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A generalized and improved (G′/G)-expansion method is proposed for finding more general type
and new travelling wave solutions of nonlinear evolution equations. To illustrate the novelty
and advantage of the proposed method, we solve the KdV equation, the Zakharov-Kuznetsov-
Benjamin-Bona-Mahony (ZKBBM) equation and the strain wave equation in microstructured
solids. Abundant exact travelling wave solutions of these equations are obtained, which include
the soliton, the hyperbolic function, the trigonometric function, and the rational functions. Also
it is shown that the proposed method is efficient for solving nonlinear evolution equations in
mathematical physics and in engineering.

1. Introduction

The world around us is inherently nonlinear, and nonlinear evolution equations (NLEEs) are
widely used as models to describe the complex physical phenomena. The exact solutions of
NLEEs play a vital role in nonlinear science and engineering. One of the fundamental prob-
lems for these models is to obtain their travelling wave solutions. The interest of finding trav-
elling wave solution of NLEEs is increasing and has now become a hot topic to researchers.
In recent years, many researchers who are interested in the nonlinear physical phenomena
investigated exact solutions of NLEEs. They established many powerful and direct methods.
For instance, the inverse scattering method [1], the Backlund transform method [2, 3], the
Hirota’s bilinear transformation method [4], the truncated Painleve expansion method [5, 6],
the Exp-function method [7–11], the tanh-function method [12–15], the Weierstrass elliptic
function method [16], the Jacobi elliptic function expansion method [17–23], and so on.

Recently, Wang et al. [24] introduced a widely used straightforward method called
the (G′/G)-expansion method for obtaining the travelling wave solutions of various NLEEs,
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where G(ξ) satisfies the second-order linear ordinary differential equation (ODE) G′′ + λG′ +
μG = 0, and λ and μ are arbitrary constants. Applications of the (G′/G)-expansion method,
to NLEEs can be found in the articles [25–29] for better understanding.

To show the effectiveness and reliability of the (G′/G)-expansion method and to
expand the range of its applicability, further research has been carried out by several
researchers. Such as, Guo and Zhou [30] proposed the extended (G′/G)-expansion
method in which the solutions are presented in the form u = a0 +

∑n
i=1{ai(G′/G)i +

bi (G′/G)i−1
√
σ(1 + (1/μ)(G′/G)2} and obtained new travelling wave solutions of the

Whitham-Broer-Kaup-like equation and couple Hirota-Satsuma KdV equations. Applying
this extended method Zayed and Al-Joudi [31] constructed the traveling wave solutions of
some nonlinear evolution equations. Zayed and El-Malky [32] also applied the extended
(G′/G)-expansion method to higher-dimensional evolution equations. Zhang et al. [33]
presented an improved (G′/G)-expansion method to seek general travelling wave solutions.
In the original method the solution is presented as nonnegative power of (G′/G), but in [33]
Zhang et al. proposed that the power may be any integral number. Zayed and Gepreel [34]
employed the improved (G′/G)-expansion method to Konopelchenko-Dubrovsky equation,
Karsten-Krasil’ Shchik equation, Whitham-Broer-Kaup equation, and the fifth-order KdV
equations to construct traveling wave solutions. Zayed [35] presented a new approach of
the (G′/G)-expansion method where G(ξ) satisfies the Jacobi elliptical equation [G′(ξ)]2 =
e2G

4(ξ) + e1G
2(ξ) + e0, e2, e1, e0 that are arbitrary constants and obtained new exact solutions

of some NLEEs. Zayed [36] again presented a further alternative approach of this method in
which G(ξ) satisfies the Riccati equation G′(ξ) = A + B G2(ξ), where A and B are arbitrary
constants.

Still substantial work has to be done in order for the (G′/G) -expansion method to
be well established, since every nonlinear equation has its own physically significant rich
structure. In this paper, we propose a generalized and improved (G′/G)-expansion method
for solving NLEEs in mathematical physics and engineering. To show the reliability and
advantages of the proposed method, the KdV equation, the ZKBBM equation, and the
strain wave equation in microstructured solids are solved, and further new families of exact
solutions are found.

2. Description of the Generalized and Improved
(G′/G)-Expansion Method

Let us consider the nonlinear partial differential equation of the form

P(u, ut, ux, utt, utx, uxx, . . .) = 0, (2.1)

where u = u(x, t) is an unknown function, P is a polynomial in u(x, t) and its partial
derivatives in which the highest order partial derivatives and the nonlinear terms are
involved. The main steps of the method are as follows.

Step 1. Combining the real variables x and t by a complex variable ξ, we suppose that

u(x, t) = u(ξ), ξ = x ± V t, (2.2)
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where V is the speed of the travelling wave. The transformation (2.2) transforms (2.1) into an
ODE for u = u(ξ)

Q
(
u, u′, u′′, u′′′, . . .

)
= 0, (2.3)

where Q is a function of u(ξ) and its total derivatives.

Step 2. Suppose the solution of the ODE (2.3) can be expressed by a polynomial in (d+(G′/G))
as follows:

u(ξ) =
m∑

n=−m

e−n
(d + (G′/G))n

, (2.4)

where either a−m or am may be zero, but both a−m and am can not be zero simultaneously,
an(n = 0,±1,±2, . . . ,±m) and d are constants to be determined later, and G = G(ξ) satisfies
the following second order linear ODE:

G′′ + λG′ + μG = 0. (2.5)

Step 3. The value of the positive integer m can be determined by considering the
homogeneous balance between the highest-order derivatives and highest-order nonlinear
terms appearing in (2.3). If the degree of u(ξ) is D[u(ξ)] = m, then the degree of the other
expressions will be as follows:

D

[
dpu(ξ)
dξp

]

= m + p, D

[

up

(
dqu(ξ)
dξq

)s]

= mp + s
(
m + q

)
. (2.6)

Step 4. Substituting (2.4) along with (2.5) into (2.3), we obtain polynomials in (d +G′/G)m

and (d +G′/G)−m, (m = 0, 1, 2, 3, . . .). Collecting each coefficient of the resulted polynomials
to zero yields a set of algebraic equations for an(n = 0,±1,±2,±3, . . . ,±m), d and V .

Step 5. Suppose that the value of the constants an(n = 0,±1,±2,±3, . . . ,±m), d, and V can be
obtained by solving the algebraic equations obtained in Step 4. Since the general solution of
(2.5) is well known for us, substituting the values of an(n = 0,±1,±2,±3, . . . ,±m), d and V into
(2.4), we obtain more general type and new exact traveling wave solutions of the nonlinear
evolution equation (2.1).

3. Applications of the Proposed Method

In this section, we employ the proposed method to obtain some new and more general exact
travelling wave solutions of the celebrated KdV equation, the ZKBBM equation, and the
strain wave equation in microstructured solids.
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3.1. The KdV Equation

Let us consider the KdV equation,

ut + uux + δuxxx = 0. (3.1)

Making use of the travelling wave transformation ξ = x − V t, (3.1) is converted into
the following ODE:

−Vu′ + uu′ + δu′′′ = 0. (3.2)

Equation (3.2) is integrable, therefore, integrating we obtain that

C − Vu +
1
2
u2 + δu′′ = 0, (3.3)

where C is an integral constant. Substituting (2.4) into (3.3) and considering the homoge-
neous balance between the highest-order derivative u′′ and the nonlinear term u2, we obtain
m = 2.

Therefore, the solution of (3.3) is of the form

u(ξ) = e2

(

d +
G′

G

)2

+ e1

(

d +
G′

G

)

+ e0 +
e−1

(d + (G′/G))
+

e−2
(d + (G′/G))2

. (3.4)

Substituting (3.4) into (3.3), the left hand side is transformed into polynomials in
(d + (G′/G))m and (d + (G′/G))−m, (m = 0, 1, 2, 3, . . .). Equating each coefficient of these
polynomials to zero, we obtain a set of simultaneous algebraic equations (we will omit to
display them for simplicity) for e0, e1, e2, e−1, e−2, d, C, and V . Solving the set of simultaneous
algebraic equations by using the symbolic computation systems, such as Maple 13, we obtain
the following.

Case 1. e2 = −12δ, e1 = 12δ(2d − λ), e0 = e0, e−1 = 0, e−2 = 0, d = d,

V = δλ2 + 8δμ + e0 + 12δd(d − λ),

C = e20/2 + 8δμe0 + δλ2e0 + 24δ2μ2 + 12δ2λ2μ − 144δ2λd3 + 72δ2d4 − 96δ2λμd

− 12δλe0d + 12δe0d2 + 84δ2λ2d2 + 96δ2μd2 − 12δ2λ3d,

(3.5)

where e0, d, λ, and μ are free parameters.

Case 2. e2 = 0, e1 = 0, e0 = e0, e−1 = −12δλμ + d(24δd2 − 36δλd + 24δμ + 12δλ2),
e−2 = −12δμ2 + d(24δλμ − 12δd3 − 12δλ2d − 24δμd + 24δλd2), d = d,

V = 8δμ + λ2δ + e0 + 12δd(d − λ),

C =
e20
2

+ 8δe0μ + δλ2e0 + 24δ2μ2 + 12δ2λ2μ − 144δ2λd3 + 72δ2d4

− 96δ2λμd − 12δλe0d + 12δe0d2 + 84δ2λ2d2 + 96 δ2μd2 − 12δ2λ3d,

(3.6)

where e0, d, λ, and μ are free parameters.
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Case 3. e2 = −12δ, e1 = 0, e0 = e0, e−1 = 0, e−2 = −(3/4)δλ4 + 6δλ2μ − 12δμ2, d = λ/2,

V = −2δλ2 + 8δμ + e0,

C = −6δ2λ4 + 48δ2λ2μ − 96δ2μ2 − 2δλ2e0 + 8δμe0 +
(
1
2

)

e20,
(3.7)

where e0, λ, and μ are free parameters.

For Case 1, substituting (3.5) into (3.4) and simplifying, we obtain the following.
When λ2 − 4μ > 0,

u11(x, t) = − 3δ
(
λ2 − 4μ

)
⎛

⎜
⎝

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

A cosh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B sinh

((√
(λ2 − 4μ)/2

)
ξ
)

⎞

⎟
⎠

2

+ 3δλ2 + 12δd(d − λ) + e0,

(3.8)

where ξ = x − {(δλ2 + 8δμ + e0) + 12δd (d − λ)}t, and A, B are arbitrary constants. If A, B, e0,
d, λ, and μ take special values, various known results in the literature can be rediscovered.

Suppose that A > 0 and A2 > B2, then solution (3.8) reduces to

u11(x, t) = 3δ
(
λ2 − 4μ

)
sech2

⎛

⎜
⎝

⎛

⎜
⎝

√
λ2 − 4μ

2

⎞

⎟
⎠ξ + ξ0

⎞

⎟
⎠ + 12

(
δμ + δd(d − λ)

)
+ e0, (3.9)

where ξ0 = tan h−1(B/A).
When λ2 − 4μ < 0,

u11(x, t) = − 3δ
(
4μ − λ2

)
⎛

⎜
⎝

−A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

A cos
((√

(4μ − λ2)/2
)
ξ
)
+ B sin

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

2

+ 3 δ λ2 + 12δd(d − λ) + e0.

(3.10)

When λ2 − 4μ = 0,

u13(x, t) = −12δ B2

(A + Bξ)2
+ 3δλ2 + 12δd(d − λ) + e0. (3.11)

Again for Case 2, substituting (3.6) into (3.4) and simplifying, we obtain the following.
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When λ2 − 4μ > 0,

u21(x, t)

=
−12δμ2 + d

(
24δλμ − 12δd3 − 12δλ2d − 24δμd + 24δλd2)

⎛

⎜
⎝d − λ

2
+

√
λ2 − 4μ

2

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

A cosh
(
(
√
(λ2 − 4μ)/2)ξ

)
+ B sinh

(
(
√
(λ2 − 4μ)/2)ξ

)

⎞

⎟
⎠

2

+
−12δλμ + d

(
24δd2 − 36δλd + 24δμ + 12δλ2

)

d − λ

2
+

√
λ2 − 4μ

2

A sinh
((√(

λ2 − 4μ
)
/2

)
ξ
)
+ B cosh

((√(
λ2 − 4μ

)
/2

)
ξ
)

A cosh
((√(

λ2 − 4μ
)
/2

)
ξ
)
+ B sinh

((√(
λ2 − 4μ

)
/2

)
ξ
)

+ e0,

(3.12)

where ξ = x − {(8δμ + λ2δ + e0) + 12dδ(d − λ )}t and A, B are arbitrary constants.
When λ2 − 4μ < 0,

u22(x, t)

=
−12δμ2 + 12d

(
2δλμ − δd3 − δλ2d − 2δμd + 2δλd2)

⎛

⎜
⎝d − λ

2
+

√
4μ − λ2

2

−A sin
((√

(4μ − λ2 )/2
)
ξ
)
+ B cos

((√
(4μ − λ2 )/2

)
ξ
)

A cos
((√

(4μ − λ2 )/2
)
ξ
)
+ B sin

((√
(4μ − λ2 )/2

)
ξ
)

⎞

⎟
⎠

2

+
−12δλμ + 12d

(
2δd2 − 3δλd + 2δμ + δλ2

)

d − λ

2
+

√
4μ − λ2

2

−A sin
((√

4μ − λ2/2
)
ξ
)
+ B cos

((√
4μ − λ2/2

)
ξ
)

A cos
((√

4μ − λ2/2
)
ξ
)

+ B sin
((√

4μ − λ2/2
)
ξ
)

+ e0,

(3.13)

where A and B are arbitrary constants.
When λ2 − 4μ = 0,

u23(x, t) =
−12δμ2 + d

(
24δλμ − 12δd3 − 12δλ2d − 24δμd + 24δλd2)

(d − (λ/2) + (B/(A + Bξ)))2

+
−12δλμ + d

(
24δd2 − 36δλd + 24δμ + 12δλ2

)

(d − (λ/2) + (B/(A + Bξ)))
+ e0,

(3.14)

where A and B are arbitrary constants.
Finally for Case 3, substituting (3.7) into (3.4) and simplifying, we obtain the follow-

ing.
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When λ2 − 4μ > 0,

u31(x, t) = −3δ(λ2 − 4μ
)

⎛

⎜
⎝

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

A cosh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B sinh

((√
(λ2 − 4μ)/2

)
ξ
)

⎞

⎟
⎠

2

+
−3δλ4 + 24δλ2μ − 48δμ2

(
λ2 − 4μ

)

⎛

⎜
⎝

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

A cosh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B sinh

((√
(λ2 − 4μ)/2

)
ξ
)

⎞

⎟
⎠

2
+ e0,

(3.15)

where ξ = x − (−2δλ2 + 8δμ + e0)t, A and B are arbitrary constants.
When λ2 − 4μ < 0,

u32(x, t) = −3δ
(
4μ − λ2

)
⎛

⎜
⎝

−A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

A cos
((√

(4μ − λ2)/2
)
ξ
)
+ B sin

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

2

+
−3δλ4 + 24δλ2μ − 48δμ2

(
4μ − λ2

)

⎛

⎜
⎝

−A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

A cos
((√

(4μ − λ2)/2
)
ξ
)
+ B sin

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

2
+ e0.

(3.16)

When λ2 − 4μ = 0,

u33(x, t) = −12δ B2

(A + Bξ)2
+

(−3δλ4 + 24δλ2μ − 48δμ2)(A + Bξ)2

4B2
+ e0. (3.17)

Wang et al. [24] investigated solutions of the KdV equation by the basic (G′/G)-
expansion method and obtained only four solutions. But by our proposed method, we obtain
ten distinct solutions of the KdV equation with additional free parameter d. It is noted
that if d = 0 and/or d = λ, then our solutions u11 , u12 , and u13(solutions (3.8)–(3.11)) are
identical to the solutions u1, u2 and u3 obtained by Wang et al. [24] (see Section A). But
if d /= 0 and d /=λ, the solutions u11 , u12 , and u13 are unlike to Wang et al. [24] solutions.
Besides, we obtain additional solutions (3.12)–(3.17)which were not obtained by Wang et al.
Therefore, we may assert that the basic (G′/G)-expansion method is a particular case of the
proposed generalized and improved (G′/G)-expansion method. It is noteworthy to mention
that, if we set special values the parameters, then some of the solutions match to some
known solutions obtained by other methods, and some new solutions of the KdV equation
are constructed. Since every nonlinear equation has its own physically significant rich
structure; therefore, these new solutions will help us to understand the internal mechanism
of the complex physical phenomena. Thus, the proposed generalized and improved (G′/G)-
expansion method is promising in the discipline of mathematical physics and engineering.
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3.2. The ZKBBM Equation

Now we construct the traveling wave solutions of the ZKBBM equation by the proposed
method. Let us consider the ZKBBM equation

ut + ux − 2auux − buxxt = 0. (3.18)

The travelling wave variable ξ = x + V t permits us to reduce (3.18) into the following ODE:

(1 + V )u′ − 2auu′ − bVu′′′ = 0, (3.19)

where prime denotes the derivatives with respect to ξ. Equation (3.19) is integrable, therefore,
integrating we obtain

C + (1 + V )u − au2 − bVu′′ = 0, (3.20)

where C is an integral constant.
Considering the homogeneous balanced between the nonlinear term u2 and the

highest-order derivative u′′ in (3.20), we get m = 2. Therefore, the formation of solution of
(3.20) is same of (3.4).

Substituting (3.4) into (3.20), and collecting all the terms of the same power, the left
hand side of (3.20) is converted into polynomials in (d +G′/G)m and (d +G′/G)−m,(m =
0, 1, 2, 3, . . .). Setting each coefficient of these polynomials to zero, we obtain an overdeter-
mined set of algebraic equations (we will omit them to display for simplicity) for e0, e1, e2,
e−1, e−2, d, C, and V . Solving this overdetermined set of algebraic equations, we obtain the
following.

Case 1. e2 = 0, e1 = 0, e0 = −(bVλ2 − V − 1 + 8bVμ + 12bVd2 − 12bVλd)/2a, e−1 = 6bV (−λμ +
λ2d + 2d3 − 3λd2 + 2dμ)/a, e−2 = −6bV (μ2 +λ2d2 +d4 − 2λd3 + 2d2μ− 2λμd)/a, d = d, V = V ,

C =

(−1 − V 2 − 2V + 16b2V 2μ2 − 8b2V 2μλ2 + b2V 2λ4
)

4a
, (3.21)

where d, V , λ and μ are free parameters.

Case 2. d = d, V = V , e−2 = 0, e−1 = 0, e2 = −6 bV/a, e1 = 6bV (−λ + 2d)/a, e0 = −(8bVμ − V −
1 + bVλ2 + 12bVd2 − 12bVλd)/2a,

C =

(−8b2V 2μλ2 − 2V − 1 + b2V 2λ4 + 16b2V 2μ2 − V 2)

4a
, (3.22)

where d, V , λ, and μ are free parameters.
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Case 3. d = λ/2, V = V , e−1 = 0, e−2 = 3bV (8λ2μ − λ4 − 16μ2)/8a, e2 = −6 bV/a, e1 = 0,
e0 = (V + 1 + 2bVλ2 − 8bVμV )/2a,

C =

(−128b2V 2λ2μ − 2V − 1 + 16b2V 2λ4 + 256b2V 2μ2 − V 2)

4a
, (3.23)

where V , λ, and μ are free parameters.

Now substituting (3.21)–(3.23) into (3.4), we obtain the following solutions of (3.20):

u1(ξ) =
−{(bVλ2 − V − 1 + 8bVμ

)
+ 12d(bVd − bVλ)

}

2a

− 6bV
{
λμ − d

(
λ2 + 2d2 − 3λd + 2μ

)}

a(d + (G′/G))

− 6bV
{
μ2 + d

(
λ2d + d3 − 2λd2 + 2dμ − 2λμ

)}

a(d + (G′/G))2
,

(3.24)

u2(ξ) = −6bV
a

(

d +
G′

G

)2

+
6 bV (−λ + 2 d)

a

(

d +
G′

G

)

−
{(

8bVμ − V − 1 + bVλ2
)
+ 12d(bVd − bVλ)

}

2a
,

(3.25)

u3(ξ) = −6bV
a

(
λ

2
+
G′

G

)2

+
3bV

(
8λ2μ − λ4 − 16μ2)

8a((λ/2) + (G′/G))2
+

(
V + 1 + 2bVλ2 − 8bVμV

)

2a
, (3.26)

where ξ = x + V t.
Substituting the general solutions of (2.5) into (3.24), we obtain three types of travel-

ling wave solutions of the ZKBBM equation as the following.
When λ2 − 4μ > 0,

u11(x, t)

=
−6bV {

μ2 + d
(
λ2d + d3 − 2λd2 + 2dμ − 2λμ

)}

a

⎛

⎜
⎝d − λ

2
+

√
λ2 − 4μ

2

A cosh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B sinh

((√
(λ2 − 4μ)/2

)
ξ
)

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

⎞

⎟
⎠

2

− 6bV
{
λμ − d

(
λ2 + 2d2 − 2λd + 2μ

)}

a

⎛

⎜
⎝d − λ

2
+

√
λ2 − 4μ

2

A cosh
((√(

λ2 − 4μ
)
/2

)
ξ
)
+ B sinh

((√(
λ2 − 4μ

)
/2

)
ξ
)

A sinh
((√(

λ2 − 4μ
)
/2

)
ξ
)
+ B cosh

((√(
λ2 − 4μ

)
/2

)
ξ
)

⎞

⎟
⎠

−
{(

bVλ2 + 8bVμ − V − 1
)
+ 12bVd(d − λ)

}

2a
,

(3.27)

where A and B are arbitrary constants.
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When λ2 − 4μ < 0,

u12(x, t)

=
−6bV {

μ2 + d
(
λ2d + d3 − 2λd2 + 2dμ − 2λμ

)}

a

⎛

⎜
⎝d − λ

2
+

√
4μ − λ2

2

A cos
((√

(4μ − λ2)/2
)
ξ
)
− B sin

((√
(4μ − λ2)/2

)
ξ
)

A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

2

− 6bV
{
λμ − d

(
λ2 + 2d2 − 2λd + 2μ

)}

a

⎛

⎜
⎝d − λ

2
+

√
4μ − λ2

2

A cos
((√(

4μ − λ2
)
/2

)
ξ
)
− B sin

((√(
4μ − λ2

)
/2

)
ξ
)

A sin
((√(

4μ − λ2
)
/2

)
ξ
)
+ B cos

((√(
4μ − λ2

)
/2

)
ξ
)

⎞

⎟
⎠

−
{(

bVλ2 + 8bVμ − V − 1
)
+ 12bVd(d − λ)

}

2a
,

(3.28)

where A and B are arbitrary constants.
When λ2 − 4μ = 0,

u13(x, t) =
−6bV {

μ2 + d
(
λ2d + d3 − 2λd2 + 2dμ − 2λμ

)}

a(d − (λ/2) + (B/(A + Bξ)))2

− 6 bV
(
λμ − d

(
λ2 + 2d2 − 2λd + 2μ

)}

a(d − (λ/2) + (B/(A + Bξ)))

−
{
bVλ2 + 8bVμ − V − 1 + 12bVd(d − λ)

}

2a
,

(3.29)

where A and B are arbitrary constants.
Again substituting the general solutions of (2.5) into (3.25), we obtain three types of

travelling wave solutions of the ZKBBM equation of the following.
When λ2 − 4μ > 0,

u21(x, t) = −3bV
(
λ2 − 4μ

)

2a

⎛

⎜
⎝

A cosh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B sinh

((√
(λ2 − 4μ)/2

)
ξ
)

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

⎞

⎟
⎠

2

+
2bVλ2 − 8bVμ + V + 1

2a
,

(3.30)

where A and B are arbitrary constants.
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If B > 0 and A2 < B2, then we can obtain soliton solutions

u21(x, t) =
3bV

(
λ2 − 4μ

)

2a
sech2

⎛

⎜
⎝

⎛

⎜
⎝

√
λ2 − 4μ

2

⎞

⎟
⎠ξ + ξ0

⎞

⎟
⎠ − bVλ2 − 4bVμ − V − 1

2a
, (3.31)

where ξ0 = tan h−1(A/B).
When λ2 − 4μ < 0,

u22(x, t) = −3bV
2a

(
4μ − λ2

)
⎛

⎜
⎝

A cos
((√

(4μ − λ2)/2
)
ξ
)
− B sin

((√
(4μ − λ2)/2

)
ξ
)

A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

2

+
2bVλ2 − 8bVμ + V + 1

2a
,

(3.32)

where A and B are arbitrary constants.
When λ2 − 4μ = 0,

u23(x, t) =
−6bV
a

(
B

A + Bξ

)2

+

(
2bVλ2 − 8bVμ + V + 1

)

2a
, (3.33)

where A and B are arbitrary constants.
Finally substituting the general solutions of (2.5) into (3.26), we obtain the travelling

wave solutions of the ZKBBM equation as the following.
When λ2 − 4μ > 0,

u31(x, t)

=
−3bV (

λ2 − 4μ
)2

8a

⎛

⎜
⎝d + −λ

2
+

√
λ2 − 4μ

2

A cosh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B sinh

((√
(λ2 − 4μ)/2

)
ξ
)

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

⎞

⎟
⎠

2

− 6bV
a

⎛

⎜
⎝d + −λ

2
+

√
λ2 − 4μ

2

A cosh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B sinh

((√
(λ2 − 4μ)/2

)
ξ
)

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

⎞

⎟
⎠

2

+

(
V + 1 + 2bVλ2 − 8bVμV

)

2a
,

(3.34)

where A and B are arbitrary constants.
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When λ2 − 4μ < 0,

u32(x, t)

= −6bV
a

⎛

⎜
⎝d − λ

2
+

√
4μ − λ2

2

A cos
((√

(4μ − λ2)/2
)
ξ
)
− B sin

((√
(4μ − λ2)/2

)
ξ
)

A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

2

− 3bV
(
λ2 − 4μ

)2

8a

⎛

⎜
⎝d − λ

2
+

√
4μ − λ2

2

A cos
((√

(4μ − λ2)/2
)
ξ
)
− B sin

((√
(4μ − λ2)/2

)
ξ
)

A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

2

+

(
V + 1 + 2bVλ2 − 8bVμV

)

2a
,

(3.35)

where A and B are arbitrary constants.
When λ2 − 4μ = 0,

u33(x, t) = −6bV
a

(

d − λ

2
+

B

A + Bξ

)2

− 3bV
(
λ2 − 4μ

)2

8a(d − (λ/2) + (B/(A + Bξ)))2

+

(
V + 1 + 2bVλ2 − 8bVμV

)

2a
,

(3.36)

where A and B are arbitrary constants.
It is observed that if d = 0, then our solutions (3.27)–(3.33) are identical to Zhang

et al. [33] solutions obtained by the improved (G′/G)-expansion method (see Section B).
On the other hand, if d /= 0, then the solutions (3.27)–(3.33) are dissimilar to Zhang et al.
[33] solutions. Moreover, we obtain solutions (3.34)–(3.36) which were not obtained by
Zhang et al. [33]. Therefore, we may stress that the improved (G′/G)-expansion method is
also a particular case of our proposed method. It is noticed that the proposed generalized
and improved (G′/G)-expansion method performs as a viable tool for finding generalized
traveling wave solutions. The performance of the proposed method is trustworthy and
efficient and gives more new solutions of nonlinear partial differential equations.

3.3. The Strain Waves Equation in Microstructured Solids

Let us consider an engineering application problem of nonlinear bell-shaped and kink-
shaped strain waves in microstructured solids as discussed by Porubov and Pastrone [37].
The governing equation for the strain waves in microstructured solids is given by

vtt − vxx − εα1
(
v2)

xx − γα2vxxt + δα3vxxxx

−
(
δα4 − γ2α7

)
vxxtt + γδ(α5vxxxxt + α6vxxttt) = 0.

(3.37)
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If γ = 0, we have the nondissipative case, and governed by the double dispersive equation
(see [38] for details),

vtt − vxx − εα1

(
v2
)

xx
+ δα3vxxxx − δα4vxxtt = 0. (3.38)

The balance between nonlinearity and dispersion takes place when δ = O(ε). Therefore,
(3.38) becomes,

vtt − vxx − ε
{
α1

(
v2
)

xx
− α3vxxxx + α4vxxtt

}
= 0. (3.39)

The travelling wave transformation ξ = x − V t allows us to convert (3.39) into the following
ODE:

(
V 2 − 1

)
v′′ − εα1

(
v2
)′′

+ ε
(
α3 − V 2α4

)
v(4) = 0, (3.40)

where v′′ denotes the second derivative, and v(4) denote the fourth derivative with respect to
ξ. Equation(3.40) is integrable, therefore, integrating we obtain

(
V 2 − 1

)
v − εα1

(
v2
)
+ ε

(
α3 − V 2α4

)
v′′ + C = 0, (3.41)

where C is an integral constant.
Balancing the nonlinear term v2 with the highest-order derivative term v′′, from (3.41),

we obtain that m = 2. Therefore, the shape of solution of (3.41) is also same as (3.4).
Substituting (3.4) into (3.41), and collecting all the terms of the same power, the left

hand side of (3.41) is changed into polynomials in (d +G′/G)m and (d +G′/G)−m,(m =
0, 1, 2, 3, . . .). Setting each coefficient of these polynomials to zero, we obtain a set of
simultaneous algebraic equations (we will omit them for simplicity) for e0, e1, e2, e−1, e−2,
d, C, and V . Solving this overdetermined set of algebraic equations, we obtain the following.

Case 1. V = V , e−1 = 0, e−2 = 0, e2 = −6 (V 2α4 − α3)/α1, e1 = 6(2d − λ)(V 2α4 − α3)/α1,
e0 = ((−1)/(2εα1)){ε(λ2 + 8μ)(V 2α4 − α3) + 12εd(d − λ)(V 2α4 − α3) + 1 − V 2},

C =
1

4εα1

{

ε2
(
V 2α4 − α3

)(
λ2 − 4μ

)2 −
(
V 2 − 1

)2
}

, (3.42)

where d, V , λ, and μ are free parameters.

Case 2. V = V , e2 = 0, e1 = 0, e−2 = −6(V 2α4 − α3)(d2 − dλ + μ)2/α1, e−1 = 6(2d − λ)(d2 − dλ +
μ)(V 2α4 − α3)/α1, e0 = −{ε(λ2 + 8μ)(V 2α4 − α3) + 12εd(d − λ)(V 2α4 − α3) + 1 − V 2}/2εα1,

C =

{
ε2
(
V 2α4 − α3

)(
λ2 − 4μ

)2 − (
V 2 − 1

)2
}

4εα1
, (3.43)

where d, V , λ, and μ are free parameters.
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Now substituting (3.42)–(3.43) into (3.4), we obtain the following solutions of (3.41):

v1(ξ) =
−6
α1

(
V 2α4 − α3

)(

d +
G′

G

)2

+
6
α1

(2d − λ)
(
V 2α4 − α3

)(

d +
G′

G

)

− 1
2εα1

{
ε
(
λ2 + 8μ

)(
V 2α4 − α3

)
+ 12εd(d − λ)

(
V 2α4 − α3

)
+ 1 − V 2

}
,

(3.44)

v2(ξ) = − 6
α1

(
V 2α4 − α3

)(
d2 − dλ + μ

)2
(

d +
G′

G

)−2

+
6
α1

(2d − λ)
(
d2 − dλ + μ

)(
V 2α4 − α3

)(

d +
G′

G

)−1

− 1
2εα1

{
ε
(
λ2 + 8μ

)(
V 2α4 − α3

)
+ 12εd(d − λ)

(
V 2α4 − α3

)
+ 1 − V 2

}
,

(3.45)

where ξ = x − V t.
Substituting the general solutions of (2.5) into (3.44), we obtain three types of

travelling wave solutions of the strain wave equation in microstructured solids as follows.
When λ2 − 4μ > 0,

v11(x, t) = − 6
α1

(
V 2α4 − α3

)

×

⎛

⎜
⎝d − λ

2
+

√
λ2 − 4μ

2

A sinh((
√
λ2 − 4μ/2) ξ) + B cosh((

√
λ2 − 4μ/2) ξ)

A cosh((
√
λ2 − 4μ/2) ξ) + B sinh((

√
λ2 − 4μ/2) ξ)

⎞

⎟
⎠

2

+
6
α1

(2d − λ)
(
V 2α4 − α3

)

×

⎛

⎜
⎝d − λ

2
+

√
λ2 − 4μ

2

A sinh
((√

λ2 − 4μ/2
)
ξ
)
+ B cosh

((√
λ2 − 4μ/2

)
ξ
)

A cosh
((√

λ2 − 4μ/2
)
ξ
)
+ B sinh

((√
λ2 − 4μ/2

)
ξ
)

⎞

⎟
⎠

− 1
2εα1

{
ε
(
λ2 + 8μ

)(
V 2α4 − α3

)
+ 12εd(d − λ)

(
V 2α4 − α3

)
+ 1 − V 2

}
,

(3.46)

where A and B are arbitrary constants.
When λ2 − 4μ < 0,

v12(x, t) = − 6
α1

(
V 2α4 − α3

)

×

⎛

⎜
⎝d − λ

2
+

√
4μ − λ2

2

−A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

A cos
((√

(4μ − λ2)/2
)
ξ
)
+ B sin

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

2
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+
6
α1

(2d − λ)
(
V 2α4 − α3

)

×

⎛

⎜
⎝d − λ

2
+

√
4μ − λ2

2

−A sin
((√(

4μ − λ2
)
/2

)
ξ
)
+ B cos

((√(
4μ − λ2

)
/2

)
ξ
)

A cos
((√(

4μ − λ2
)
/2

)
ξ
)
+ B sin

((√(
4μ − λ2

)
/2

)
ξ
)

⎞

⎟
⎠

− 1
2εα1

{
ε
(
λ2 + 8μ

)(
V 2α4 − α3

)
+ 12εd(d − λ)

(
V 2α4 − α3

)
+ 1 − V 2

}
,

(3.47)

where A and B are arbitrary constants.
When λ2 − 4μ = 0,

v13(x, t) = − 6
α1

(
V 2α4 − α3

)(

d − λ

2
+

B

A + Bξ

)2

+
6
α1

(2d − λ)
(
V 2α4 − α3

)(

d − λ

2
+

B

A + Bξ

)

− 1
2εα1

{
ε
(
λ2 + 8μ

)(
V 2α4 − α3

)
+ 12εd(d − λ)

(
V 2α4 − α3

)
+ 1 − V 2

}
,

(3.48)

where A and B are arbitrary constants.
Again substituting the general solutions of (2.5) into (3.45), we obtain the solutions of

the stain wave in microstructured solids as follows.
When λ2 − 4μ > 0,

v21(x, t) = − 6
α1

(
V 2α4 − α3

)(
d2 − dλ + μ

)2

×

⎛

⎜
⎝d − λ

2
+

√
λ2 − 4μ

2

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

A cosh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B sinh

((√
(λ2 − 4μ)/2

)
ξ
)

⎞

⎟
⎠

−2

+
6
α1

(2d − λ)
(
d2 − dλ + μ

)(
V 2α4 − α3

)

×

⎛

⎜
⎝d − λ

2
+

√
λ2 − 4μ

2

A sinh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B cosh

((√
(λ2 − 4μ)/2

)
ξ
)

A cosh
((√

(λ2 − 4μ)/2
)
ξ
)
+ B sinh

((√
(λ2 − 4μ)/2

)
ξ
)

⎞

⎟
⎠

−1

− 1
2εα1

{
ε
(
λ2 + 8μ

)(
V 2α4 − α3

)
+ 12εd(d − λ)

(
V 2α4 − α3

)
+ 1 − V 2

}
,

(3.49)

where A and B are arbitrary constants.
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When λ2 − 4μ < 0,

v22(x, t) = − 6
α1

(
V 2α4 − α3

)(
d2 − dλ + μ

)2

×

⎛

⎜
⎝d − λ

2
+

√
4μ − λ2

2

−A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

A cos
((√

(4μ − λ2)/2
)
ξ
)
+ B sin

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

−2

+
6
α1

(2d − λ)
(
d2 − dλ + μ

)(
V 2α4 − α3

)

×

⎛

⎜
⎝d − λ

2
+

√
4μ − λ2

2

−A sin
((√

(4μ − λ2)/2
)
ξ
)
+ B cos

((√
(4μ − λ2)/2

)
ξ
)

A cos
((√

(4μ − λ2)/2
)
ξ
)
+ B sin

((√
(4μ − λ2)/2

)
ξ
)

⎞

⎟
⎠

−1

− 1
2εα1

{
ε
(
λ2 + 8μ

)(
V 2α4 − α3

)
+ 12εd(d − λ)

(
V 2α4 − α3

)
+ 1 − V 2

}
,

(3.50)

where A and B are arbitrary constants.
When λ2 − 4μ = 0,

v23(x, t) = − 6
α1

(
V 2α4 − α3

)(
d2 − dλ + μ

)2
(

d − λ

2
+

B

A + Bξ

)−2

+
6
α1

(2d − λ)
(
d2 − dλ + μ

)(
V 2α4 − α3

)(

d − λ

2
+

B

A + Bξ

)−1

− 1
2εα1

{
ε
(
λ2 + 8μ

)(
V 2α4 − α3

)
+ 12εd(d − λ)

(
V 2α4 − α3

)
+ 1 − V 2

}
,

(3.51)

where A and B are arbitrary constants.
Porubov and Pastrone [37] investigated solutions of strain waves equation in

microstructured solids, and they found a solution for (3.39) as follows:

v = 6k2
(
V 2α4 − α3

)
cosh−2(k (x − V t)), (3.52)

where k2 = (V 2 − 1)/(4ε(V 2α4 − α3)).
In this paper we obtain six solutions with more free parameters by our proposed

expansion method. As a result, the proposed method might be an advance and efficient tool
in solving nonlinear equations that arise in the field of engineering problems. If γ /= 0, (3.37)
can also be solved by the proposed expansion method.

4. Discussions

The advantages and limitations of the proposed expansion method over the basic (G′/G)-
expansion method and the improved (G′/G)-expansion method are discussed below.
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Advantages: The main advantage of the proposed expansion method over the basic
(G′/G)-expansion method is that it provides more new exact traveling wave solutions
along with additional free parameters. All the solutions obtained by basic (G′/G)-expansion
method are through the proposed expansion method as a particular case, and in addition we
obtain some new solutions. To clarify the fact, we apply the method in three equations: two
are important in mathematical physics and another one is related to engineering problem,
and, in all cases, we obtain some additional new exact solutions. The exact solutions have its
great importance to reveal the internal mechanism of the physical phenomena. Apart from
the physical relevance, the close-form solutions of nonlinear evolution equations facilitate
the numerical solvers to compare the accuracy of their results and help them in the stability
analysis.

In the basic (G′/G)-expansion method, if the order of the reduced ODE (the ODE
obtained from the PDE by using traveling wave variable) is equal or less than three, with the
help of symbolic computation software, such as Maple 13, it is mostly possible to find out
a useful solution of the algebraic equations resulted in Step 4 of Section 2. Otherwise, it is
generally unable to guarantee the existence of a solution of the resulted algebraic equations;
this is because the number of the equations included in the set of algebraic equations is
generally greater than the number of unknowns. But the proposed generalized and improved
(G′/G)-expansion method might be used less than or equal to fourth-order-reduced ODE,
since it contains more arbitrary constants compared to the basic (G′/G)-expansion method.

Algebraic manipulation of the proposed expansion method with the help of Maple is
much easier than the other methods.

Limitations: Sometimes the method gives solutions in disguised versions of known
solutions that may be found by other methods, and if the order of the reduced ordinary
differential equation is large enough, then the method unable to guarantee the existence of
solutions of the resulted algebraic equations.

In [24], Wang et al. studied exact solutions of the KdV equation by using the basic
(G′/G)-expansion method and obtained only four solutions (solutions (A.1)–(A.4), see
Section A for lucidity). On the other hand by using the proposed expansion, we obtain ten
solutions (solutions (3.8)–(3.17)). It is important to point out that, if we set d = 0 and/or
d = λ, then our solutions u11 , u12 , and u13(solutions (3.8)–(3.11)) are identical to the solutions
u1, u2, and u3 attained by Wang et al. [24]. But if d /= 0 and d /=λ, our solutions u1 1 , u12 , and
u13 are different from Wang et al. [24] solutions. Moreover, we obtain additional solutions
(3.12)–(3.17). These solutions are new and were not obtained by Wang et al. [24].

By the improved (G′/G)-expansionmethod, Zhang et al. [33] obtained seven solutions
(solutions (B.3)–(B.9), see Section B for details) of the ZKBBM equations, but by means of
the proposed expansion method we obtained ten solutions (solutions (3.27)–(3.36)). It is
noteworthy to observe that if d = 0, then our solutions (3.27)–(3.33) are identical to Zhang
et al. [33] solutions (B.3)–(B.9). On the other hand if d /= 0, then the solutions (3.27)–(3.33)
are dissimilar to Zhang et al. [33] solutions. Furthermore, we obtain solutions (3.34)–(3.36).
These solutions are new and were not obtained by Zhang et al. [33].

Not only for these equations, the proposed expansion provides more new exact
solutions, and it also provides more new solutions for the Broer-Kaup equation, the Sharma-
Tasso-Olver equation, the Gardner equation, the Burgers equation, the KdV Burgers equation,
the approximate long-wave equation, the Boussinesq equation, and so on. We have prepared
another articles in which the above equations are considered and found much more new
exact solutions than the basic (G′/G)-expansionmethod and the improved (G′/G)-expansion
method.
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Therefore, the proposed expansion method is promising for solving nonlinear partial
differential equations in mathematical physical and engineering problems.

5. Conclusion

A generalized and improved (G′/G)-expansion method has been proposed and applied
in three equations, such as the KdV equation, the ZKBBM equation, and the strain wave
equation in microstructured solids. The obtained solutions are more general, and many
known solutions are only a special case of them. Further, this study shows that the proposed
method is quite efficient and practically well suited to be used in finding exact solutions
of NLEEs. Although the method is applied to only a small number (three) of nonlinear
equations, it can be applied to many other equations, and this is our task in the future.

Appendices

A. Wang et al.’s Solutions [24]

Wang et al. [24] investigated solutions of the KdV equation by the (G′/G)-expansion method,
and they obtained the following solutions.

When λ2 − 4μ > 0,

u1 = − 3δ
(
λ2 − 4μ

)
⎛

⎜
⎝

A sinh
(√

(λ2 − 4μ)/2
)
ξ + B cosh

(√
(λ2 − 4μ)/2

)
ξ

A cosh
(√

(λ2 − 4μ)/2
)
ξ + B sinh

(√
(λ2 − 4μ)/2

)
ξ

⎞

⎟
⎠

2

+ 3δλ2 + e0,

(A.1)

where ξ = x − (δλ2 + 8δμ + e0)t, and A, B are arbitrary constants.
For A > 0 and A2 > B2, solution (A.1) reduces to

u1 = 3δ
(
λ2 − 4μ

)
sech2

⎛

⎜
⎝

⎛

⎜
⎝

√
λ2 − 4μ

2

⎞

⎟
⎠ξ + ξ0

⎞

⎟
⎠ + 12δμ + e0, (A.2)

where ξ0 = tan h−1(B/A).
When λ2 − 4μ < 0,

u2 = − 3δ
(
4μ − λ2

)
⎛

⎜
⎝

−A sin
(√

(4μ − λ2)/2
)
ξ + B cos

(√
(4μ − λ2)/2

)
ξ

A cos
(√

(4μ − λ2)/2
)
ξ + B sin

(√
(4μ − λ2)/2

)
ξ

⎞

⎟
⎠

2

+ 3δλ2 + e0.

(A.3)

When λ2 − 4μ = 0,

u3 = −12δ B2

(A + Bξ)2
+ 3δλ2 + e0. (A.4)
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B. Zhang et al.’s Solutions [33]

Zhang et al. [33] proposed an improved (G′/G)-expansion method and solved the ZKBBM
equation by the proposed method. They obtained the solutions of the overdetermined set of
algebraic equation as follows.

Case 1. e2 = e1 = 0, e0 = −(bVλ2−V −1+8bVμ)/2a, e−1 = −6bVλμ/a, e−2 = −6bVμ2/a, V = V ,

C =

(−1 − V 2 − 2V + 16b2V 2μ2 − 8b2V 2μλ2 + b2V 2λ4
)

4a
, (B.1)

where V , λ, and μ are arbitrary constants.

Case 2. V = V , e2 = −6bV/a, e1 = −6bVλ/a, e0 = −(8bVμ − V − 1 + bVλ2)/2a, e−2 = e−1 = 0,

C =

(−8b2V 2μλ2 − 2V − V 2 + b2V 2λ4 + 16b2V 2μ2 − 1
)

4a
, (B.2)

where V , λ, and μ are arbitrary constants.

For Case 1, Zhang et al. [33] obtained the following solutions.
When λ2 − 4μ > 0,

u11 =
−6bVμ2

a

⎛

⎜
⎝−λ

2
+

√
λ2 − 4μ

2

A cosh
(√

(λ2 − 4μ)/2
)
ξ + B sinh

(√
(λ2 − 4μ)/2

)
ξ

A sinh
(√

(λ2 − 4μ)/2
)
ξ + B cosh

(√
(λ2 − 4μ)/2

)
ξ

⎞

⎟
⎠

2

− 6bVλμ

a

⎛

⎜
⎝−λ

2
+

√
λ2 − 4μ

2

A cosh
(√(

λ2 − 4μ
)
/2

)
ξ + B sinh

(√(
λ2 − 4μ

)
/2

)
ξ

A sinh
(√(

λ2 − 4μ
)
/2

)
ξ + B cosh

(√(
λ2 − 4μ

)
/2

)
ξ

⎞

⎟
⎠

− bVλ2 + 8bVμ − V − 1
2a

,

(B.3)

where A and B are arbitrary constants.
When λ2 − 4μ < 0,

u12 =
−6bVμ2

a

⎛

⎜
⎝−λ

2
+

√
4μ − λ2

2

A cos
(√

(4μ − λ2)/2
)
ξ − B sin

(√
(4μ − λ2)/2

)
ξ

A sin
(√

(4μ − λ2)/2
)
ξ + B cos

(√
(4μ − λ2)/2

)
ξ

⎞

⎟
⎠

2
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− 6bVλμ

a

⎛

⎜
⎝−λ

2
+

√
4μ − λ2

2

A cos
(√(

4μ − λ2
)
/2

)
ξ − B sin

(√(
4μ − λ2

)
/2

)
ξ

A sin
(√(

4μ − λ2
)
/2

)
ξ + B cos

(√(
4μ − λ2

)
/2

)
ξ

⎞

⎟
⎠

− bVλ2 + 8 bVμ − V − 1
2a

,

(B.4)

where A and B are arbitrary constants.
When λ2 − 4μ = 0,

u13 =
−6bVμ2

a(−(λ/2) + (B/(A + Bξ)))2
− 6bVλμ

a(−(λ/2) + (B/(A + Bξ)))
− bVλ2 + 8bVμ − V − 1

2a
,

(B.5)

where A and B are arbitrary constants.
For Case 2, Zhang et al. [33] obtained the following solutions.
When λ2 − 4μ > 0,

u21 = −3bV
(
λ2 − 4μ

)

2a

⎛

⎜
⎝

A cosh
(√

(λ2 − 4μ)/2
)
ξ + B sinh

(√
(λ2 − 4μ)/2

)
ξ

A sinh
(√

(λ2 − 4μ)/2
)
ξ + B cosh

(√
(λ2 − 4μ)/2

)
ξ

⎞

⎟
⎠

2

+
2bVλ2 − 8bVμ + V + 1

2a
,

(B.6)

where A and B are arbitrary constants.
If B > 0 and A2 < B2, then they obtained the soliton solutions

u21 =
3bV

(
λ2 − 4μ

)

2a
sech2

⎛

⎜
⎝

⎛

⎜
⎝

√
λ2 − 4μ

2

⎞

⎟
⎠ξ + ξ0

⎞

⎟
⎠ − bVλ2 − 4bVμ − V − 1

2a
, (B.7)

where ξ0 = tan h−1(A/B).
When λ2 − 4μ < 0,

u22 = −3bV
2a

(
4μ − λ2

)
⎛

⎜
⎝

A cos
(√

(4μ − λ2)/2
)
ξ − B sin

(√
(4μ − λ2)/2

)
ξ

A sin
(√

(4μ − λ2)/2
)
ξ + B cos

(√
(4μ − λ2)/2

)
ξ

⎞

⎟
⎠

2

+
2bVλ2 − 8bVμ + V + 1

2a
,

(B.8)

where A and B are arbitrary constants.
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When λ2 − 4μ = 0,

u23 =
−6bV
a

(
B

A + Bξ

)2

+

(
2bVλ2 − 8bVμ + V + 1

)

2a
, (B.9)

where A and B are arbitrary constants.
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