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PENGARUH PPAR LIGAN KE ATAS EKSPRESI FOXP3 DALAM 

SEL T-ATURAN SEMULAJADI DALAM TIKUS BALB/c DAN TIKUS 

MODEL DIABETES JENIS 1 

ABSTRAK 

Sel CD4+CD25+Foxp3+ T-aturan (nTreg) adalah subset sel T-aturan yang 

berasal dari timus. Fungsi pengurang-aturan-imun oleh sel T-aturan adalah kritikal 

dalam proses toleransi-diri periferal. Selari dengan itu, sifat-sifat anti-radang 

reseptor-teraktif pemproliferator peroksisom-  (PPARtelah banyak dikaji dengan 

mendalam sejak kebelakangan ini. Memandangkan peranan penting mereka dalam 

pengawalaturan imun, kajian semasa telah dijalankan untuk mentafsirkan mekanisme 

pengubah-aturan oleh PPAR ligan dalam sel T-aturan daripada tikus jenis BALB/c, 

dan model Diabetes Jenis 1 (T1D), Non obese Diabetic (NOD) dan juga dalam Non 

obese Resistant (NOR). Pada mulanya, tahap optimum titik masa dan kepekatan IL-2 

ditentukan pada kultur sel T-aturan in vitro dalam tikus BALB/c. Kemudian, analisis 

fungsi sel T-aturan yang telah diasingkan daripada tikus BALB/c telah diukur. Tahap 

ekspresi konstitutif dan aruhan isofom PPAR dalam sel T-aturan daripada tikus 

BALB/c telah diperiksa untuk menilai hubungan antara PPAR dan sel T-aturan. 

Aktiviti penggabungan unsur-unsur tindak balas PPAR, PPRE, telah diperiksa 

dalam sel T-aturan yang dirawat dan tidak dirawat untuk menentukan mekanisme 

bebas- atau bergantung- PPAR oleh ligan PPAR. Intervasi daripada ligan PPAR 

dalam komponen isyarat sel nTreg diperiksa dengan menganalisa komponen-

komponen ZAP-70 dan STAT-5 dalam sel-sel T-aturan daripada tikus NOD dan 

NOR. Dengan menggunakan PCR array, tahap ekspresi gen sasaran yang terlibat 

dalam laluan isyarat di dalam sel T-aturan juga diukur. Dengan menggunakan aliran 



xviii 

 

sitometri, titik masa optimum untuk pengkulturan in vitro sel T-aturan ditentukan 

pada hari ketiga, dengan kehadiran 5 ng/mL IL-2. Didapati juga bahawa sel-sel T-

aturan yang dikultur merencat sel-sel T-efektor teraktif (Teff). Dengan menggunakan 

real-time PCR, didapati bahawa sel-sel ini secara konstitutif, mengekspresi PPAR1 

dan PPAR2 pada tahap yang rendah dan ciglitazone telah mengaruh ekspresi 

PPAR1 dalam sel T-aturan melalui mekanisme bergantung-PPAR (P < 0.01), 

tetapi tiada kesan ke atas ekspresi PPAR2. Kedua-dua ligan PPAR menurunkan 

ekspresi Foxp3 dalam sel T-aturan daripada tikus BALB/c, NOD dan NOR melalui 

mekanisme bebas-PPAR berbanding dengan sel T-aturan tidak dirawat (P < 0.01). 

Disamping itu, tiada perbezaan yang ketara antara aktiviti penggabungan PPAR dan 

PPRE dalam sel T-aturan dirawat dan tidak dirawat daripada tikus BALB/c, NOD 

dan NOR. Tambahan pula, tahap pemfosforilan ZAP-70 dan STAT-5 dalam sel T-

aturan dirawat daripada tikus NOD dan NOR tidak dimodulasi oleh ligan PPAR. Di 

samping itu, berlaku penurunan ekspresi pada kebanyakan gen sasaran yang berkait 

dengan laluan isyarat di dalam sel T-aturan daripada tikus NOD selepas rawatan 

dengan PPARligan. Dalam tikus NOR, ekspresi gen sasaran yang terlibat dalam 

isyarat laluan TGF-, p53, NF-B, NFAT dan Ca2+ & PKC telah meningkat dalam 

sel-sel T-aturan yang dirawat dengan ciglitazone, disamping itu, penurunan ekspresi 

juga berlaku pada beberapa gen. Penurunan ekspresi Foxp3 oleh ligan PPAR dalam 

sel T-aturan mencadangkan pengurang-aturan fungsi pengawalaturan  sel T-aturan 

dalam keadaan normal dan T1D. Mekanisme pengurang-aturan oleh PPAR ligan 

pada sel T-aturan ini mungkin berlaku terutamanya melalui laluan bebas-PPAR. 

Ianya berkemungkinan bahawa ligan PPAR merencat ekspresi Foxp3 dalam sel T-

aturan melalui mekanisme trans-represi bergantung-PPAR ligan. 
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THE INFLUENCE OF PPAR LIGANDS ON THE EXPRESSION OF FOXP3 

IN NATURAL T-REGULATORY CELLS IN BALB/c AND TYPE 1 

DIABETES MOUSE MODEL 

ABSTRACT 

 Natural CD4+CD25+Foxp3+ T regulatory cell (nTreg) is a subset of regulatory 

T cell that is derived from the thymus. The immunodownregulatory function of 

nTreg cells is critical in mediating peripheral self-tolerance. Concordantly, the anti-

inflammatory properties of peroxisome proliferator-activated receptor  

(PPARhave been intensely studied in recent years. Given their crucial role in 

immune regulation, the current study was conducted to decipher the modulatory 

mechanism by PPAR ligands in nTreg cells of BALB/c, and the Type 1 Diabetic 

(T1D) model, Non Obese Diabetic (NOD) as well as in the Non Obese Resistant 

(NOR) mice. Initially, we optimized the time-points and the concentrations of IL-2 

for in vitro culture of nTreg cells in BALB/c mice. Subsequently, the functional 

analysis of isolated nTreg cells of BALB/c mice was measured. The constitutive and 

induced levels of PPAR isoforms in nTreg cells of the BALB/c mice were examined 

to evaluate the correlation between PPAR and nTreg cells. PPAR binding activity 

to its response elements, PPRE, was examined in treated and untreated nTreg cells to 

determine the PPAR-dependant or –independant pathway of PPAR ligands. The 

possible intervention of PPAR ligands in signaling components of nTreg cells was 

examined by analyzing ZAP-70 and STAT-5 signaling components in nTreg cells of 

NOD and NOR mice. In addition, the expression levels of pathway-related target 

genes of nTreg cells were also measured. By using flow cytometry, the optimized 

time-point for in vitro culture of nTreg cells was determined on day three, in the 
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presence of 5 ng/mL of IL-2. It was also found that cultured nTreg cells were 

suppressive towards activated T effector (Teff) cells. By using real-time PCR, the 

constitutive and induced expression levels of PPARisoforms in stimulated and 

unstimulated nTreg cells of BALB/c mice were measured. It was found that these 

cells constitutively expressed low levels of PPAR1 and PPAR2 and treatment with 

ciglitazone induced PPAR1 expression in nTreg cells via PPAR-dependant 

pathway (P < 0.01), but not PPAR2 expression. Both PPAR ligands downregulated 

the expression of Foxp3 in nTreg cells of BALB/c, NOD and NOR mice via PPAR-

independant pathway compared to untreated group (P < 0.01). In addition, it was 

shown that there is no significant difference of PPAR and PPRE binding activity 

between treated and untreated nTreg cells of BALB/c, NOD and NOR mice. 

Furthermore, the phosphorylation levels of ZAP-70 and STAT-5 in treated nTreg 

cells of NOD and NOR mice were not modulated by PPAR ligands. In addition, it 

was found that most of pathway-related target genes were downregulated in NOD 

nTreg cells following treatment with PPAR ligand. In NOR mice, target genes 

involved in TGF-, p53, NF-B, NFAT and Ca2+ & PKC signaling pathways were 

upregulated in ciglitazone-treated nTreg cells, while a few genes were 

downregulated. The downregulation of Foxp3 expression by PPAR ligands in nTreg 

cells may suggests the downregulation of immuno-downmodulatory function of 

nTreg cells in normal and T1D conditions. The downregulatory mechanism of 

PPAR ligands on nTreg cells may occur primarily via PPAR-independant pathway. 

It is possible that PPAR ligands suppress Foxp3 expression in nTreg cells via 

PPAR ligand-dependant transrepression mechanism. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Study background 

 Over the past twenty years since the identification of naturally-occurring 

CD4+CD25+Foxp3+ Regulatory T (nTreg), there have been intense research in 

delineating the immunobiology of nTreg cells in physiological and pathological 

conditions (Bettini & Vignali, 2010). The master regulator in nTreg cells is the 

transcription factor Forkhead box P3 (Foxp3) which plays an important role in the 

development and function of nTreg cells (Fontenot et al, 2003). Foxp3 is expressed 

in the thymus by nTreg and transiently expressed by CD4+CD25- conventional T 

cells (iTreg) peripherally. In pathological conditions such as autoimmune disorders, 

the recognition of self-tissues by auto-reactive T cells leads to the destruction of host 

tissues or organs. The immunosuppressive role of nTreg cells prevents such 

destruction from occurring by establishing peripheral self-tolerance toward auto-

reactive T cells. This will thus hinder the development of debilitating autoimmune 

diseases from occurring. Mutation of Foxp3 gene in mouse models results in the loss 

of immunoregulatory function of nTreg cells, predisposing the hosts towards 

autoimmune responses. 

 Autoimmune disorders are a group of multiple disorders related to aberrant 

immune responses in the host system. The onset of each autoimmune condition may 

exist simultaneously. For example, celiac disease co-occurs as an extra-pancreatic 
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manifestation in children with Type 1 Diabetes (T1D) (Vitoria et al, 1998). Similarly, 

rheumatoid arthritis and nephritis are simultaneously developed in patients with 

systemic lupus erythematosus (SLE) (Tan et al, 1982). Although individually, 

autoimmune disorder is not a common disease, collectively, it is the third leading 

cause of morbidity among more than 23.5 million Americans (Nakazawa, 2008). 

Mortality rate caused by autoimmune disorders has increased among the young and 

middle aged women in the United State (Walsh & Rau, 2000). The worldwide 

prevalence of T1D among children is alarming. There has been a steady rise in T1D 

incidence in many parts of the world within genetically stable population (Gale, 

2002). According to The American Diabetes Association, T1D incidence has 

increased by 23 % between 2001 and 2009 (Rattue, 2012). In Malaysia, 

approximately 0.1 % of 657,839 diabetic patients are T1D individuals (National 

Diabetes Registry, 2012). 

 It is fairly well-established that PPAR activation is capable of inducing 

immunodownregulatory responses (Li et al, 2000; Rotondo & Davidson, 2002; von 

Knethen et al, 2007; Sauter et al, 2012). Therefore, the putative role of PPAR in 

inducing anti-inflammatory responses in immune cells has been put forth. The 

activation of PPAR by their ligands has been shown to downregulate the clonal 

expansion of activated T effector (Teff) cells (Clark et al, 2000). The use of PPAR 

ligands such as thiazolidinediones (TZDs) class of drugs, including pioglitazone, 

ciglitazone, and rosiglitazone has positively alleviated adverse autoimmune 

conditions in allergic reactions, multiple sclerosis and inflammatory bowel disease 

(IBD) (Hammad et al, 2004; Klotz et al, 2005; Hontecillas et al, 2011; Bertin et al, 

2013). In addition, researchers have shown that these ligands may act via PPAR-

dependant or -independant mechanisms in modulating the immune response 
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(Yamashita et al, 2008), which may result in the genomic or non-genomic signaling 

of PPAR activation. Despite this, very few studies have investigated the relationship 

between immunomodulatory properties of PPARand nTreg cells in healthy and 

T1D conditions. The study on the interaction between these two components may 

enhance our understanding on the immunomodulatory mechanisms involved in T1D.  

 The purpose of the current study is to understand the modulation of Foxp3 

expression and the possible crosstalk by PPAR ligands in nTreg cells in healthy and 

T1D mouse models. Therefore, the current study examined the immunomodulatory 

properties of PPAR ligands on Foxp3 expression in nTreg cells of BALB/c and the  

T1D mouse model, NOD mice. The use of spontaneous T1D NOD mouse has greatly 

enhanced our understanding on the pathological mechanisms involved in this disease 

(Candon et al, 2007). The NOR mouse model was used along with NOD mice as the 

control group. In the current study, ciglitazone and the natural PPAR ligand, 15d-

PGJ2, were used as PPAR ligands to activate PPAR. In addition, PPAR inhibitor, 

GW9662 was added to determine the PPAR-PPRE-dependant or –independant 

mechanisms of these ligands. 

 Therefore, this study may provide fundamental information on the potential 

role of PPAR ligands in nTreg cells as an immunomodulator in healthy and T1D 

conditions. This information may be applied in cell-based therapy for immune-

related diseases such as T1D, lupus and multiple sclerosis. However, this study did 

not examine the specific mechanisms adopted by PPAR ligands in suppressing 

Foxp3 expression. This is due to time constraints and limited specific antibodies 

available. Future studies may explore the suppressive mechanisms of PPAR ligands 

on Foxp3 expression at molecular levels.   
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1.2 Study objectives  

 This study attempts to test the hypothesis that the immunoregulatory 

properties of PPAR may synergistically act with Foxp3 in the function of nTreg 

cells. Figure 1.1 and Figure 1.2 illustrate the schematic workflow of the current 

study. The objectives of the current study are: 

1. To determine the optimal culture conditions for nTreg cells from BALB/c 

mice. 

2. To quantify the optimal levels of PPAR expression in nTreg cells from 

BALB/c mice. 

3. To examine the influence of PPAR ligands on PPAR and Foxp3 

expressions in nTreg cells of healthy and T1D mouse models. 

4. To determine the influence of PPAR ligands in nTreg cells occurs either via 

PPAR-dependant or -independant pathways. 

5. To determine the correlation between PPAR and relevant signaling 

pathways in nTreg cells of NOR and NOD mice.  
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Figure 1.1 Schematic workflow of in vitro study in BALB/c mice. 
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Figure 1.2 Schematic workflow of in vitro study in NOD and NOR mice. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction to the immune system 

 Generally, the immune system can be classified into two main components 

i.e. innate immunity and adaptive immunity. Host defence against microbes is 

mediated by the early reactions of innate immunity and later, response of adaptive 

immunity. If an organism enters the body by breaking through the barrier of the 

body, it will encounter with phagocytic or natural killer (NK) cells as well as the 

complement system. In addition, breaching into the host body also initiates other 

vital components of the innate immunity, such as inflammation and fever (Tortora & 

Grabowski, 2003).  

 Innate immunity provides an early line of defense against microbes. It 

comprises (1) physical and chemical barriers (2) phagocytic cells (neutrophils, and 

macrophages) (3) the complement system and (4) cytokines (Hoffman et al, 1999). 

The adaptive immunity will be triggered when the exposure to infectious agents 

increased in magnitude that overcomes the protection by innate immunity 

(Medzhitov et al, 1997). Two cardinal properties distinguish adaptive immunity from 

innate immunity, which is specificity and the ability to “remember” previously 

encountered antigens (Tortora & Grabowski, 2003). The adaptive immune response 

consists of two types of response, called humoral immunity and cell-mediated 

immunity. While the former type refers to the response mediated by antibodies, the 

latter pertains to T-cells mediated response (Silverstein, 2003).  
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2.2 Antibody-mediated immunity 

2.2.1 Antibody production by B cells 

 The activation of B cells to differentiate into antibody-secreting plasma cells 

is triggered by antigens that are recognized by T helper cells. The recognition of 

antigens by specific B and T cells is preceded by the antigen-presentation by antigen-

presenting cells (APC) to T helper cells. Upon recognition of antigen, T helper cells 

become activated and induced to express CD40L and secrete IL-2, IL-4 and IL-21. 

The ligation of CD40 and CD40L act in concert with these cytokines to stimulate B 

lymphocyte proliferation and differentiation into antibody-secreting plasma cells. 

Both stimuli activate transcription factors for immunoglobulin (Ig) synthesis to 

increase the production and class switching of Ig by B cells (Davies & Metzger, 

1983).  

Plasma cells are terminally differentiated B cells that mainly reside in 

extrafollicular sites such as the medulla of lymph nodes. The plasma cells can be 

divided into short-lived and long-lived plasma cells. Short-lived plasma cells refer to 

plasma cells that reside in secondary lymphoid organs and peripheral non-lymphoid 

tissues such as liver, lung and peritoneal cavity (Kapoor, Kang, & Welsh, 2014). On 

the other hand, the long-lived plasma cells mainly reside in the bone marrow and 

continue to secrete antibodies after the antigen is no longer present (Abbas et al, 

2009). These antibodies serve as an immediate protection against previously 

encountered antigen. In addition, the Fc region of antibody serves as a binding site 

for phagocytes. The binding between antibody and phagocytes will enhance the 

phagocytosis process of phagocytes (Davies & Metzger, 1983; Abbas et al, 2009). 
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2.3 T cell mediated-immunity 

2.3.1 T cell development in the thymus  

 T lymphocytes undergo complex maturation stages in the thymus, which 

determine their functional and phenotypic characteristics of mature T cells before 

they reside in the peripheral lymphoid organs (Schmitt & Zuniga-Pflucker, 2002). 

Anatomically, the thymus is divided into two regions; a peripheral cortex and a 

central medulla (Figure 2.1). There are three distinct processes in T cell development 

in this organ, which comprises lymphopoiesis, T cell receptor (TCR)-mediated 

selection and functional maturation (Lind et al, 2001).  

 The lymphoid progenitor cells migrate from the bone marrow into the 

cortico-medullary junction and differentiate into T cell lineage, the double negative 

(DN) thymocytes. These DN thymocytes will move through the cortex and progress 

into four different stages (Figure 2.2). The first stage of development is characterized 

by lineage double negative stage, CD4-CD8-CD25-CD44hi (DN1), followed by CD4-

CD8-CD25+CD44hi (DN2), and finally the committed T cell lineage, CD4-CD8-

CD25+CD44lo (DN3). The final lymphopoiesis stage during DN3 is marked by 

downregulation of CD25 expression to become double-negative CD4-CD8-CD25-

CD44- thymocytes (DN4). The development progresses into TCR gene 

rearrangement and upregulation of CD4 and CD8 expression to become committed 

double positive CD4+CD8+ TCR and  TCR thymocytes (DP) (Ardavin et al, 

1993; Wu et al, 1996).   

 DP thymocytes undergo positive selection to allow only thymocytes with 

functional TCR that have no reactivity towards self-peptide/self-MHC complexes to  
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Figure 2.1 Anatomy of the thymus. The migration of lymphoid progenitor cells 

into the thymus results in the development of thymocytes. Thymocytes reside mainly 

in the cortex of the thymus. After further maturation these thymocytes migrate to the 

central medullary region. In the medulla, thymocytes undergo further differentiation 

processes to become mature T lymphocytes before migrate into the periphery 

(Adapted from Abbas et al (2012) via studentconsult.com). 
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Figure 2.2 Development stages of lymphoid progenitor cells. The lymphoid 

progenitor cells differentiate into double negative 1 (DN1) thymocytes. As these 

cells migrate towards the cortico-medullary junction, they upregulate CD25 to 

develop into DN2 cells. DN2 cells downregulate CD44 to develop into DN3 cells. 

DN3 cells downregulate CD25 to become DN4 cells. DN4 cells undergo TCR re-

arrangement and upregulate CD4 and CD8 to become committed DP cells. DP cells 

undergo positive and negative selection. Cells that pass these selections (SP) will 

migrate through medulla region and enter the periphery (Adapted from Starr et al, 

2003). 
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pass the selection. During this selection, DP thymocytes are exposed to a wide range 

of self-peptides that bind with MHC class I or II. DP thymocytes with TCRs that 

bind with low-affinity to self-peptides on class I self-MHC will downregulate CD4 

expression and become CD8++TCR, while thymocytes with TCRs that bind with 

low-affinity to self-peptide/self-MHC class II will downregulate CD8 and become 

CD4++TCR thymocytes (von Boehmer et al, 2003). Only a small fraction (5 %) of 

DP thymocytes that pass the positive selection proceeds to the medulla region for the 

next maturation stage, while the majority (95 %) of DP thymocytes undergo 

apoptosis (Surh & Sprent, 2005). Subsequently, these single-positive (SP) CD4+CD8- 

or CD4-CD8+ thymocytes migrate from the cortex to the medulla for negative 

selection. This selection process adds another layer of tolerance in the immune 

system whereby thymocytes with high affinity TCRs towards self-peptides will be 

eliminated by apoptosis (Sprent et al, 1995; Starr et al, 2003).  

 The  T cells that express CD4+ class II-MHC-restricted or CD8+ class I 

MHC-restricted T lymphocytes represents the mature repertoire of T lymphocytes. 

The migration of thymocytes through the anatomic arrangement of the thymus allows 

physical interactions between thymocytes and the other cells of the thymus such as 

epithelial cells, bone marrow-derived dendritic cells and macrophages within the 

medulla. These mature T lymphocytes are known as naive T lymphocytes. Once 

these naive cells encounter their specific antigens, they become activated and 

differentiate into effector T lymphocytes that are able to remove antigens (Abbas et 

al, 2009). Another T cell lineage, the + TCR thymocytes do not express CD4 or 

CD8 receptors and thus they skip the positive and negative selection processes. 

These + TCR thymocytes are abundant in epithelial tissues such as in the small 

intestines. They recognize exogenous and endogenous peptides such as viral and heat 
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shock proteins (in mice) and phosphorylate bacterial metabolites (in human). In the 

context of MHC class I or class II presentation,  T lymphocytes recognize peptides 

that are different from αβ T lymphocytes (Kabelitz & Wesch, 2003). 

2.3.2 Subsets of T cells  

 The two major T cell subsets are CD4+  T helper lymphocytes (Th cells) 

and CD8+ T cytotoxic lymphocytes (CTLs) whilst regulatory T-lymphocytes 

(Treg cells) and  T-lymphocytes are of lesser numbers (Mosmann & Sad, 1996). 

CD4+ Th cells will bind to its cognate MHC Class II expressed by APC while CTLs 

bind to peptide-loaded MHC Class I presented by most nucleated somatic cells. With 

the ability to act specifically towards their cognate antigens, these cells are 

responsible to initiate the cell-mediated immunity and switch on humoral immunity. 

CD4+Th cells can be further differentiated into effector Th1 cells that secrete IFN- 

to mediate phagocytosis activity of macrophages, or into Th2 cells which recognize 

antigens of extracellular microbes and helminthic infections (Farrar, Asnagli, & 

Murphy, 2002).  

Another subset of CD4+ cells, which is known as Th17 cells, are 

characterized by the secretion of IL-17. These cells are essential in mediating 

neutrophilic inflammatory responses and responsible for tissue damage during 

inflammation. Th17 cells are induced from naïve CD4+ cells in the presence of TGF-

, IL-6 and IL-21. In addition, IL-23 help to maintain Th17 cell differentiation and 

survival (Weaver et al, 2006). On the other hand, Treg cells are part of the T cell 

subsets which also express CD4 molecules on their surfaces, along with CD3 and 

CD25 receptors. This subset of T cells play a role in regulating the immune system 
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as immune response triggered by specific antigens may become overwhelmed and 

detrimental to the host. 

2.3.3 TCR activation and signaling of CD4+ T lymphocytes 

 The activation of naive CD4+ T lymphocytes requires the interaction between 

TCR with peptide-MHC II complex (Figure 2.3). The TCR complex consists of  

TCR, CD4 and co-receptor proteins CD3 and zeta chains (ζ chains). This complex 

requires the co-stimulatory component i.e. CD28 molecules for T cell activation 

(Borst et al, 1984; Nunes et al, 1996; Wang et al, 2001; Abraham & Weiss, 2004). 

The engagement of TCR complex with peptide-MHC II complex triggers a cascade 

of intracellular signalling involving phosphorylation of protein tyrosine kinases. This 

activation results in transcriptional activation of proinflammatory cytokines and cell 

proliferation. Unlike  TCR molecules, CD3 and especially the ζ chains have long 

cytoplasmic tails that associate with tyrosine residues known as immunoreceptor 

tyrosine-based activation motifs (ITAM). Each ITAM molecule has two tyrosine 

sequence elements (Tyr-X-X-Leu) that serve as phosphorylation sites for protein 

tyrosine kinases (PTK). Phosphorylation of ITAM by Lck, i.e. a member of the PTK, 

will initiate signal transduction and activation of other tyrosine kinases (Wegener et 

al, 1992).  

 The phosphorylated ITAM serves as a docking site for ζ-associated protein of 

70 kDa phosphoprotein (ZAP-70) (Figure 2.3). As a member of the Syk kinase PTK 

family, ZAP-70 has two Src-homology 2 (SH2) domains that determine their 

active/inactive state (Chan et al, 1992). Binding of these domains to phosphorylated 

ITAM will initiate ZAP-70 activation, which in turn will initiate sequence of 

phosphorylation cascade of adaptor proteins including linker for the activation of  
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Figure 2.3 Early phosphorylation events upon TCR activation. A) TCR complex 

and co-receptors are clustered together to initiate phosphorylation of cytoplasmic        

tail-containing ITAMs B) Phosphorylated ITAMs serve as the docking site for ZAP-

70 molecules, which triggers the activation of adaptor protein, LAT C) Activation of 

adaptor proteins allow the binding of PLC1 and other Ras GTP/GDP molecules 

which in turn catalyse various intracellular signaling molecules (Adapted from 

Abbas et al (2012) via studentconsult.com). 
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T cells (LAT) (Zhang et al, 1998), SH2 domain-containing leukocyte phosphoprotein 

of 76 kDa (SLP-76) (Wardenberg et al, 1996) and growth factor receptor-bound 

protein 2 (Grb-2) (Buday et al, 1994). The phosphorylation of these adaptor proteins 

involves two distinct signalling pathways. These pathways are the phospholipase C-

1-dependant (PLC1) and diacylglycerol-dependant (DAG) pathways, in which 

each pathway is responsible for the activation of specific transcription factors for 

target gene expression (Abbas et al, 20012) (Figure 2.4). 

 SLP-76 mediates PLC1 activation by direct interaction with SH3 domains of 

PLC1 molecules, causing hydrolysis reaction of phosphatidylinositol-4,5-

biphosphate (PIP2). This reaction produces inositol-1,4,5-triphosphate (IP3) and 

DAG, which respectively trigger calcium flux and protein kinase C (PKCθ) 

activation (Yablonski et al, 2001). The presence of IP3 in the cytosol triggers Ca2+ 

depletion in the endoplasmic reticulum, causing high extracellular Ca2+ influx. This 

process will subsequently activate calcineurin, an enzyme that will de-phosphorylate 

nuclear factor of activated T cells (NFAT) which causes the translocation of NFAT 

into the nucleus to bind to the IL-2 promoter region (Figure 2.4) (Northrop et al, 

1993; Woodrow et al, 1993).  

 The other product of hydrolyzed PIP2 , DAG, is required for the activation of 

mitogen-activated protein (MAP) kinases and the PKCθ pathway. The MAP kinase 

pathway comprises several components including extracellular signal-regulated 

kinase 1/2 (ERK1/2), c-Jun NH-terminal kinase (JNK) and p38 MAP kinases. DAG 

activates the MAP kinase pathway by recruiting Ras-GTP ligation, which in turn 

activates serine-threonine residues of Raf-1. Raf-1 will induce phosphorylation and 

activation of MAPK Kinases (MAPKKs). Activated MAPKKs will phosphorylate  
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Figure 2.4 Activation of multiple upstream signaling pathways converge 

downstream to initiate transcription of target genes. The TCR complex ligation 

initiates the phosphorylation of cytoplasmic tails of surface receptors. This 

phosphorylation event will trigger phosphorylation cascades and activates multilayer 

signaling pathways in the cytoplasm. The activation of upstream signaling pathways 

will eventually activate transcription factors such as NFAT, NF-B and AP-1. These 

transcription factors will translocate into the nucleus and bind to the transcriptional 

complex at the promoter region of genes encoding proinflammatory cytokine, such 

as IL-2 (Adapted from Abbas et al (2012) via studentconsult.com). 
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tandem tyrosine and threonine residues of ERK1/2, thus activating ERK molecules 

resulting in their translocation into the nucleus (Crew et al, 1992; Roose et al, 2005). 

In the nucleus, ERK continues to phosphorylate Elk-1 nuclear transcription factor 

and allow its binding to c-Fos promoter region (Babu et al, 2000). The presence of c-

Fos as a transcriptional factor at the promoter region of AP-1 is critical for its 

expression (Angel & Karin, 1991). Parallel to this pathway, Ras-GTP also initiates 

JNK to activate c-Jun molecule by phosphorylation on the Ser 63- and Ser-73 

residues, located within its NH2-terminal transactivation domain, (Adler et al, 1992). 

Activated c-Jun forms heterodimer with c-Fos and binds to AP-1 complex at gene 

promoters that regulate cell differentiation and proliferation (Figure 2.4) (Whitmarsh 

& Davis, 1996).  

 The activation of PKCθ molecules is important to initiate the activation of 

nuclear factor kappa B (NF-B) in the cytosol. Inactive NF-B associates with its 

inhibitor IB, which prevents its translocation into the nucleus. Thus, degradation of 

this inhibitory molecule is necessary to activate NF-B. The production of DAG will 

also activate membrane-associated PKCθ by inducing its translocation, allowing 

binding to DAG-specific-binding domain of PKCθ (Villalba et al, 2002). PKCθ 

initiates degradation of IB by IB kinase (IKK) through an array of 

phosphorylation and activation of protein complexes that are formed by caspase-

recruitment domain + membrane-associated guanylate kinase (CARMA1), mucosa-

associated lymphoid tissue lymphoma translocation gene 1 (MALT1) and CARD-

containing adaptor protein Bcl10 (Gaide et al, 2001; Pomerantz et al, 2002; Schulze-

Luehrmann & Ghosh, 2006).  
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 PKCθ phosphorylation will activate CARMA1 site, allowing the association 

of CARMA1, MALT1 and Bcl10-associated adaptor protein to form a tri-molecular 

complex. The binding of MALT1 to Bcl10 activates IKK from its inactive IKK state 

(Schulze-Luehrmann & Ghosh, 2006). The active form of IKK will then cleave the 

binding of NF-B and IB, allowing migration of NF-B into the nucleus where it 

binds to transcription complex of genes encoding cytokines for T cell proliferation 

and function (Figure 2.4) (Schulze-Luehrmann & Ghosh, 2006).  

2.4 Immunological tolerance 

 Immunological tolerance is a well-regulated process that involves central and 

peripheral mechanisms. Immunological tolerance is important to limit recognition of 

self-antigens by actived T-lymphocytes, hence regulating the immune response. This 

self-tolerance of T lymphocytes starts in the central thymus and is maintained in the 

periphery.  

 Central tolerance occurs during T cell development in the thymus. Several 

mechanisms are involved before T-lymphocytes are able to induce self-tolerance. 

During negative selection in the thymus, T lymphocytes with potential to recognize 

self-antigens will be deleted from the CD4+ cell pool by clonal deletion. As described 

in section 2.2.1, immature T lymphocytes with TCR that produce strong intracellular 

signalling towards self-antigens/MHC complex will be triggered to undergo clonal 

deletion via apoptosis (Sprent et al, 1995; Starr et al, 2003).  However, a small 

portion of cells that recognize self-antigens are not deleted by clonal deletion, 

instead, they differentiate into subsets of CD4+ cells, known as natural T regulatory 

(nTreg) cells (Sakaguchi et al, 1995; Von Boehmer et al, 2003; Fontenot et al, 

2005a). These cells exhibit suppressive function in the periphery by expressing high 
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levels of cytotoxic T-lymphocyte antigen (CTLA-4) and glucocorticoid inducible 

TNF receptor (GITR) molecules on their surfaces (Von Boehmer et al, 2003).  

 Due to diverse T cell repertoires, some mature T lymphocytes in peripheral 

tissues become auto-reactive and recognize self-antigens, causing destruction of self-

tissues. Therefore, peripheral tolerance is required to render inactivation of self-

reactive T lymphocytes. Peripheral tolerance requires the engagement of inhibitory 

receptors such as CTLA-4 and programmed death-1 (PD-1) molecules that induce 

anergy, and suppressive nTreg cells that inhibit self-reactive T lymphocytes.  

 The engagement of CTLA-4 will result in degradation of TCR signaling 

proteins, thus inducing T lymphocyte anergy (Walunas et al, 1994; Tivol et al, 1995). 

Anergy of self-reactive T lymphocytes results in the inability of these cells to 

respond to self-antigens, by inhibiting their proliferation and cytokine production 

(Miller & Morahan, 1992). On the other hand, engagement of PD-1 expressed on 

self-reactive T lymphocytes with its ligand will inhibit activation of these cells via 

inducible Treg-dependant (iTreg) pathway (Qiao et al, 2012). Induced Treg (iTreg) 

are CD4+CD25+Foxp3+ cells that induced Foxp3 expression at the periphery and are 

responsible to regulate inflammatory response (Sakaguchi et al, 2009).  It is also 

important to note that peripheral tolerance also involves nTreg cells that function as a 

suppressor for auto-reactive T lymphocytes (Sakaguchi et al, 1995). These 

mechanisms maintain self-tolerance and control the immune homeostasis.  

2.4.1 Natural CD4+CD25+ T-Regulatory (nTreg) cells 

 In 1995, Sakaguchi and colleagues first discovered that CD25 is the 

molecular component of immunosuppressive T cells. This subset of CD4+ cells is 
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now known as CD4+CD25+ T regulatory cells (Treg). Depletion of CD4+CD25+ Treg 

cells is associated with autoimmune diseases (Sakaguchi et al, 1995; Balandina et al, 

2005; Candon & Chatenoud, 2005). 

 Natural Treg cells are derived from the thymus, and later migrate to the 

periphery, where they constitute approximately 8% to 10 % of peripheral CD4+ T 

cells (Sakaguchi et al, 1995; Papiernik et al, 1998). The cardinal feature of nTreg 

cells is the constitutive expression of CD25 molecules (IL-2 receptor -chain) on the 

surface and intracellular Foxp3 molecules (Sakaguchi et al, 2005). Owing to its 

natural capacity to suppress the auto-reactive immune cells, nTreg cells become the 

prominent subtype of regulatory T cells in many auto-immune related studies such as 

inflammatory bowel disease (IBD), Type 1 autoimmune diabetes (T1D), multiple 

sclerosis and allergic reactions.  

2.4.1.1 Mechanism of suppression by T-regulatory cells 

 The mechanism of action of nTreg cells in vivo has been reported by Vignali 

et al (2008) (Figure 2.5). Regulatory mechanisms comprise inhibitory cytokines 

(TGF-, IL-10, and IL-35), cytolysis (granzyme and  perforin), IL-2 deprivation and 

cell contact-dependant manner (LAG-3, CTLA-4, CD39, and CD73). Similarly, the 

same mechanisms may also be used by nTreg in vitro, although TGF--independant 

and IL-4 cytokine mediation were also observed in these cells (Shevach et al, 2006).    

2.4.1.1.1 Metabolic disruption  

 The first regulatory mechanism imposed by nTreg cells was by IL-2-

mediated pathway as suggested by Thornton and Shevach in 1998. They suggested 

that Treg cells could inhibit the production of IL-2 cytokines by effector T cells, 
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causing anergy in these cells. This mechanism was later supported by de la Rosa et al 

(2004) whereby IL-2 consumption by nTreg cells induced suppression towards Teff 

cells. This suppressive effect was reversible in the presence of IL-2R blocker. 

Finally, by using the same in vitro co-culture setting, Pandiyan and colleagues (2007) 

showed that in vitro IL-2 deprivation by Treg cells induce apoptosis in effector T 

cells, thus reduces the effector T cell function.  

 Natural Treg cells are capable of suppressing Teff cells via transfer of cyclic 

adenosine monophosphate (cAMP) in a contact-dependant manner. The 

accumulation of cAMP in Teff cells inhibits their proliferation (Bopp et al, 2009). In 

addition, the expression of ectonucleotidase CD39 and CD73 on nTreg cells 

catalyses extracellular nucleotides will results in the generation of pericellular 

adenosine (Deaglio et al, 2007). The accumulation of pericellular adenosine will 

block IL-2 suppression by Teff cells via A2A adenosine receptor (Huang et al, 1997).  

2.4.1.1.2 Inhibitory cytokines 

  Anti-inflammatory cytokines such as TGF- and IL-10 play an important 

role as inhibitory mediators to curtail excessive inflammatory response (Abbas et al, 

2007). Murine in vivo studies showed that transfer of nTreg cells into CD25-deficient 

mice requires IL-10-mediated suppression (Pontoux, Banz & Papiernik, 2002). 

Similarly, transfer of nTreg cells from wild type (WT) mice into SCID mice 

protected the latter from colitis while administration of TGF-antibody resulted in 

loss of suppressive function of Treg cells. On the other hand, transfer of IL-10-

deficient nTreg cells failed to protect SCID mouse model from colitis (Asseman et 

al, 1999). In addition, allergy and asthmatic reactions in mouse models are also 

reduced upon nTreg cell transfer (Hawrylowicz & O’Garra, 2005), and synergistic 
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effect by TGF- is required by these cells to alleviate these reactions (Joetham et al, 

2007; Brandenburg et al, 2008).  

 However, the role of IL-10 in the nTreg cell mediated-suppression is still 

debatable. For example, previous in vitro studies showed that IL-10-deficient nTreg 

cells were suppressive towards Teff cells (Thornton & Shevach, 1998). In addition, 

the deletion of IL10 allele in nTreg cells only caused the development of localized 

tissue inflammation but not systemic autoimmune reaction, in mouse model (Rubstov 

et al, 2008).  

 IL-35 is a new member of the heterodimeric IL-12 cytokine family that was 

discovered by Collison et al (2007). IL-35 is formed by the pairing of Epstein-Barr 

Virus-induced gene 3 (Ebi) with il12a gene (Collison et al, 2007). In normal 

condition, Ebi pairs with p28 to encode IL-27 while p35 pairs with p40 to encode IL-

12 (Collison et al, 2007). The expression of Ebi and il12a genes are highly increased 

in mouse Foxp3+ nTreg cells, and are significantly upregulated in activated nTreg 

cells, but not in Teff cell population (Collison et al, 2007). The ability of IL-35-

secreted Treg cells to regulate immune homeostasis is significantly lowered in Ebi-/- 

and il12a-/- in vitro and failed to control IBD in vivo (Collison et al, 2007). 

Furthermore, IL-35-secreting nTreg cells could inhibit the development of pro-

inflammatory Th17 cells, both in vitro and in vivo (Niedbala et al, 2007).  

2.4.1.1.3 Dendritic cells (DC) modification 

  Natural Treg cells has been postulated to act on dendritic cells (DC) as one 

mechanism to regulate immune homeostasis, mainly via CTLA-4 and its ligands 

CD80/86 (Tang et al, 2004; Oderup et al 2006; Tadokoro et al, 2006). Fallarino and 
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co-workers (2003) reported that the interaction between CTLA-4 and CD80/86 

molecules induced DC to secrete indolamin 2,3-dioxygenase (IDO), a potent 

regulatory molecule known to induce pro-apoptotic metabolites, as a result of 

tryptophan catabolism, leading to immunosuppressive activity in T effector cells.  

2.4.1.1.4 Suppression by cytolysis 

 Natural Treg cells also mediate the immune response via granzyme by 

perforin-dependant mechanism (Grossman et al, 2004). It was shown that nTreg cells 

of granzyme and perforin knockout mice are less effective in suppressing Teff cells 

(Gondek et al, 2005). In addition, previous reports have suggested that murine nTreg 

cells are capable of inducing apoptosis in Teff cells via the tumour-necrosis-factor-

related-apoptosis-inducing-ligand-death-receptor 5 (TRAIL-DR5) pathway in vitro 

(Ren et al, 2007). The prolonged protection of allogeneic skin graft from rejection by 

nTreg cells was overcomed by addition of death-receptor-5 (DR-5) blocking 

antibodies, indicating the same mechanism may be operative in vivo (Ren et al, 

2007). Nevertheless, it was reported that TRAIL-DR5 pathway is the default 

mechanism of suppression in nTreg cells of Balb/c mice, while inhibitory cytokine-

mediated suppression is probably the primary mechanism employed in nTreg cells of 

C57BL/6 mice (Pillai et al, 2011).  

2.4.1.2 IL-2 and Jak/STAT signalling 

 The high-affinity IL-2 receptor comprises 3 subunits: the -chain of the IL-

2R (CD25), -chain of the IL-2R (CD122) and the common -chain of the IL-2R 

(CD132) (Malek et al, 2004). Figure 2.6 depicts the binding of IL-2 to IL-2R -chain  


