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The study of human crowd density estimation (H-CDE) using radio frequency is limited due to the nature of wireless medium and
the advancement of visual-based systems. There were two statistical methods, namely, One-Way Analysis of Variance and Design
of Experiment applied in designing the H-CDE system. One-Way Analysis of Variance is used to investigate the difference in signal
attenuation between dynamic and static crowds. The Design of Experiment is utilized to identify significant crowd properties that
affect wireless signal propagation.The significant factors were later trained into the H-CDE algorithm for the purpose of estimating
the human crowd density in a defined sector. A sector comprising three placements of 2.4GHz ZigBee wireless nodes continuously
reported the received signal strength indicator to the main node. The results showed that the H-CDE system was 75.00% and
70.83% accurate in detecting the low and medium human crowd density, respectively. A signal path loss propagation model was
also proposed to assist in predicting the human crowddensity.Thehuman crowdproperties verified by using the statistical approach
may offer a new side of understanding and estimating the human crowd density.

1. Introduction

Monitoring and estimating human crowd density using radio
frequency (RF) is a field of largely unexplored study due
to problems related to the unpredictable wireless medium,
improvement of visual-based systems, and the nature of
human bodies in wireless medium. Crowd density estimation
(CDE) has correlation to the topic of localization due to its
technical similarity.

The RF-based localization is the process of estimating the
position and movement of a node within a network using
various mathematical techniques and algorithms [1, 2]. The
localization is able to perform location sensing [3, 4], target
tracking [5], or both features at the same time [6–8]. The
importance of node localization can be derived from relevant
applications ranging from target tracing to safetymonitoring.

Crowd control and monitoring are imperative to reduce
accidents. A catalogue of crowd-related disasters during Hajj
pilgrimage proves that the current systems are still insuf-
ficient to cater for the ever-increasing number of pilgrims.

The latestmishap during theHajj pilgrimage killedmore than
700 people at Mina [9], despite billions of dollars spent by the
Saudi Arabia government on improving the infrastructures.
This further stresses the importance of human crowd moni-
toring to address the issue of safety and disaster prevention.

(1) Human Crowd Density Estimation. Table 1 shows the
previous works on RF-based H-CDE. There are two types of
techniques that can be implemented in estimating a crowd
size which are participatory (device-handling) and nonpar-
ticipatory (device-free). The participatory method generally
depends on people counting by distributing tags (or devices)
to their subjects and detecting them using portable or fixed
readers. However, there is an issue of true scalability due to
the requirement of dedicated involvement of participants.

Nonparticipatory is a parameter-based estimation where
data such as the received signal strength indicator (RSSI)
obtained between the transmitter and receiver (T-R) is
analyzed. This approach is opted for in this study as it allows
better scalability and easier deployment.The implementation
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Table 1: Related works on the RF-based H-CDE systems.

Sensing feature Related work Platform Highlights

Participatory

WISP-based [10] RFID Provides framework on crowd density, identification, and geographical data
at mass event gathering

Participatory
Bluetooth [11]

Bluetooth and
GPS

A system for estimating crowd density and flow at urban environment
using Bluetooth on smartphones

Augmented
Stadium project
[12]

Bluetooth and
GPS

Provides information visualisation tool for understanding crowd activities,
density, location, and speed of travel based on MANETs and wireless mesh
networking

Hand phone crowd
monitoring [13]

Wi-Fi and
Bluetooth

Proposed collaborative Wi-Fi and Bluetooth features inside mobile phones
for density estimation

Nonparticipatory

Bluetooth
collaboration [14] Bluetooth Proposed 6 features that estimate crowd density based on signal strength in

an area of 2352.25m2

Electronic Frog
Eye [15] Wi-Fi Utilizes channel state information to estimate crowd density, speed,

distribution, and distance

WSN-based [16] TelosB WSN Proposed a three-phase iterative process of training, monitoring, and
calibrating to estimate crowd density

Wi-counter [17] Wi-Fi Performs crowd counting from three phases; crowdsourcing and offline
and online training

SCPL [8] WSN Grid-based system that utilized high number of transmitters and receivers
for crowd counting and localization

of statistical methods may also contribute to the current
body of knowledge onH-CDE.The ZigBee chipset with whip
antenna was selected as it fits the requirement of the design
of a portable, low-powered, and low data rate system.

(2) Human Crowd Properties on Signal Attenuation. Under-
standing human crowd features such as crowd spread of
people, movement, and size provides an insight into the
signal fluctuation caused by bodily obstructions. The effects
of human crowd distribution and velocity on the signal
attenuation have been studied by Xi et al. [15] and Arai et
al. [18]. However, these effects can be further investigated
to better understand the signal loss caused by different
crowd properties and their correlations between one another.
Another signal attenuation factor of interest in the WSN
deployment is the number of tags.The tags are portable nodes
carried by selected agents within the crowd that may register
different signal reading based on different spatial obstruction.
This effect is also investigated in this study.

Crowd dynamic itself is a complex topic [19] as human
beings are proven to be moving based on the projected time
to potential future collision instead of using the physical dis-
tance between each other [20]. As such, removing the crowd
dynamic as a factor would reduce the overall complexity
of the statistical analysis, and this attempt is discussed in
Section 2.1.

(3) Design of Experiment. Design of Experiment (DOE) is a
statistical method that brings several benefits when applied
to scientific problems. The benefits are listed below [21, 22]:

(1) A DOE corrects experimental framework. It ensures
that the procedure and setup of the experiment

are statistically correct before any measurement is
made. For example, DOE implements randomness
and repetition which addresses the issue of biasness.

(2) The DOE validates the findings of the proposed
model and the results. It can be used as a validation
mechanismwhen the proposed solution has no equiv-
alent comparison in the literature or from modelling
simulation.

(3) It allows the verification of all interactions between
parameters involved and the degree of their signif-
icance. This solves the problem of “one-factor-at-a-
time experiments” which is the incomplete conclu-
sion that resulted from the effect of a single parameter
measured one at a time.

The objective of this paper is to identify and discuss the
significant factors affecting the signal propagation in human
crowded vicinity by using statistical methods which are the
DOE and One-Way Analysis of Variance (ANOVA). Once
the effect of human crowd is understood, the information
is integrated into the H-CDE system for classification and
modelling.

2. Design and Experimental Framework

2.1. One-Way Analysis of Variance: Eliminating Human Crowd
Dynamics. The aim of this step is to remove human crowd
movement as a factor in theDOE test studied in Section 2.2 so
that the complexity of this study can be reduced.This is done
by using One-Way ANOVA to determine whether the static
and dynamic crowds (human walking speed) possess similar
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Figure 1: The experimental setup where (a) all elements are static, (b) only the human crowd is moving to and fro within the stipulated area,
and (c) both the tag agents and human crowd are moving.

statistical effects on the signal attenuation.Thehypotheses are
given as

𝐻
0
: 𝜇
𝑆
= 𝜇DTS = 𝜇DTD,

𝐻
1
: 𝜇
𝑆
̸= 𝜇DTS ̸= 𝜇DTD,

(1)

where 𝐻
0
and 𝐻

1
are the null and alternate hypothesis,

respectively, 𝜇
𝑆
is the mean for static human crowd and tags,

𝜇DTS is the mean for dynamic human crowd and static tags,
and 𝜇DTD is the mean for dynamic human crowd and tags.

Figure 1 shows the layout of the experiment where the
people and tag handlers stay immobile or move to and fro
within the boundaries set. The walking speed was assumed
to be around 1.2m/s [18]. The mechanism for collecting the
RSSI from the tags would be similar to the one in the DOE
experiment, whichwill be later explained in Section 2.3.1.The
analysis was conducted by usingMinitab 16.2.3 software with
5% Tukey’s family error rate.

2.2. Design of Experiment: Identifying Significant Factors. The
objective of the DOE test is to identify the crowd properties
that have significant effects on the signal attenuation. These
effects would influence the H-CDE system and algorithm
in Sections 2.3 and 2.4, respectively. The list of factors
and their respective levels are tabulated in Table 2 while
the arrangement of the DOE is illustrated in Figure 2. The
number of people in a crowd is including the tag handlers
while the crowd pattern is based on the people crowd density
in an area of 1m2 test. The DOE full factorial template was
generated by using Minitab software with two repetitions for
a total of 108 experiments and 1080 measurements.

2.3. System Setup for Real-Time Experimentation

2.3.1. Developed Design of Experiment. The coordinator’s
Application Program Interface (API) collected the RSSI
information by using specified ZigBee command programed

Table 2: Factors and levels of the DOE test.

Factors Level 1 Level 2 Level 3
Crowd size (people) 5 10 15
Crowd pattern Scattered Lumped —
Crowd location (m) 10 20 30
Number of tags 1 2 3

at the microcontroller. The command issued to each tag and
router triggered the nodes to reply with the RSSI of the last
hop.The RSSI from tags 1, 2, and 3 and router 1 were collected
sequentially with a time delay of 4 s between each sequence
to allow for any retransmission to be completed. The average
RSSI was calculated from 5 measurements collected from
each transmission session.TheRSSI from router 1 was used to
train the H-CDE system and algorithm in Sections 2.3.2 and
2.4, respectively.

The block diagram of the prototype tag is shown in
Figure 3. Each of the H-CDE tags is powered by a 1W solar
cell with a 2000mAh lithium ion polymer battery as the
storage element.The energy harvesting capability and Secure
Digital (SD) card-based data logger are available on the tag
which are features that have been used in a previous work
[23].

The coordinator and router 1 nodes are made of Arduino
and breakout boards connected to laptops. The transmission
circuits were set to the maximum power level of 4 with
enabled boost mode while the rest was kept on default
settings. The RSSI data collected by the coordinator was
then forwarded to the H-CDE algorithm for human crowd
classification. The tags were attached to the chest of the
human body; in a similar way a name tag is worn. The tags
were approximately 1.24, 1.33, and 1.40m above the ground
while the coordinator and router 1 were placed 1m above the
ground.
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Figure 2: Experimental setup of the DOE. The crowd distance is
measured from the coordinator while the tag agents are always
placed behind the main crowd.
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Figure 3: The block diagram of the H-CDE tags.

2.3.2. Human Crowd Density Estimation System. A moving
node presents a challenging problem for the H-CDE as the
node may shift its position arbitrarily in any direction in
the future, rendering the instantaneous estimation largely
inaccurate. A practical solution to this problem is to fix the
behaviour of the tag by setting a predetermined path of its
movement or by assigning the tag as a static anchor.The latter
approach is implemented in the H-CDE system.

Tag Coordinator

Tag (optional) Buffer zone

15m

35m

20m

10m

5m

Figure 4: Proposed tags arrangement for the H-CDE system.

The H-CDE system utilizes three tags anchored within a
defined sector as shown in Figure 4. For a complete coverage
of the Mataf, 15 sectors are required. The optional tags could
be placed to enhance the human crowd density estimation
and localization. However, they can cause disruptions to the
crowd flow and safety, and thus they are not implemented in
this study.The tags are placed 35maway from the coordinator
and the RSSI of the three tags are collected continuously
within 1.5 s for every 5 s. The buffer zone is a crowd-free zone
that represents the half cross section of the Kaabah.

2.3.3. The Scope and Limitations of the Human Crowd
Density Research

(1) Modelling an individual body attenuation factor was
not pursued as it is assumed that different body parts
and body size absorb almost the same amount of
energy [15, 17, 18]. The average height and mass of the
people forming the crowd are 163.20 cm and 66.28 kg,
respectively, and they are pure Asian.

(2) The Mataf, the circumambulation and open-air area
around Kaabah in Makkah (Mecca) for the Tawaf
ritual during Hajj pilgrimage, is a popular target for
extremeCDEusing simulations [24, 25].The coverage
area of this study was based on a portion of the
internal ground level of the New Mataf Extension
Project, which covered an area of 70m diameter.

(3) The experiments were conducted outdoors to mini-
mize the RF interference, avoid the complex multi-
path propagation experienced indoors, and allow the
operation of the energy harvesting feature on the tags.

(4) The size of the crowd was limited to 15 people based
on the sensitivity level of the RF module used and
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Figure 5: Block diagram of the H-CDE algorithm.

the “always connected” requirement of the statistical
analysis.

(5) Although guidelines had been given to the partic-
ipants of the experiments, the freedom of natural
human traits such as slight free movements, approxi-
mation of proximity, and comfortable standing stance
were allowed to imitate the actual human behaviours.

(6) Multihop feature was disabled.

2.4. Human Crowd Density Estimation Algorithm. The H-
CDE algorithm fed the RSSI data obtained from three
tags which were then compared with the DOE main and
interaction effects produced from Section 2.2. The concept
of the algorithm is shown in Figure 5. The average RSSI was
calculated based on the recorded information of all tags and
classified into three crowd density categories which are low,
medium, and high.

The crowd density classification is given as follows:

Low density (LD):

LD ≤ RSSIave 5 + RSSIcrowd pattern

Medium density (MD):

RSSIave 5 +RSSIcrowd pattern < MD ≤ RSSImax 15 +
RSSIcrowd pattern

High density (HD):

HD > RSSImax 15 + RSSIcrowd pattern,

where RSSIave 5 is the average signal attenuation of a crowd
consisting of 5 people, RSSIcrowd pattern is the average signal
difference between scattered and lumped crowd of the crowd
pattern ∗ number of tag interactions, and RSSImax 15 is the
maximum signal attenuation of the 15 people’s crowd.

In addition, the signal path loss propagation model is
a useful method for supplementary crowd prediction. The
empirical model is given as

PL = PL
0
− 10𝑛 log

10
(𝑑) − 𝑋, (2)

where PL
0
is the RSSI at 1m T-R separation, 𝑛 is the path

loss exponent, 𝑑 is the T-R distance, and 𝑋 is the shadowing
effect caused by the crowd. However, empirical modelling is

Table 3: One-Way ANOVA results from Minitab where the bolded
terms highlight themost relevant information of𝑝, 𝑆, and𝑅-squared
values.

Source DF SS MS 𝐹 p
Factor 2 68.8 34.4 0.54 0.596
Error 12 762.8 63.6
Total 14 831.6

S = 7.973, R-Sq = 8.27%, 𝑅-Sq (adj) = 0.00%

often less accurate but offers simpler estimation. Prediction
accuracy can be improved using deterministic methods such
as the 2D ray launching [26] or full-wave simulations albeit
at an increased complexity.

3. Results and Discussion

3.1. One-Way Analysis of Variance. Table 3 shows three
important pieces of information which are the 𝑝 value (𝑝),
standard deviation (𝑆), and 𝑅-squared (𝑅-Sq). As the 𝑝 value
of 0.596 is greater than 𝛼 (0.05), thus the null hypothesis is
not rejected since the differences between the means are not
significantly different. The standard deviation is mediocrely
high at 7.973 dBm due to the unpredictable and fluctuating
signal attenuation caused by the human crowd. The value
of 𝑅-squared at 8.27% is extremely low indicating that the
effect of crowd on signal attenuation cannot be estimated
from a specific equation formed by theMinitab software.This
assumption is considered true based on the usage of three tags
instead of one that contribute to different sets of theRSSI, thus
making a single equation-fitting unfeasible.

The close values of mean shown in Figure 6 strengthen
the assumption that the mean of the three cases is statistically
nondifferent. DTD has the lowest mean as the signals from
the tags could propagate better between people as a result of
the posture and extraspatial requirement of a moving person.
𝑆 has the highest mean as the signals from the nodes are
relatively less fluctuated due to the fixed positions of the tags
and human crowd.

As a summary from Table 3 and Figure 6, the signal
attenuation caused by the effect of moving and stationary
tags and human crowd is statistically the same. Thus, the
influences of the mobile tag and human crowd can be
removed as the factors in the DOE test, therefore effectively
reducing the number of factors from seven to four.

3.2. Design of Experiment Analysis. Figure 7 shows three
sources which have significant effects on the signal attenu-
ation. The effects are denoted by having 𝑝 value less than or
equal to𝛼 (0.05).Themain effect is the human crowd size (𝐴),
and the interaction effects are crowd size ∗ number of tags
(𝐴∗𝐷) and crowd pattern ∗ number of tags (𝐵∗𝐷). Figure 8
shows the second iteration of the same analysis which only
involves the influences of significant main and interaction
effects. This step further strengthens in verifying that only
three factors inflict significant effects on signal attenuation.
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Figure 6: Individual value plot of static human crowd and tags (𝑆),
dynamic human crowd and static tags (DTS), and dynamic human
crowd and tags (DTD).
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Figure 7: The 𝑝 value from the analysis of variance for RSSI
(average) using adjusted sum of squares for tests.

Figure 9(a) indicates that as the number of the tags
increases to two and three, the RSSI values become smaller
provided that the crowd size is between 10 and 15 people.
Figure 9(b) shows that, on average, a lumped human crowd
pattern inflicts 2.57 dBm more signal loss than the scattered
pattern. The difference between them is denoted by 𝑋IE.
Figure 9(b) also illustrates that there is an improvement in the
RSSI measurement if three tags are used in lumped human
crowd pattern. This is possible as higher number of people
in a crowd may create different crowd patterns and therefore
gaps between one person and the other with respect to the
tags.

As a summary, the strongest factor affecting the sig-
nal propagation is the human crowd size while two of
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Figure 8: Second iteration of ANOVA for the RSSI (average) using
adjusted sum of squares for tests.

the strongest interactions are the combinations of human
crowd size and crowd pattern with the number of tags.
Using higher number of tags allows enhancement in the
RSSI measurement due to the variation of the human crowd
obstructions.

3.3. Human Crowd Density Estimation Classifications. The
DOE data fitted into the H-CDE algorithm is shown in
Figure 10. The classification has yielded 75.00% and 70.83%
estimation accuracy for LD and MD, respectively. MD has
lower estimation accuracy as a number of predictions were
wrongly classified as LD, which can be attributed to the
irregular gaps between the bodily obstructions, allowing the
T-R signal to propagate better.

From (2), the signal path loss propagation model is fitted
as

PL = PL
0
− 10𝑛 log

10
(𝑑) − 𝑋IE − 0.84𝑚, (3)

where PL
0
is −32 dBm, 𝑛measured at 35m of line-of-sight of

the T-R separation is 1.02, 𝑋IE is 2.57 dBm, and multiplying
𝑚, the number of people, with 0.84 is the average body
attenuation factor measured from three tags placements. The
comparison between the models with the empirical data
is imaged in Figure 11. As the distribution of data is quite
diverse, the model is usable to predict the average RSSI of
each crowd size. The model allows a quick human density
prediction if the number of people can be estimated, which
may be helpful in simulation software.

The empirical model has two assumptions to address its
limitations. First, the model assumes that the highest signal
loss is at the torso region [27, 28]. Secondly, it is assumed
that themost dominant transmitted signal would be from the
direct rays reflected, refracted, and diffused from the human
body.
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Figure 9: Interaction plot for the RSSI in dBm. (a) A combination of the human crowd size and number of tags and (b) a combination of the
human crowd pattern with number of tags.

4. Conclusion

The One-Way ANOVA test has proven that the dynamic
and static crowds statistically incur the same mean of the
signal attenuation. The DOE test has identified the human
crowd size as the main factor influencing the signal atten-
uation in the human crowds. It also has recognized two
significant interaction effects which are the number of tags in
combination with the human crowd size and crowd pattern.

The findings of the DOE test used to train the H-CDE system
enable the classification of the human crowd density into low,
mediocre, or high category. The results of the DOE test fitted
into the signal path loss propagation model ease the predic-
tion of the human crowd density and potential simulation.
Therefore, the human crowd properties which are verified by
using the statistical approach are capable of creating a new
approach in understanding and estimating the human crowd
density especially for safety monitoring purposes.
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