.7,
80.3, 95.5, 103.6, 121.9, 124.1, 125.4, 126.2, 126.6, 126.8, 127.4, 127.7, 128.3, 128.5, 128.6, 129.0, 130.1, 131.3,
131.7, 132.7, 133.3, 135.7, 135.9, 136.0, 137.3, 137.6, 138.5, 139.1, 195.8. Anal. calcd for C36H32N2O2S: C,
77.67; H, 5.79; N, 5.03. Found: C, 77.51; H, 5.91; N, 5.15%.
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14-Hydroxy-8-(2-methoxylphenyl)-11-[(E)-(2-methoxylphenyl)methylidene]-6-thia-3,13-diazaheptacyclo
tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6c) White solid, 84% (0.147 g), m.p. 175–177 ˝C, IR (KBr)
υmax 3416, 1721, 1681, 1601 cm´1; 1H-NMR (300 MHz, CDCl3): δH 2.72–2.97 (m, 4H, H-4a, H-4b, H-24a
and H-24b), 3.09 (d, J = 12.6 Hz, 1H, H-5a), 3.26 (d, J = 17.4 Hz, 1H, H-12a), 3.56 (s, 3H, OCH3), 3.62 (d,
J = 17.4 Hz, 1H, H-12b), 3.92 (s, 3H, OCH3), 4.62 (d, J = 12.6 Hz, 1H, H-5b), 5.05 (d, J = 6.9 Hz, 1H, H-8),
5.96 (d, J = 6.9 Hz, 1H, H-7), 6.01 (d, J = 7.5 Hz, 1H, ArH), 6.51 (s, 1H, H-25), 6.55–6.62 (m, 2H, ArH),
6.90–7.59 (m, 9H, ArH), 7.66 (d, J = 6.6 Hz, 1H, ArH), 7.73 (d, J = 8.1 Hz, 1H, ArH); 13C-NMR (75 MHz,
CDCl3): δc 33.7, 51.8, 52.9, 53.1, 55.2, 55.9, 57.5, 75.7, 76.9, 94.6, 103.5, 110.3, 111.9, 119.8, 121.2, 121.5,
123.3, 124.4, 125.2, 126.1, 126.5, 128.0, 128.4, 129.1, 129.9, 130.5, 131.2, 132.2, 133.0, 136.3, 137.3, 138.5,
157.7, 158.5, 195.9. Anal. calcd for C36H32N2O4S: C, 73.45; H, 5.48; N, 4.76. Found: C, 73.60; H, 5.32;
N, 4.68%.

8-(2-Bromophenyl)-11-[(E)-(2-bromophenyl)methylidene]-14-hydroxy-6-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6d) White solid, 92% (0.146 g), m.p.
172–174 ˝C, IR (KBr) υmax 3396, 1718, 1681, 1602 cm´1; 1H-NMR (300 MHz, CDCl3): δH 2.83–2.99
(m, 4H, H-4a, H-4b, H-24a and H-24b), 3.29 (d, J = 12.3 Hz, 1H, H-5a), 3.40 (d, J = 17.7 Hz, 1H, H-12a),
3.68 (dd, J = 17.7, 2.7 Hz, 1H, H-12b), 4.65 (d, J = 12.3 Hz, 1H, H-5b), 5.37 (d, J = 8.4 Hz, 1H, H-8), 5.41
(d, J = 8.7 Hz, 1H, H-7), 5.91–5.94 (m, 1H, ArH), 6.11 (brs, 1H, OH), 6.54 (s, 1H, H-25), 6.96–6.99 (m, 2H,
ArH), 7.11–7.78 (m, 10H, ArH), 7.82 (d, J = 7.5 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3): δc 33.4, 52.4,
53.1, 53.4, 57.4, 75.6, 79.2, 95.0, 103.4, 121.7, 124.1, 124.3, 126.6, 126.9, 127.2, 127.4, 127.8, 128.4, 128.6,
128.7, 129.3, 129.6, 130.1, 131.5, 133.0, 133.8, 134.5, 134.6, 135.2, 135.7, 136.7, 137.1, 138.3, 194.8. Anal.
calcd for C34H26Br2N2O2S: C, 59.49; H, 3.82; N, 4.08. Found: C, 59.32; H, 3.73; N, 4.17%.

8-(2-Chlorophenyl)-11-[(E)-(2-chlorophenyl)methylidene]-14-hydroxy-6-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6e) White solid, 87% (0.150 g), m.p.
134–136 ˝C, IR (KBr) υmax 3398, 1725, 1685, 1603 cm´1; 1H-NMR (300 MHz, CDCl3): δH 2.83–3.02 (m,
4H, H-4a, H-4b, H-24a and H-24b), 3.25 (d, J = 12.3 Hz, 1H, H-5a), 3.37 (d, J = 17.7 Hz, 1H, H-12a), 3.69
(dd, J = 17.7, 2.7 Hz, 1H, H-12b), 4.64 (dd, J = 12.3, 2.1 Hz, 1H, H-5b), 5.39 (d, J = 8.4 Hz, 1H, H-8), 5.49
(d, J = 8.1 Hz, 1H, H-7), 6.03–6.09 (m, 1H, ArH), 6.55 (s, 1H, H-25), 6.91–7.14 (m, 3H, ArH), 7.20–7.63
(m, 8H, ArH), 7.70 (d, J = 8.1 Hz, 1H, ArH), 7.81 (d, J = 7.8 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3):
δc 33.6, 52.1, 53.5, 53.7, 57.6, 75.5, 79.8, 95.2, 103.6, 121.6, 124.0, 124.2, 126.5, 126.9, 127.1, 127.5, 127.8,
128.2, 128.6, 128.8, 129.5, 129.8, 130.2, 131.7, 133.1, 133.6, 134.3, 134.5, 135.1, 135.8, 136.4, 137.3, 138.6,
194.3. Anal. calcd for C34H26Cl2N2O2S: C, 68.34; H, 4.39; N, 4.69. Found: C, 68.47; H, 4.30; N, 4.81%.

8-(2-Fluorophenyl)-11-[(E)-(2-fluorophenyl)methylidene]-14-hydroxy-6-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6f) Pale yellow solid, 90% (0.163 g),
m.p. 162–164 ˝C, IR (KBr) υmax 3418, 1724, 1690, 1599 cm´1; 1H-NMR (300 MHz, CDCl3): δH 2.77–3.01
(m, 4H, H-4a, H-4b, H-24a and H-24b), 3.13 (d, J = 12.6 Hz, 1H, H-5a), 3.24 (d, J = 17.7 Hz, 1H, H-12a),
3.65 (dd, J = 17.7, 2.1 Hz, 1H, H-12b), 4.53 (d, J = 12.6 Hz, 1H, H-5b), 4.98 (d, J = 7.2 Hz, 1H, H-8), 5.78
(d, J = 7.2 Hz, 1H, H-7), 5.96 (brs, 1H, OH), 6.17–6.24 (m, 2H, ArH and H-25), 6.77–6.86 (m, 2H, ArH),
7.08–7.32 (m, 5H, ArH), 7.54–7.64 (m, 5H, ArH), 7.80 (d, J = 7.8 Hz, 1H, ArH); 13C-NMR (75 MHz,
CDCl3): δC 33.7, 50.4, 53.1, 53.4, 57.5, 57.6, 75.8, 94.7, 103.7, 115.5, 116.8, 121.6, 122.0, 123.6, 123.9, 124.2,
124.7, 126.3, 127.0, 128.0, 128.5, 129.7, 130.4, 130.5, 130.9, 131.2, 132.5, 135.2, 135.7, 137.3, 138.2, 160.2,
161.7, 195.7. Anal. calcd for C34H26F2N2O2S: C, 72.32; H, 4.64; N, 4.96. Found: C, 72.47; H, 4.52;
N, 4.87%.

14-Hydroxy-8-(3-nitrophenyl)-11-[(E)-(3-nitrophenyl)methylidene]-6-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6g) Dark brown solid, 89% (0.150 g),
m.p. 180–182 ˝C, IR (KBr) υmax 3416, 1719, 1694, 1601 cm´1; 1H-NMR (400 MHz, CDCl3): δH 2.76–3.02
(m, 5H, H-4a, H-4b, H-5a, H-24a and H-24b), 3.31 (d, J = 17.6 Hz, 1H, H-12a), 3.67 (d, J = 17.6 Hz, 1H,
H-12b), 4.36 (d, J = 12.0 Hz, 1H, H-5b), 4.97 (d, J = 7.2 Hz, 1H, H-8), 5.74 (d, J = 7.2 Hz , 1H, H-7), 6.15
(s, 1H, H-25), 6.71 (d, J = 7.2 Hz, 1H, ArH), 7.12 (s, 1H, ArH), 7.23–7.34 (m, 2H, ArH), 7.51–7.73 (m, 4H,
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ArH), 7.88 (d, J = 8.4 Hz, 1H, ArH), 7.93 (d, J = 8.0 Hz, 1H, ArH), 8.00 (d, J = 8.0 Hz, 1H, ArH), 8.17–8.24
(m, 2H, ArH), 8.46 (s, 1H, ArH); 13C-NMR (100 MHz, CDCl3): δC 34.0, 48.2, 52.9, 53.3, 53.6, 57.6, 75.5,
95.0, 103.9, 121.8, 123.0, 123.3, 123.8, 124.1, 124.5, 124.9, 126.2, 127.0, 128.1, 128.8, 129.3, 130.1, 131.2,
133.2, 133.8, 134.9, 135.6, 136.2, 136.5, 138.0, 139.4, 147.9, 148.7, 196.1. Anal. calcd for C34H26N4O6S: C,
66.01; H, 4.24; N, 9.06. Found: C, 66.15; H, 4.10; N, 9.21%.

8-(2,4-Dichlorophenyl)-11-[(E)-(2,4-dichlorophenyl)methylidene]-14-hydroxy-6-thia-3,13-diazaheptacyclo
tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6h) Light brown solid, 91% (0.147 g), m.p. 146–147 ˝C, IR
(KBr) υmax 3380, 1723, 1690, 1601 cm´1; 1H-NMR (400 MHz, CDCl3): δH 2.86–2.99 (m, 4H, H-4a, H-4b,
H-24a, and H-24b), 3.21 (d, J = 12.0 Hz, 1H, H-5a), 3.33 (d, J = 18.0 Hz, 1H, H-12a), 3.66 (dd, J = 17.6,
2.8 Hz, 1H, H-12b), 4.59 (d, J = 12.4 Hz, 1H, H-5b), 5.30 (d, J = 8.4 Hz, 1H, H-8), 5.41 (d, J = 8.0 Hz
1H, H-7), 5.99 (d, J = 8.4 Hz 1H, ArH), 6.43 (s, 1H, H-25), 6.94 (dd, J = 8.4, 2.0 Hz, 1H, ArH), 7.15–7.28
(m, 2H, ArH), 7.37 (d, J = 8.8 Hz, 1H, ArH), 7.45 (d, J = 7.2 Hz, 1H, ArH), 7.51–7.62 (m, 4H, ArH), 7.71
(d, J = 8.4 Hz, 1H, ArH), 7.80 (dd, J = 6.4, 4.0 Hz, 1H, ArH); 13C-NMR (100 MHz, CDCl3): δC 33.5, 50.4,
52.7, 53.1, 57.4, 75.6, 78.7, 95.0, 103.5, 121.7, 124.1, 126.6, 126.7, 127.4, 127.5, 128.4, 128.7, 129.6, 129.8,
130.4, 130.9, 131.0, 131.3, 132.0, 133.6, 134.3, 134.6, 135.1, 135.2, 135.3, 136.9, 137.0, 138.1, 194.8. Anal.
calcd for C34H24Cl4N2O2S: C, 61.28; H, 3.63; N, 4.20. Found: C, 61.15; H, 3.72; N, 4.35%.

14-hydroxy-8-(4-methylphenyl)-11-[(E)-(4-methylphenyl)methylidene]-6-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6i) Orange solid, 92% (0.168 g), m.p.
190–192 ˝C, IR (KBr) υmax 3394, 1723, 1682, 1598 cm´1; 1H-NMR (300 MHz, CDCl3): δH 2.23 (s, 3H,
CH3), 2.32 (s, 3H, CH3), 2.79–2.97 (m, 5H, H-4a, H-4b, H-5a, H-24a and H-24b), 3.40 (d, J = 17.4 Hz, 1H,
H-12a), 3.67 (dd, J = 17.4, 2.8 Hz, 1H, H-12b), 4.23 (d, J = 12.3 Hz, 1H, H-5b), 4.87 (d, J = 7.2 Hz, 1H,
H-8), 5.67 (d, J = 7.2 Hz, 1H, H-7), 6.29 (s, 1H, H-25), 6.36 (d, J = 8.1 Hz, 2H, ArH), 6.89 (d, J = 7.8 Hz,
2H, ArH), 7.15 (d, J = 8.1 Hz, 2H, ArH), 7.28–7.33 (m, 1H, ArH), 7.40 (d, J = 8.1 Hz, 2H, ArH), 7.52–7.61
(m, 4H, ArH), 7.72 (dd, J = 6.9, 1.8 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3): δC 21.4, 21.7, 33.8, 53.1,
53.5, 53.7, 57.5, 75.0, 78.0, 95.0, 103.8, 121.6, 124.2, 126.3, 126.6, 128.1, 128.4, 128.9, 129.0, 129.7, 130.2,
131.2, 131.5, 132.3, 134.2, 136.1, 136.7, 137.2, 138.4, 139.2, 196.3. Anal. calcd for C36H32N2O2S: C, 77.67;
H, 5.79; N, 5.03. Found: C, 77.84; H, 5.62; N, 5.16%.

14-Hydroxy-8-(4-methoxyphenyl)-11-[(E)-(4-methoxyphenyl)methylidene]-6-thia-3,13-diazaheptacyclo[13.7.1.1
9,13.02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6j) White solid, 86% (0.150 g), m.p.
144–146 ˝C, IR (KBr) υmax 3398, 1719, 1681, 1600 cm´1; 1H-NMR (300 MHz, CDCl3): δH 2.80–2.99
(m, 5H, H-4a, H-4b, H-5a, H-24a and H-24b), 3.39 (d, J = 17.4 Hz, 1H, H-12a), 3.69 (dd, J = 17.4,
2.4 Hz, 1H, H-12b), 3.74 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 4.22 (d, J = 12.6, 2.1 Hz, 1H, H-5b),
4.85 (d, J = 7.5 Hz, 1H, H-8), 5.64 (d, J = 7.5 Hz, 1H, H-7), 5.95 (s, 1H, OH), 6.28 (s, 1H, H-25), 6.46
(d, J = 8.7 Hz, 2H, ArH), 6.62 (d, J = 8.7 Hz, 2H, ArH), 6.88 (d, J = 8.7 Hz, 2H, ArH), 7.27–7.35 (m, 1H,
ArH), 7.43 (d, J = 8.7 Hz, 2H, ArH), 7.51–7.58 (m, 3H, ArH), 7.61 (d, J = 6.6 Hz, 1H, ArH), 7.71
(dd, J = 6.3, 2.7 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3): δC 33.8, 53.1, 53.4, 53.5, 55.6, 55.7, 57.4, 74.9,
78.0, 95.0, 103.8, 113.8, 114.4, 121.6, 124.1, 126.3, 126.6, 127.0, 128.1, 128.4, 129.3, 130.0, 131.1, 131.2,
132.1, 136.1, 136.4, 137.2, 138.3, 159.2, 160.3, 196.3. Anal. calcd for C36H32N2O4S: C, 73.45; H, 5.48; N,
4.76. Found: C, 73.59; H, 5.32; N, 4.60%.

8-(4-Bromophenyl)-11-[(E)-(4-bromophenyl)methylidene]-14-hydroxy-6-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6k) Brown solid, 90% (0.142 g ), m.p.
156–158 ˝C, IR (KBr) υmax 3390, 1723, 1681, 1603 cm´1; 1H-NMR (300 MHz, CDCl3): δH 2.83–2.95
(m, 5H, H-4a, H-4b, H-5a, H-24a and H-24b), 3.34 (d, J = 17.4 Hz, 1H, H-12a), 3.62 (d, J = 17.4, 2.1 Hz,
1H, H-12b), 4.20 (d, J = 12.6 Hz, 1H, H-5b), 4.83 (d, J = 7.2 Hz, 1H, H-8), 5.63 (d, J = 7.2 Hz, 1H, H-7),
6.17 (s, 1H, H-25), 6.27 (d, J = 8.4 Hz, 2H, ArH), 7.23 (d, J = 8.4 Hz, 2H, ArH), 7.32–7.41 (m, 3H, ArH),
7.49 (d, J = 8.4 Hz, 2H, ArH), 7.56–7.61 (m, 4H, ArH), 7.72–7.76 (m, 1H, ArH); 13C-NMR (75 MHz,
CDCl3): δC 33.9, 53.1, 53.4, 53.5, 57.5, 75.1, 77.6, 95.0, 103.8, 121.8, 121.9, 123.3, 124.2, 126.4, 126.8, 128.3,
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128.5, 130.7, 131.2, 131.4, 131.5, 132.2, 132.9, 133.5, 135.1, 135.8, 136.2, 137.1, 138.1, 196.1. Anal. calcd for
C34H26Br2N2O2S: C, 59.49; H, 3.82; N, 4.08. Found: C, 59.40; H, 3.71; N, 4.24%.

8-(4-Chlorophenyl)-11-[(E)-(4-chlorophenyl)methylidene]-14-hydroxy-6-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6l) Brown solid, 92% (0.160 g ), m.p.
164–166 ˝C, IR (KBr) υmax 3357, 1719, 1682, 1605 cm´1; 1H-NMR (400 MHz, CDCl3): δH 2.84–2.94
(m, 5H, H-4a, H-4b, H-5a, H-24a and H-24b), 3.35 (d, J = 17.6 Hz, 1H, H-12a), 3.63 (d, J = 17.6, 2.4
Hz, 1H, H-12b), 4.28 (d, J = 12.4 Hz, 1H, H-5b), 4.83 (d, J = 6.4 Hz, 1H, H-8), 5.65 (d, J = 6.4 Hz, 1H,
H-7), 6.02 (s, 1H, OH), 6.15 (s, 1H, H-25), 6.71 (d, J = 7.6 Hz, 1H, ArH), 7.12 (s, 1H, ArH), 7.23–7.34
(m, 2H, ArH), 7.51–7.73 (m, 4H, ArH), 7.88 (d, J = 8.4 Hz, 2H, ArH), 7.93 (d, J = 8.0 Hz, 1H, ArH), 8.00
(d, J = 8.0 Hz, 1H, ArH), 8.17–8.24 (m, 2H, ArH ); 13C-NMR (100 MHz, CDCl3): δC 33.8, 52.7, 53.0, 53.3,
57.3, 75.2, 78.2, 94.7, 103.9, 121.4, 123.8, 126.1, 126.5, 127.9, 128.2, 128.3, 128.8, 130.3, 130.9, 131.0, 132.3,
133.2, 133.9, 134.4, 134.5, 135.9, 136.0, 136.9, 138.2, 196.1. Anal. calcd for C34H26Cl2N2O2S: C, 68.34; H,
4.39; N, 4.69. Found: C, 68.20; H, 4.57; N, 4.60%.

8-(4-Fluorophenyl)-11-[(E)-(4-fluorophenyl)methylidene]-14-hydroxy-6-thia-3,13-diazaheptacyclo[13.7.1.19,13.
02,9.02,14.03,7.019,23]tetracosa-1(22),15(23),16,18,20-pentaen-10-one (6m) Light brown solid, 91% (0.165 g),
m.p. 136–138 ˝C, IR (KBr) υmax 3424, 1723, 1682, 1598 cm´1; 1H-NMR (400 MHz, CDCl3): δH 2.85–2.99
(m, 5H, H-4a, H-4b, H-5a, H-24a and H-24b), 3.35 (d, J = 17.6 Hz, 1H, H-12a), 3.65 (dd, J = 17.6, 2.4 Hz,
1H, H-12b), 4.23 (dd, J = 12.8, 2.4 Hz, 1H, H-5b), 4.86 (d, J = 7.2 Hz, 1H, H-8), 5.64 (d, J = 7.6 Hz, 1H,
H-7), 6.20 (s, 1H, H-25), 6.39–6.43 (m, 2H, ArH), 6.77–6.82 (m, 2H, ArH), 7.03–7.08 (m, 2H, ArH),
7.27–7.34 (m, 1H, ArH), 7.48–7.62 (m, 6H, ArH), 7.75 (dd, J = 6.4, 2.4, 1H, ArH); 13C-NMR (100 MHz,
CDCl3): δC 33.9, 52.6, 53.1, 53.4, 57.6, 75.1, 77.9, 95.0, 103.8, 115.4, 115.9, 121.7, 124.1, 126.3, 126.8, 128.1,
128.4, 130.2, 130.6, 131.2, 131.9, 132.0, 133.1, 135.3, 135.9, 137.2, 138.1, 162.5, 162.9, 196.3. Anal. calcd for
C34H26F2N2O2S: C, 72.32; H, 4.64; N, 4.96. Found: C, 73.45; H, 4.73; N, 4.82%.

4. Conclusions

An efficient three-component domino protocol has been achieved for the stereoselective synthesis
of novel heptacyclic cage-like compounds in ionic liquid under microwave irradiation conditions.
The similar reactivity found for azomethine ylides generated from thiazolidine-2-carboxylic acid
and thiazolidine-4-carboxylic acid allowed discarding any influence on dipolar cycloadditions of the
well-known [36] carbanion stabilization by adjacent sulfur effect. Further studies on the synthetic
applications of this methodology with diverse 1,2-diketones and α-amino acids are currently under
progress in our laboratories.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/
21/2/165/s1.
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