
UNIVERSITI SAINS MALAYSIA

Laporan Akhir Projek Penyelidikan Jangka Pendek

Investigating T-Way Test Data Reduction
Strategy Using Particle Swarm

Optimization Technique

by
Assoc. Prof. Dr. Kamal Zuhairi Zamli

Mr. Bestoun S. Ahmed

2012

FINAL REPORT

FUNDAMENTAL RESEARCH GRANT SCHEME (FRGS)
Laporan Akhir Skim Geran Penyelidikan Asas (FRGS) IPT

PIndaan 1/2009

RESEARCH TITLE : Investigating T-Way Test Data Reduction Strategy Using Particle Swarm
Optimization Technique

Tajuk Penyelidikan

PROJECT LEADER : Assoc Prof Dr Kamal Zuhalri bin Zamll
Ketua Projek

PROJECT WIEWIBERS : 1. Bestoun S. Ahmed
(including GRA) 2.
Ahli Projek

ROIIECTfACHIEVEM

•'ji .• V- * V"'' 'i'! '''''/-i i- - • ' '

Project progress according to
milestones achieved up to this
period

Percentage

Number of articles/ manuscripts/
books

Paper presentations

Others

(Please specify)

:.;ACHIEVEMENT PERCENTAGE

- 50% 51 - 75% 76-100%

100%

RESEARCH FINDINGS

Indexed Journal Non-Indexed Journal

3 IS!

3 SCOPUS

International National

3 IEEE Conf. papers

HUMAN CAPITAL DEVELOPMENT

Human Capital

PhD Student

Masters Student

Undergraduate Students

Temporary Research Officer

Temporary Research Assistant

Total

Number

On-going Graduated

3 Mixed

Mode

Others (Please specify):

C Budget Approved (Peruntukan diluluskan) : RM 48,000.00
Amount Spent (Jumlah Perbelanjaan) : RM 35,024.59

Balance (Baki) : RM 12.975.41
Percentage of Amount Spent 72.96%
(Peratusan Belanja)

1 International 1
Activity Date (Month, Year) Orqanizer

Kama! Z. Zamli, Combinatorial Software
Testing: From Palrwiseand Beyond, Invited
tutorial in the IEEE international Symposium
on Industrial Electronics and Applications
(ISIEA2010)

3rd October 2010, Park Royal, Penang IEEE Industrial Electronics

1 National 1
Activity Date (Month, Year) Organizer

Kamal Z. Zamli, Keynote Speaker, Software
Testing Conference 2011, SOFTEC2011

6th July 2011, Prince Hotel, KL Malaysian Software Testing Board

PROBLEMS I CONSTRAINTS IFANY (Masalah/Kekangan 'sekiranya ada)

E None

©MMENDATION {CadanganPenambahbaikahyr.^^^^^^

None

Date :

Tarikh

§

24 July 2012

(omen, sekiranya ada/Pengesahan oleh>Pusat Pefig^^

Name:

Nama:

Date:

Tarikh:

LIST OF OUTPUTS

ISI/SCOPUS Journals

Project Leader s Signature:
Tandatangan Ketua Projek

Signature:
Tandatangan:

AHMED. B. S.. ZAMLl, KAMAL Z. ZAMLI &C. P. LIM 2012. Application ofParticle Swarm Optimization for uniform and
variable strength covering array construction. Applied Soft Computing Journal, 12(4), pp. [ISI Impact Factor
=2.612].1330-1347

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011. A variable strength interactiontest suites generation strategy using
Particle Swarm Optimization. Journal ofSystems and Software, 84(12), pp. 2171-2185. [ISI Impact Factor =0.836].

AHMED, B. S., ZAMLI, KAMAL Z. ZAMLI &C. P.LIM2012. Constructing a t-way interaction test suite using the particle
swarm optimization approach. International Journal ofInnovative Computing, Information and Control (iJiCIC), 8(1A),
pp. 431-452. [ISI ImpactFactor =1.66].

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011.A review ofcovering arrays and theirapplication to software testing.
Journal of Computer Science, 7(9), pp. 1375-1385.(SCOPUS Indexed).

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011.The development ofa Particle Swarm Based Optimization strategyfor
pairwisetesting. Journal of Artificial Intelligence, 4(2), pp.156-165. (SCOPUS Indexed).

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011.Agreedy Particle Swarm Based Optimization strategyfort-way testing.
Journal of Artificial Intelligence, 5(2), pp.85-90. (SCOPUS Indexed).

Conference Proceedings

BESTOUNS. AHMED, KAMAL Z. ZAMLI, 2009. Motivation for developing a high combinatorial interaction strength
testing suite via the Grid Computingapproach. Proceedings of theElectrical and Electronic Postgraduate Colloquium
EEPC2009, Jawi, Malaysia.

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2010. PSTG: a t-way strategy adopting particle swarm optimization.
Proceedings of the4th Asia Intemational Conference on Mathematical/Analytical Modelling and Computer Simulation,
Kota Kinabalu, Bomeo, Malaysia. IEEE Computer Society, pp. 1-5.

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2010. T-way test data generation strategy based on particle swarm
optimization. Proceedings of the2nd Intemational Conference on Computer Research and Development, Kuala Lumpur,
Malaysia. IEEE Computer Society, pp. 93-97.

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011. Comparison of metaheuristic test generation strategies based on
interaction elements coverage criterion. Proceedings oftheThe 2011 IEEE Symposium on Industrial Electronics and
Applications (ISIEA2011), Langkawi, Malaysia. IEEE ComputerSociety, pp. 550-554.

AHMED, B. S. &ZAMLI, K. Z. 2011.Agreedy Particle Swarm Optimization strategyfort-way software testing.
Proceedings oftheThe Electrical and Electronic Postgraduate Colloquium (EEPC2011), Dusun EcoResort, Bentong,
Pahang, Malaysia

Human Capital Developments

BESTOUN S. AHMED, Adopting a Particle Swarm-basedTest GeneratorStrategyforVariable Strengthand T-Way
Testing, PhD (completed March 2012)

JULIANA MDSHARIF, Implementing Seeding and Constraint Mechanism for PainMse Test Data Generation, MSc
Mixed Mode Dissertation (completed June 2010)

NOR HIDAYAH SAAD, Enhancing a Pairwise Test Data Generation to Support High T-Way Interaction, MSc Mixed
Mode Dissertation (completed June 2010)

AMIR ABU BAKAR, Enhancing T-Way Strategy with Seedings and Constraints Support, MSc Mixed Mode Dissertation
(completed Dec2010)

-OokL

y coda Info > Reports

Current Program: Votebook (Header)

age

Purchase ReQuislUon ^ Purchase Order

UseiCodo: ZAIDA/ USMKCTUVE / PELECT

Current Onto: 24/07/2012 12:01:41 PM

• SupfjOers • M3lntet«nce

Program Code: VotebookSlOO

Version: 15.03, Last Updated at 15/03/2012

Wildcard : eg. Uko lOO^A, Uko 10<yol, Uko %1

DB: 13.00,09/18/2010 VB: 13.01,03/14/2011 Switch Language: English /Malay

Etemenci:

BementS:

[203 Bement2: % Befnent4; jPELECT

Yar: 2012

Budget
Control

Account Description Budget Account Code Roll over Budget Cash Received Advanced Commit Actual Available Percentage

Detail Excel 116 T PenyelidikanFurutamentals (FQtS) 203.111.aPaECT.6071186 17,902.14 0.00 0.00 0.00 0.00 0.00 17,902.14 0.00%

116 T SubTotal 17,902.14 0.00 0.00 0.00 0.00 0.00 17,902.14 0.00%

Detail Bttd 117 T PenyelidikanFundamentals(FtSRS) 203.221.0J>ELECr.60711S6 2,84130 aoo 0.00 0.00 0.00 0.00 2,84130 aoo%

Detail Excel 117 T Penyelidikan Fundamentals (FGRS) 203.223.a.PEL£Cr.6a711S6 1,000.00 0.00 0.00 0.00 0.00 0.00 1,000.00 0.00%

Detafl Btcel 117 T PenyelidikanFundamentals (FGRS) 203.227.0.PaECT.6071186 880.00 0.00 0.00 0.00 0.00 1,780.00 •900.00 0.00%

Detail Bccel 117 T Penyelidikan Fundamentals (FGRS) 203.22B.0.PEl£Cr.6O71186 1,500.00 0.00 0.00 0.00 0.00 aoo 1300.00 aoo%

Detail Excel 117 T PenyeBdilsnFundamentals(FGRS) 203.229.0J>ELECr.6071186 -6,186.20 0.00 0.00 0.00 2,694.92 486.91 •9368.03 aoo%

117 T SubTotal 35.10 0.00 0.00 0.00 2,694.92 2,266.91 •4,926.73 0.00%

9999 GrandTotal 17,93734 0.00 0.00 0.00 2,694.92 2,266.91 12,975.41 0.00%

ht^;//efasbursao'-eng.usm.my/eprocurementkctA^otebook9100A_LIST.aspx 7/24/2012

.J

INVESTIGATING T-WAY TEST DATA REDUCTION

STRATEGY USING PARTICLE SWARM

OPTIMIZATION TECHNIQUE

BY

ASSOC PROF DR KAMAL Z. ZAMLI

FRGS - Final Grant Report

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING

USM

2012

Table of Contents

Table ofContents ii
List ofTables iv
List ofFigures and Illustrations v
Abstract vi

CHAPTER 1 7

INTRODUCTION 7
1.1 Problem Statements 9
1.3 Methodology ofthe Research 10
1.4 Report Outline 14

CHAPTER 2 15

LITERATUREREVIEW 15
2.1 Theoretical Framework..... 15
2.2 Literature Review 18

2.2.1 Uniform-Strength Covering Array Construction 18
2.2.2 Variable Strength Covering Array Construction 22

2.3 The Adoption ofPSO fort-way Testing 23
2.4 Summary 27

CHAPTER3 28

DEVELOPMENT OF THE PSTG STRATEGY 28
3.1 Overview ofPSTG 28

3.1.1 The IEGeneration Algorithm 29
3.2 The CA Generation Algorithm 32
3.3 PSTG Parameter Setting 37

CHAPTER4 45

EVALUATION 45
4.1 Experimental Setup 45
4.2 The /-way Comparative Experiments 46

4.2.1 Comparing PSTG with Existing Al-based Strategies 47
4.2.2 Comparing PSTG with Computational-based Strategies 48

4.3 Variable-Strength Comparative Experiments 58
4.4 Analysing the Results from /-way and Variable-Strength Experiments 66
4.5 Summary ^8

CHAPTER 5 70

CONCLUSION & FUTUREWORK 70
5.1 Contribution 70
5.2 Future Research Directions 73

ii

%

REFERENCES 76

111

I 1

I I

,)
I

List ofTables

Table 4-1 Comparison with ExistingAI-BasedStrategies 47

Table 4-2 P&V Constants (10,5), But t Varied to 6 51

Table 4-3 r&V Constants (4, 5), But P Varied 51

Table 4-4 P&/ Constants (10,4), But V Varied 52

Table 4-5 Five Multi Domain Configurations 52

Table 4-6 Variable Number ofParameters 3< P <12, Each With 3 Values t Varied to
6 53

Table 4-7 Seven Parameters, Each Having Variable Number ofValues 2< V <5, With
t Varied to 6 54

Table 4-8 Four Real-World Software System Configurations, With t Varied to 6 55

Table 4-9 Sizes of Variable-Strength Interactional Test Suites for the Configuration
VSCA (m; 2,3'', {C}) 60

Table 4-10 Sizes of Variable-Strength Interactional Test Suites for the Configuration
VSCA (m; 2,4' 5' 6^ {C}) 61

Table 4-11 Sizes Of Variable-Strength Interactional Test Suites for the Configuration
and VSCA (m; 2, 3^° 10^ {C}) 62

Table 4-12 Test Size for Variable-Strength Configuration VSCA (m; 3,3^^, {C}) 63

Table 4-13 Test Size for Variable-Strength Configuration VSCA (m; 3, 4^ 3^ H" ,
{C}) 64

Table 4-14 Test Size for Variable-Strength Configuration VSCA (m; 2, lO' 9^ 8^ 1^ 6^
5U'3^2^{C}) 64

IV

I I
1

List ofFigures and Illustrations

Figure 1-1 The Research's Activities and Flow 13

Figure 2-1 The Representation of Uniformand VariableStrengthCAs 17

Figure 2-2 The PSO Algorithm 25

Figure 3-1 IE Generation Algorithm ofPSTG 30

Figure 3-2 A Flowchart ofthe PSTG CA Generator Algorithm 36

Figure 3-3 The Best and Average Sizes obtained with the Variation Inertia
Component (w) and Acceleration Coefficients (ci, C2) for CA (N; 2,4 39

Figure 3-4 The Best and Average Sizes obtained with the Variation Inertia
Component (w) and Acceleration Coefficients (ci, C2) for CA (N; 2,5^) 39

Figure 3-5 The Best and Average Sizes obtained with the Variation of Swarm Size
and Repetition for CA (N; 2,4^ 41

Figure 3-6 The Best and Average Sizes obtained with the Variation of Swarm Size
and Repetition for CA (N; 2, 5^) 42

Figure 3-7 Average Generation Time obtained in second with the Variation of Swarm
Size and Repetition for CA (N; 2,4 42

Figure 3-8 Average Generation Time obtained in second with the Variation of Swarm
Size and Repetition forCA (N; 2, 5^) 43

Abstract

Recently, researchers have started to explore the use of Artificial Intelligence

(Al)-based algorithms as ^-way (where t indicates the interaction strength) and variable-

strength testing sti-ategies. Many Al-based strategies have been developed, such as Ant

Colony, Simulated Annealing, Genetic Algorithm, and Tabu Search. Although useful,

most existing Al-based strategies adopt complex search processes and require heavy

computations. For tliis reason, existing Al-based strategies have been confined to small

interaction strengths (i.e., t<3) and small test configurations. Recent studies demonstrate

the need to go up to t=6 in order to captui*e most faults. This research presents the design

and implementation of a new interaction test generation strategy, known as the Particle

Swarm-based Test Generator (PSTG), for generating ^way and variable-strength test

suites. Unlike other existing Al-based strategies, the lightweight computation of the

particle swarm search process enablesPSTG to supporthigh interaction strengths of up to

/=6. The performance of PSTG is evaluated using several sets of benchmark experiments.

Comparatively, PSTG consistently outperfonns its AI counterparts and other existing

strategies as far as the size of the test suite is concerned. Furthermore, the case study

demonstrates the usefulness of PSTG for detecting faulty interactions of the input

components.

VI

CHAPTER 1

INTRODUCTION

Software testing is an activity that aims to evaluate the capability of a program as well

as to determine whether it meets its required results or not [1]. Owing to its usefulness

in the software development life cycle, software performance testing comprehends a

variety of activities, including stress, isolation, and configuration testing [2, 3]. In each

activity, test cases are used in an established test plan to run experimentsoccupyingthe

software system components. In large software systems, this process is limited by cost

because the addition of each test case leads to additional expenditures. This, in turn,

leads to the inability ofexhaustive testing in performing such a testing process.

Design of Experiment (DOE) has been used to aid the software performance testing [4].

Here, each component of the system is called a "factor," and each test case is called an

"experimental run." An experimental run represents a test case to comprehend the

systemcomponents, whereeach component is represented by its valid numeric value or

configuration [5]. When the system is tested exhaustively, the 'Tull factorial" design of

experiment is used [5]. However, when the system is large and the full factorial design

is not desirable, the "fi-actional factorial" design is used to reduce the experimental run

to a subset of the full factorial design. The fractional factorial design is used with

systems of numeric factors; conversely, systems with categorical factors cannot use this

method for experiments [6].

The D-Optimality design, on the other hand, has been used with systems, including

categoricalfactors, to reduce the experimental run by selectinga subset ofruns from the

full factorial [7, 8]. Instead of a purely randomselection of subsets of experimental runs

from the full factorial design, the use of the D-Optimality designmethod in experiments

leadsto the production of experimental runsthatare closerto full factorial design [4].

Recently, an alternative design based on Covering Array (OA) has been used for the

approximation of full factorial design [4]. Compared with D-Optimality, empirical

evidence demonstrates thatCAproduces better results than full factorial approximation

experiments [4, 8]. In such a design, each /-set of factors (or system components) is

covered by a set of experimental runs (at leastonce)to forma CA.

The use of CAs has proven to be adequate and effective in several applications,

including drug screening, regulation of gene expression, data compression, code

coverage and GUI testing [9-14]. Motivated by the effectiveness of CAs, a number of

recent studies have focused on the construction of CAs for combinatorial interaction

testing using /-way strategies, where / signifies the interaction strength of the

component. These strategies aim to optimally reduce the number oftest cases (i.e., the

number of rows in the CA) by ensuring that each test casegreedily covers the required

/-interactions (or /-set offactors) at least once for a typically large space ofpossible test

values. This mechanism uniformly covers /-interactions of the system components to

generate testcases. However, often, the interactions between parameter components are

typically non-uniform [15, 16]. As an example, a system with an overall component

values of two-way (pairwise) strength might have a subset of higher strength than the

component values for the test [17]. Therefore, the strength might vary and be non-

uniform during the testing process of the system componentvalues. Taking both cases

(i.e., uniform and variable interaction strength) as an NP hard computational

optimization problem [16, 18, 19], many strategies based on Artificial Intelligence (AI)

have been developed. Recent researches demonstrate that strategies based on Genetic

Algorithm (OA), Ant Colony Algorithm (ACA), Simulated Aimealing (SA), and Tabu

Search (TS) can effectively generate small-sized CAs.

1.1 Problem Statements

Although useful, most existing Al-based /-way testing strategies require complex

computations (i.e., in terms of the need to deal with mutations, crossovers, and the local

minima problem [17, 20-22]). For these reasons, existing Al-based /-way testing

strategies have been con&ied to small interaction strengths (i.e., /<3) and small test

configurations [15, 23-25]. To be effective, recent studies and empirical evidence

demonstrate the need to go up to /=6 in order to capture most faults in a software

module [10,26-28].

Particle Swarm Optimization (PSO) is known for the simplicity of its algorithm

structure over other optimization methods [29-32]. PSO is also requires lightweight

computations. In this research, we investigate the competitiveness of our proposed

Particle Swarm-based /-way Test Generator (PSTG) based on PSO for uniform and

variable strength CAgeneration. Unlike other existing Al-based /-way testing strategies,

9

the use of PSO leads to lightweight computation in PSTG, thus, enabling it to support

high interaction strengths ofup to t=6 [33,34].

1.2 Report Aim and Objectives

The aim of the research is to design, implement, and evaluate a new interaction testing

strategy, called Particle Swarm Test Generator (PSTG), for constructing t-way and

variable interaction strength test suites based on Particle Swarm Optimization. To

realize this aim, the following objectives are adopted:

i. To investigate the application of Particle Swarm Optimization for PSTG's

design and implementation in order to support /-way and variable-strength test

suites construction.

ii. To investigate and evaluate the performance of the PSTG strategy against other

computational and Al-based strategies interm ofthe generated test suite size.

iii. To investigate and evaluate the effectiveness of the test suites generated by the

PSTG strategy for interaction fault detection.

1.3 Methodology of the Research

Overall, the research's methodology is divided mainly into three phases.

10

i. Literature review: in this phase, the literature survey is undertaken to establish

the state-of-the-art on interaction testing. The literature starts by reviewing the

importance of the software testing in the software quality assurance process. By

establishing this importance, the existing sampling and test design techniques

are reviewed also and the importance of the interaction testing as

complementary technique in software test design is established. Then, the

existing literature of interaction testing strategies is reviewed to identify the

features and drawbacks of the strategies and techniques. Based on the literature

review survey, the requirement of the research is established in this phase. From

the requirement, how the PSO, f-way, and variable-strength algorithms will be

implemented is decidedhere.

ii. Design and Implementation: here, the adoption of PSO is established and the

required algorithms are decided. Then, the complete algorithms making up the

PSTG strategy are designed, implemented, and optimized in this phase. In

addition, the parameter tuning of the strategy is performed here also.

iii. Evaluation, Benchmarking, and Case study: experiments with well-known

benchmarking configuration as well as a case study are undertaken in this phase

to investigate andevaluate theperformance and effectiveness of the strategy.

11

•i-

)

To illustrate how the aforementioned phases are related. Figure 1-1 summarizes the

research's activities.

12

L CquhnlancaOaePartlttanlng
B. BoundnvVshM
KL CntM and CHcct Bnphlne

''Softwara^
' TcMnji .

RairfaW'tiia;.E]idstlhg jest
''D^gh/Sam'pling ':

., iu.,rr<sch^iq«^or:.r'.

1 ' >

! EittitinsySelif/ipowJ'
. -.Teatnlques

,SSn^rtc^ppnipfi^en^
7/j^ .Todmlqiies ;,Vi

L TmySlntagle*
0. Variabla-itrtnoth s<nt*slcs

Cmn(>cnehtt'Ul»ra

T
:tlUpderatind;^*r

-CbhMplkiajlntm'cifon
' .'Ir,:' nCotfeAjiet^-'i.V Li.

i
''jnferaiuMtxT^^g.j
i '-iT', ,>striitMef?L••{;;•' '

j;^eaKrr«ii&'.7

;:.'fFailHr«d'aLl.'
T'DHai^ci^L •1

lUgHtw^htj^sti^tdg^
:lip TetsoliMiGtiMO^nil^^ j

L OMlgaandliiiplcnMiilltMAIgortthiia
0. Tba PSTCTnt BXiIta6«n«ra<8r AlgorHhm

>'Xden'tiMii&^
ij; 7';,vtfonfl. r;,' /

-.i?:"): .! N*;.

sciMipirvcBgv^

±
j^iielthcn^mmeiei^

-. VaHa^s^snB '̂o^
..'C^paratlva'iE^e^dnj^

LItrature Review

Design & Implementation

Evaluation/Benchmarking
& Case Study

Figure 1-1 The Research's Activitiesand Flow

13

%

1.4 Report Outline

This rest of the report is organised into four otherchapters as follows.

Chapter 2 presents theoretical framework along with a survey of existing t-way

strategies. Towards the end of Chapter 2, an analysis of existing work is presented

which provides the requirements andjustification for the development of PSTG.

Chapter 3 discusses and justifies the detailed algorithms and implementation for PSTG

based onthe requirements from Chapter 2. Additionally, this chapter also elaborates on

tuning ofthe PSTG parameters.

In Chapter 4, a detailed account for evaluating PSTG ispresented. Here, PSTG will be

compared against existing strategies interms ofthenumber of generated testdata.

The conclusion of this work is given in Chapter 5, where the achievements,

contributions and problems are summarised. Conclusions are drawn from the

experience gained from this work and the significance of findings along with a

consideration for future work.

14

CHAPTER 2

LITERATURE REVIEW

The previous chapter has established the needs for a new (uniform and variable

strength) strategy that is sufficiently lightweight in order to cater for high interaction

strength up to 6. In doing so, the previous chapter has also advocated the use of AI-

based strategiesbased on Particle Swarm Optimization(PSO) called PSTG.

In this chapter, the development of PSTG willbe further justifiedby giving an overview

of the theoretical jframework and a survey of existing literature. This survey and

analysis is then used to provide the requirements for PSTG. Finally, this chaptercloses

by providing a short summary.

2.1 Theoretical Framework

In order to illustrate the basic of t-way testing, there is a need to understand the

theoretical framework on Covering Arrays (CA). Originally, the CA has emerged to

complement Orthogonal Array (OA) limitations. An OAx (N; t, k, v) of strength / is

an array of size N and k components with v values, in which for every N'x-t sub-

array, the ^-interaction elements occur exactly k times, and X=N/v* [35, 36]. It has

been shown that the OA is often too restrictive because it requires the component

values to be uniform [9]. To complement the OA construction and to overcome its

limitation, the CA has been introduced. The notation CAx (N;t,k,v) represents an

array of size N with v values, such that every N^-t sub-array contains all ordered

subsets from the v values of size t at least Xtimes [16, 37], and k is the number of

15

components. To cover all /-interactions of the components, it is normally sufficient

to occur once in the CA. Therefore, with A=l, the notation becomes CA (N;t,k,v).

When the CA contains a minimum number of rows (TV), it can be considered an

optimal CA according to the definition in eqn. (1) [9].

CA (i.k,v)=minfN: 3CAx (N.tXv)} 0)

However, when the number of component values varies, this can be handled by the

Mixed Covering Array (MCA) (N;t,k,(vi,V2,...Vk)) [38]. The notation can also be

represented by MCA (N;t,k,v^).

With the availability of these notations, /-way test suites can effectively be abstracted.

For example, Figure 2-2 (a), represents an MCA (9; 2, 3^ 2^) ofsize 9 (i.e., nine test

cases) for a system with four components (two components having three values and two

components having two values) to covertwo-way interactions.

16

ABCD

(I110^
1011

2000

0201

1100

2111

2211

1210

00y

main^nflg.

f
sub-Config.

A
t

ABCD

1

2

0

1

2

2

1

0

0^
1

0

1

0

1

1

0

1

0010

2101

VJ.20o_y

(a)(b)

Figure2-1TheRepresentationofUniformandVariableStrengthCAs

WiththeemergenceofdifferentapplicationsofCAandMCA,theVariableStrength

CoveringArray(VSCA)notationhasbeenintroducedasanothervariantofCAand

MCA[16,39].AVSCA(N;t,k,(vi,V2,Vk),C)isanCAorMCAofstrengtht

containingC,avectoroftheCAorMCA,andasubsetofthekcolumnseachwitha

strength>/[38].Asanexample,tocoverthethree-wayinteractionsamongB,C,and

D,weneedtoadd12moreteststothetwo-wayMCAinFigure2-2(a).However,when

usingthesetestcasesgeneratedforthetwo-wayMCA,weneedtoaddonlythreemore

testsforatotaloftwelve.ThelastthreerowsinFigure2-2(b)depictthesetestcases.

Therefore,theresultingVSCAcontinuestocoverthetwo-wayinteractionsamongA,

17

%

B, C, and D, i.e., under the "main-config" bracket. In addition, the VSCA covers the

three-way interactions among B, C, and D, i.e., under the "sub-config" bracket.

Having described the notations, the following section presents a survey of existing

studies on constructing uniform and variable strength CAs in order to reflect the current

progress and achievements thus far in the literature.

2.2 Literature Review

Many strategies have been developed to construct uniform and variable strength CAs.

The construction methods of the uniform strength CAs came first. Based on those

construction methods, the ideas of constructing the variable strength CA have emerged.

The next sub-sections review these two construction methods.

2.2.1 Uniform-Strength Covering Array Construction

There are two main methods for the construction of CAs, namely: algebraic [9, 39] and

computational methods [39,40]. Algebraic methods arebased onthe construction of the

OA. The OA is derived fi-om the extensions of mathematical functions. Despite its

usefulness, the OA is too restrictive because it exploits mathematicalproperties, thereby

requiring the components and values to be uniform. To overcome this limitation, the

Mutual Orthogonal Array (MOA) [41] has been introduced to support non-uniform

18

}

values. However, a major drawback exists for both MOA and OA, i.e., a feasible

solution is only available for certain configurations [42].

In most cases, computational methods generate all possible interactions. Test cases are

then generated to cover these interactions. The method of generating candidate test

cases is the main differentiation among the generation strategies. There are two main

ways for constructing test cases computationally: one-test-at-a-time or one-parameter-

at-a-time [39, 40, 42]. In the former case, the strategy candidate a single or a set of

complete test cases per iteration then searches for the test case that covers most of the

generated interactionsfor the CA. Based on this framework, a number of strategieshave

been developed in previous studies. The most well-known strategies in this approach

are Automatic Efficient Test Generator (AETG) [43], mABTG [38], Pairwise

Independent Combinatorial Testing (PICT) [44], Deterministic Density Algorithm

(DDA) [45, 46], Classification-Tree Editor extended Logics (CTE-XL) [47, 48], Test

Vector Generator (TVG) [49, 50], Jenny [51], Test Configuration (TConfig) [52], and

Intelligent Test Case Handler (ITCH) [53].

In the case of one-parameter-at-a-time, the CA is constructed incrementally by

horizontal extension. Each time a component is added to the CA, the strategy performs

a coverage check and chooses the best value of the component. If the horizontal

extension is performed and some interaction elements have not been covered, the

vertical extension immediately begins to cover the uncovered interactions. The CA is

constructed completely when these two algorithms are performed. In-Parameter-Order-

19

%

General (IPOG) [54] and its improvements, i.e., IPO-s [55], and IPOG-D [42] are three

of the most recent strategies that have adopted this approach for the construction of

uniform-strength CAs.

As a main partof the computational one-test-at-a-time construction method, significant

efforts have emerged to adopt Al-based strategies for CAgeneration. Thus far, SA, TS,

GA, and ACA have been successfully implemented forsmall-scale interaction strengths

[25,39, 56].

Stardom [56] first implemented SA, GA, and TS to support pairwise (two-way)

interactions. The experimental results showed that, because of its algorithmic

complexity infinding good solutions, the GA isthe least effective ascompared with SA

and TS. In addition, TS is effective in constructing test cases where thesearch space is

small, whereas SA performs better with larger search spaces. This implementation of

TS has also been used by K. Nurmela [57] for pairwise testing and has produced similar

results.

Cohen [38] later developed and implemented SA to support up to three-way

interactions. The results showed that, in comparisonwith the greedy search technique of

TCG and AETG, SA performed better in generating smaller-sized CAs for pairwise

interactions. However, in the case of strength three, SA did not perform as well as

compared with the existing algebraic approaches [17]. Hence, the results indicated that

20

.)

SA is more effective than other approaches for finding optimal sizes in cases of small

strengths.

Toshiaki et al [25] also developed and implemented the GA to support up to three-way

interactions. In addition, Toshiaki et al employed ACA to support up to three-way

interactions. In both cases, a "compaction algorithm" that merges the CA rows for

optimality, and further optimizes the resulting CA of the algorithm. Their results have

been compared with those from AETG, IPO, and SA. Although GA and ACA

outperform AETG, SA outperforms GA and ACA in all cases for strengths two and

three. Meanwhile, as demonstrated by Afeal et al. [17], it is noticeable that the results of

the GA did not match with those produced by Stardom [56]. This indicates that the GA

performs poorly for CA generation, although several attempts have been made to

modify the algorithm structure.

Although the existing Al-based strategies appear to perform well, a closer look reveals

some limitations in terms of complexify of both the search process and algorithm

structure. As an example, the large random search space and the update rule of SA

make the search process computationally intensive, leading to an increase in

computation time, especially when the interaction strength grows up (i.e., t>3) [17, 38,

39, 58]. This problem can be seen clearly in the complexify of the GA crossover and

mutation processes, and the increasing numbers of ants in ACA when the problem

grows. Similarly, TS suffers from the same problem when itkeeps and updates its Tabu

21

list sets. For these reasons, most strategies implementing SA, GA, and ACA have been

limited to small configurations with strengths two and three [17,25].

2.2.2 Variable Strength Covering Array Construction

A number of existing strategies have started to support VSCA construction (e.g., PICT,

TVG, and ITCH). In addition to these computational strategies, a number of Al-based

strategies have emerged. Wang et ah [24] adopted the DDA algorithm for a variable

strength strategy called Density. Wang et ah [24] also adopted the IPO algorithm for a

variable strength strategy called ParaOrder. This, in turn, has motivated the IPOG

research group to add the support ofvariable strength in the ACTS tool implementation

[59,60].

Cohen et ah [15] also developed SA to support VSCA construction. The results

reported in their study focused on strengths oftwo and three only. Moreover, the only

published results for this strategy in the case of variable strength are three test

configurations.

Xiang et ah [23] adopted an improved version of ACA in a strategy called Ant Colony

System (ACS) to support VSCA construction. In their study, a "compaction algorithm"

was also used to merge the rows in order to further optimize the final VSCA. The

results were focused on strengths of twoand three only, as indicated in Cohen [15] and

22

Wang [24]. Overall, SA generated better sizes, whereas ACS achieved comparative

results in some cases.

As in the case of uniform-strength, the existing Al-based strategies appear to perform

better than other strategies for VSCA construction. However, these strategies often

adopt exhaustive searchprocesses with complex algorithm structures. This explains the

limited support of up to strengths two andthreeonly.

2.3 The Adoption of PSO for t-way Testing

Enhancing and complementing existing work on AI approaches as /-way testing

strategies, this research deploys PSO to derive a strategy for uniform and variable

strength CA construction. PSO has been demonstrated as an efficient optimization

method for many problems [20, 61, 62]. In most cases, PSO does not suffer from the

difficulties encountered by other AI techniques, e.g., [21, 30, 31, 61]. Compared with

other Al-based techniques, PSO differs in three main points: recombination, mutation,

and selection, as follows.

With respect to recombination, PSO does not have a direct recombination operator;

despite the fact that stochastic acceleration of a particle towards its previous best

position resembles the recombination procedure of other techniques. Instead of

recombination, PSO manages information exchange only between the particle's

possession experience and the experience of the best particle in the swarm. On

mutation, PSO has the advantage of not using evolutionary operators such as crossover

23

and mutation [32], thereby enabling a lighter computational load. Concerning selection,

PSO does not use the survival of the fitness concept, as it does not use direct selection.

Therefore, during optimization, particles with lower fitness values can survive and are

able to visit any point of the searchspace [63].

In addition to the above features, PSO is computationally inexpensive because its

requirements for memory and CPU speed are low. PSO does not need the calculation of

derivatives from other particles, and has few parameters that need to be tuned [64].

Moreover, PSO does notrequire information of the objective function under testing; it

requires only the value, which is used within primitive mathematical operators, hence,

leading to a low computation time [63].

The origin of PSO dates back to 1995, when it was first developed by Eberhart and

Kennedy as an optimization technique [65] inspired by the swarm behavior of fish and

bird schooling in nature. Initially, the main idea was to simulate the unpredictable

choreography of a flock of birds. Based on observation of evolutional aspects of the

PSO algorithm, it has been realized as an optimizer. Indeed, PSO has received much

attention asanoptimizer thatis applicable to many fields of engineering [63].

A random population of solutions, in which each likely solution is assigned a

randomized velocity, initializes the global version of PSO. The likely solutions, called

particles, are then "flown" through the problem space iteratively. Each particle

remembers its coordinates in the solution space where it has its best solution thus far,

24

which is called pBest, In addition to the best value, the PSO algorithm tracks the overall

best value and its location obtained by any particle in the population, which is called

gBest. When each particle keeps track of the local best solution West and the

neighborhood, in addition to pBest, the process is known as the local version of PSO.

Figure 2-3 summarizes the PSO algorithm.

Begin

Initialize an array ofparticle'spopulation with randompositions and velocities

in D-dimension;

Evaluatefitnessfor each particle;

While termination criteria is not met do {

For eachparticle {

Modify the velocityaccording to Eg (2);

Modify theposition according to Eg (3);

Update theparticle'spersonal best using the update rule;

}

For eachparticle {

Update the West;

Update the gBest;

}

}

End;

Figure 2-2 The PSO Algorithm
25

Taking a D-dimensional search space, the velocity andposition of the particle in the

^ dimension are updated according tothe following rules [32]:

Vj,d(t) = w Vj4(t-1) +cj rj^(pBestj,ei (t-1) -X^a (t-1)) + C2 r'j^d O^estj^d (t-1) -Xj^d (t-1)) (2)

Xj,d=Xj,d(t-l)+ Vj,d(t) (3)

where t is the iterationnumberor time, d is the dimensionof thej particle index, (cj, c^}

are the acceleration coefficients that adjust the weight between components, w is the

inertia weight, and (r, r') are two random factors, which are two random real numbers

in the range of(0,1). According tothe updated rule, each particle updates its velocity for

better movement around the search space, and the new velocity is used to find a new

position for theparticles, depending ona cost factor that controls this movement.

In addition to the standard version of PSO, the discrete version of PSO (DPSO) came

into existence because of different applications [61, 66]. Using DPSO, some changes

must bemade to facilitate theadaptation ofdiscrete space [67]. Owing to the restriction

of discrete component values in the system under test, we have selected DPSO in this

work. In fact, the DPSO procedure is similar to standard PSO. However, in standard

PSO, an array of particles is initialized, in which the values of the particles are

26

continuous and are not restricted. In DPSO, however, the values of the particles are

restricted [66].

Based on the aforementioned features and considering the generation of t-way and

variable strength test suites as optimization problem, this work has considered PSO as

the basis of PSTG.

2.4 Summary

In this chapter, the theoretical jframework and the survey of t-way strategies for both

uniform and variable interaction testing have been discussed. The adoption of PSO has

beenjustified including its features and advantages to be implemented for an interaction

testing strategy.

Building on that, the next section addresses the adoption of PSO in the proposed

strategy, PSTG. The next chapter illustrates the algorithms implemented in the strategy

and how PSO is implemented for PSTG.

27

CHAPTERS

DEVELOPMENT OF THE PSTG STRATEGY

In the previous chapter, the theoretical background, notations, and definitions for

interaction testinghave beenpresented. An extensive reviewof the existing literature on

/-way and variable-strength strategies and their applications in real world hasalso been

given. Moreover, justifications for the adoption of PSO in the proposed PSTG strategy

are provided. This chapter discusses the design and implementation of the PSTG

strategy including its corresponding algorithms. The chapter also describes how to

apply PSO inthe strategy and how to choose and setits design parameters properly.

3.1 Overview ofPSTG

This section describes the application of PSO in our proposed PSTG strategy. PSO is

adopted in an algorithm named the CA Generation Algorithm. The algorithm generates

testcases based on PSO in a greedy fashion. The fitness function is used to choose the

best particle. In our strategy, the fitness function is the number of interactions that the

particle can cover. Hence, in order to compute the fitness function for each particle, we

must first generate the Interaction Elements (lEs) and provide a mechanism for

computing the fitness function undertaken by the BE Generation Algorithm. Therefore,

the next sub-section describes the IE Generation Algorithm, after which the CA

Generation Algorithm is described.

28

3.1.1 The BE Generation Algorithm

As previously described, the number of covered IBs determines the fitness function in

PSTG. As such, generation of the EEs is required. To illustrate the generation algorithm

clearly, the left hand side of Figure 3 shows the flowchart of the EE generation

algorithm, whereas the right hand side of Figure 3 shows an example of the generation

process described in a step-by-step manner.

The algorithm receivesthe input of PSTG in the form ofthe CA, MCA, or VSCA. In all

cases, the algorithm scans the input to determine whether the input is of a uniform or

variable strength. In the case of a variable strength, the algorithm identifies and

separates the main and sub-configurations. However, in a uniform-strength case, the

algorithm skips this step directly and proceeds to the next step. For a better

understanding, we take a VSCA configuration as the example in Figure 3-1.

29

Gcnanle ih«

ntorsctlon ekim«nts

lor the main
Mcpngguratigfiim

tentlty eomponerjal
aluD», and tforsw|4«Ve

connauraUon 119

MnlaracUon alaman
forth* main

conflouratlon

Test Suite Generator Algorithm

Main conflfluntian

K1.K2.K3
Kl.Ka.K3

Figure 3-1 IE Generation Algorithm of PSTG

]o K2.K4

.2

After identifying the main and sub-configurations, the algorithm further identifies the

strength, components, and the values of each component for each configuration. From

the information gathered, the algorithm first generates the component combinations.

Based on these combinations, the IBs are generated. In the example in Figure 3, the

variable strength configuration VSCA (m; 2, 2^3\ {CA (3, 2^)) has four components

with strength two for the main configuration and three components with strength three

for the sub-configuration. The first three components have two values (0 and 1), and the

last componenthas three values (0, 1, and 2). The first three components are used for

the sub-configuration with strength three.

For each configuration, all binary number possibilities are generated. The number of

digits for the binary number is equal to the number of components, i.e., four digits for

the main-configuration and three digits for the sub-configuration here. Then, based on

the strength, the binary numbers are selected. The strength of the main-configuration is

two; thus, the binary numbers that contain two ones are selected. As an example, binary

number 0101 refers to the k2. k4 combination.

Based on the generated combinations of the components, the IBs are generated

accordingly. In the above example, strength two of the components has six possible

combinations. For combination 0101, whereby the second and fourth components are

available (i.e., k2 and k4), there are 2x3 possible EEs between them. For each

combination, the value of the corresponding component is included in the IBs. When

thecomponent is not available (i.e., incase of0 in the combination), the corresponding

31

values are marked as "don't care". This process is iteratively repeated for the other five

combinations for the main-configuration, i.e., (kl, k2), (kl, k3), (kl, k4), (k2, k3), and

(k3, k4) as well as for the sub-configuration, i.e., (kl, k2,k3).

Upon the generation of the DEs, each group of elements is stored in an indexed list

called Ps (Figure 3). The indexing reference of each combination is also stored in a

deferent list. The indexing reference represents two integer numbers that refer to the

start and the end of a given combination of lEs in the Ps list. Thus, the search for a

given IE can be performed efficiently and quickly.

3.2 The CA Generation Algorithm

The CA generation algorithm is performed immediately after the generation of the Ps

list. Theuseof thePs list is essential for computing the fitness factor. Thefitness factor

is used with PSO in a greedy fashion to identify the better particles. Owing to the

discrete component values, DPSO is adopted.

The CA generation algorithm is initialized by generating a random swarm search space.

The swarm search space takes the form of a D-dimensional vector, Xj= (Xj,i,

Xj,2,Xj,d , Xjj)), where each dimension represents a component and contains integer

numbers between 0 and (v,) (i.e., the number of values of the i*^ component). The

32

velocity of each particle is also simultaneously initialized with random integer numbers

(zero in our case).

As previously discussed, during the iteration of the algorithm, the velocity and the

position of the particles are updated according to equations (2) and (3) (i.e., when the

particle moves around in the search space). During the update process, there is a

possibility of producing non-integer velocities for the particles, leading to the

production ofnon-integer positions. To avoid such a situation, the velocity isrounded to

the nearest integer number.

Owing to the continuous space of the velocity, there is a possibility of producing

velocity values that cause the particles to fly outside the swarm during the iteration and

update process. As such, boundary conditions to restrict the values of tlie velocity to

both lower and higher bounds must be established. The boundary condition is set to Vi

max = Vi/2 because the particle dimensions are between 0 and vi. This is in accordance

with the recommendations in [68] and [61]. Hence, the velocity bound is between [-Vj

maxj Vjinax]*

By restricting the velocities to a certain boundary, the particles are also required to

avoid the appearance of invalid values of the components. Based on the previous

studies, there are three different boundary conditions for DPSO: invisible, reflecting,

and absorbing walls [32, 68]. In invisible walls, when the particle goes outside the

boundary and an invalid value ofthe particle appears, the corresponding fitness value is
33

not computed. In reflectingwalls, the motion of the particle is reversedwhen a particle

reaches the boundary. As a result, the particle is reflected back to the search space. In

absorbing walls, the velocity changes to zero in the dimension where the particle goes

outside.

In our case, the above-mentioned boundary conditions require time for generation, and

lead the particle away jfrom the component values. As such, we have configured our

boundary conditions in such a way that when the velocity reaches a certain dimension

bound, it continues its motion with the same velocity, starting from the other bound of

that dimension, byresetting the position tothe other endpoint As anexample, incase of

a parameter with a range ofvalues from 0 to3,when the position is greater than 3,the

position is reset to 0.

Selection of the personal best from the neighborhood represents another important

issue. Different topologies have been proposed to find pBest from its neighbor. In this

research, we have adopted the simplest topology as proposed by [68], i.e., the particles

in a swarm matrix or array choose the neighbors next to them.

The CA generation algorithm uses the aforementioned design to generate the final

optimized CA. Figure 3-2 summarizes the algorithm. The algorithm receives the Ps list

from the IEgeneration algorithm. Then, the algorithm randomly initializes each particle

with its associated component values. For each particle in the swarm search space, the

algorithm computes the weight ofcoverage using the check weight function. The check

34

weight function converts the given test case to its base BE, and returns the number of EEs

covered, i.e., when the weight equals six, six EEs can be covered by the candidate test

case. When the weight is equal to the maximum weight, i.e., the test case covers all the

component interactions of specific values, the algorithm directly considers that test case

as a row in the final CA, and removes the covered EEs. Otherwise, based on the result of

the check weight function, the algorithm chooses the test case that covers the most EEs

to be West. For the next iteration, the algorithm updates the positions of the particles

according to the update rule, considering the West value that has been achieved so far.

After updating the positions ofthe particles, the algorithm re-evaluates the particles, and

searches for a better West value. If a better West value is found, the new value is set as

the new West value replacing the old West value. This iteration continues until the end,

or until a better West value can no longer be obtained. In this case. West is set as gBest,

and the algorithm adds gBest to Ts of the output test cases, i.e., to form the final CA. At

the same time, the covered /-interaction elements are removed from Ps. The algorithm

continues until Ps becomes empty. Here, indexing is necessary in order to expedite the

process of finding the covered interaction.

35

Figure 3-2 A Flowchart of the PSTG CA GeneratorAlgorithm

3.3 PSTG Parameter Setting

Referring to PSO equations in Section 2.3, choosing suitable parameter values for the

parameters is necessary for achieving the best performance of PSO in different types of

applications, depending on the problem at hand. As discussed in previous studies,

selection of these parameters varies from one application to another, depending on the

problem [32, 63]. Therefore, in our case, selection of these parameters has to be

addressed.

Choosing a large velocity for the particles facilitates global exploration, whereas

choosing a small value facilitates local exploration. The inertia weight, w, is regarded as

a balance provider between the local and global exploration abilities. A good choice of

w results in a reduction of the number of iterations required to locate the optimum

solutions. In fact, the inertia weight has been designed to have a better control of the

particle velocity.

The learning factors, ci and C2, control the stochastic acceleration process of the

particles and attempt to pull each particle towards the best achieved solutions [32, 63].

Choosmg a low value for these parameters leads theparticle to move away significantly

from the target region. On the other hand, choosing a high value for these parameters

37

optimal sizes of 19, and 29, respectively [71, 72]. Figures 3-3 and 3-4 show the results

ofthe experiments.

W>IJ

W«M

w>u

W-1.7

W-M

-w»ai

W»OJ

w>u

W>OJ

Vf'Ot

W"».7

W-OJ

w-gj

at 02 M W M W U t 1.1 U U 1/i M U U t» 2 01

a&o CiaCt

Figure 3-3TheBestandAverage Sizes obtained withthe Variation Inertia Component
(w) and AccelerationCoefficients (ci, C2) for CA (N; 2,4

W'tJ

W-M

W«M

W'U
WaM

W-M

W-U

W-M

Cl&Q ClfiQ

Figure 3-4TheBestandAverage Sizes obtained withthe Variation Inertia Component
(w) and Acceleration Coefficients (ci, C2) for CA (N; 2, 5^)

39

W«OI

W-IJ
W-iJ

-H-W-1.7
W-U

W'tS

leads the particle to move sharply towards the target region. Thus, there must be a

balance in choosing these parameters.

In addition to the parameters mentioned above, the swarm search space and the iteration

number also represent important parameters that must be considered. A large iteration

number may consume more time without obtaining better solutions, whereas a small

iteration number may lead to interruption of transition of the particles whenthey try to

move through the best solutions. In the same way, a large swarm search space may

consume more time, whereas a small search space may hinder the appearance of some

good solutions.

According to [32, 61], PSO performs well when (ci,C2) are set between 0.5 and 2.

Therefore, this range is used as the basis for the parameter-tuning process. The tuning

processof (ci, C2) and w is performed with largevalues ofrepetitionand the swarmsize,

i.e., 60 and 200, respectively, to ensure the appearance of the mostoptimal particles in

the swarm search space. We have adopted the experiments undertaken by Stardom [56]

for SA, GA, and TS parameter setting, while taking into account the parameter setting

for PSO in the literature [61, 69, 70]. The experiments are performed to determine the

optimal size of the CA by fixing cj and C2 and by varying w, and then performing the

reverse experiment. Here, to have a better statistical significance, each experiment is

repeated 80 times and the best and average sizes are recorded. Two well-known CAs

are used as the base problem for construction: CA (N; 2, 4 \ and CA (N; 2, 5^), with

38

values deduced earlier [i.e., (c,, 02) =1.375 and w = 0.3]. Various values of the swarm

size and repetition are then tested by fixing the swarm size and by varying the

repetition, and then performing the reverse experiment. The average generation time is

recorded in order to determine its effects with the variation of the swarm size and

repetition. All experiments employ the two CAs used earlier, i.e., CA (N; 2, 4), and

CA (N; 2, 5''). Figures 3-5 and 3-6 depict the best and average test sizes obtained with

the variation of the swarm size and repetition, whilst Figures 3-7 and 3-8 depict the

average generation time obtained with the variation ofthe swarm size and repetition.

tl M

ShirdSIb

Figure 3-5 The Best and Average Sizes obtained with the Variation of Swarm Size and
Repetition for CA(N;2,4

41

As shown in Figures 3-3 and 3-4, the acceleration coefficients (ci and C2) and their

respective inertia weight (w) have a direct impact on the size obtained. The strategy

generates poor results for the range of (ci, C2) greater than 0.1 and smaller than 1,

whereas itperforms well in case of(ci, C2) smaller than 1when wincreases towards 0.9.

The interpretation of this observation is that the strategy seems to trust the global

solution of (ci, C2) smaller than 1. Nevertheless, the strategy tends to facilitate local

solutions, leading towards better choices oftest cases, as wapproaches 0.9.

However, because the range ofwis greater than 0.7 and (ci, C2) are greater than 1.6, the

strategy is either unable to generate any results, or ittakes a long time to generate (non-

optimal) results, which are not plotted in Figures 3-3 and 3-4. This observation implies

that, with increasing w, the particle tends to go out ofthe search space faster, thereby

hindering the appearance of some solutions. The strategy appears to be effective by

forcing the particle to return it to the search space, thereby rendering inability, or taking

a longtimeto reach the desired solution.

Based on the aforementioned discussion, a good choice for (ci, C2) would be a value

greater than 1.2 and smaller than 1.4, whereas the suggested value of w would be

between 0.2 and 0.5. Specifically, (ci, C2) =1.375 and w=0.3 give the best result.

After determining the suitable choices for wand (ci, C2), itis necessary to determine the

swarm size and repetition. During the process, the values ofc and ware fixed to the
40

l/t 43

61 61

SwarmSitt

Figure 3-6 The Best and Average Sizes obtained with the Variation of Swarm Size and
Repetition forCA (N; 2, 5)

R-ll

R-ll

SmraaSixe

Figure 3-7 Average Generation Time obtained in second wi^ the Variation ofSwarm
Size and Repetition for CA(N; 2,4)

42

R-12

R-14

R>16

30 40 50 50 70 10 .90 100 110 129 130 140 ISO 1C0 170
SmmnSIze

Figure 3-8 Average Generation Time obtained in second with the Variation ofSwarm
Size and Repetition for CA (N; 2, 5^)

Figures 3-5 and 3-6 reveal that there is a trade-off between the swarm size and

repetition. From the results, one can observe that, because ofthe larger search space, the

increase in the swarm size leads to an improvement in the generated CA size. This

improvement is not linear with the swarm size because sufficient repetitions are needed

for the appearance ofgood solutions. However, it is noticeable from Figures 3-7 and 3-8

that the average generation time increases linearly with the swarm size and repetition.

From Figures 3-5 and 3-6, the best size is obtained from 80 repetitions. In the case of

CA (N; 2, 4^), the best size is obtained when the swarm size is 80. In contrast, in the

case of CA (N; 2, 5^), the best size is obtained when the swarm size is 90. After

obtaining these values of iteration and swarm size, no significant improvements in the

overall test sizes have been observed. This observation is because the result of the

43

strategy has arrived at the theoretical optimal sizes [19 in case of CA (N; 2, 4^), and 29

in case ofCA (N; 2, 5"')]. There is a need to allow sufficient repetitions and swarm size

to increase the chances of finding good (and optimal) sizes. For this reason, we have

chosen 20 repetitions with a swarm size of 160 particles for all configurations. By

choosing these values, we can also achieve a reasonable generation time, as shown in

Figures 3-7 and 3-8.

3.4 Summary

The design and implementation of the PSTG strategy have been presented in this

chapter. Specifically, the chapter presents the main algorithms of the strategy and

illustrates how these algorithms are related to each other. The chapter also shows how

PSO is used in the strategy to optimize the size ofthe generated test suite. In addition,

the PSO parameter tuning process is also presented to ensure an optimal setting for

better optimization ofthe strategy. The next chapter presents the experimental results of

the evaluation process for the PSTGstrategy.

44

CHAPTER 4

EVALUATION

Chapter 3 has illustrated the design and implementation of the PSTG strategy.

Moreover, the design parameter setting of the strategy has been given in the chapter

also. To characterize the performance ofthe strategy, this chapter presents the results of

an extensive evaluation and characterization experimental process. The experiments are

divided into three essential parts. In the first part, the /-way comparative experiments

are performed to evaluate the proposed PSTG strategy in term ofthe generated test suite

size. Then, the variable-strength experiments are carried out to compare against existing

strategies. In both cases, the benchmarking process considers the existing AI- and

computational-based strategies for comparison. The final part presents an empirical case

study that was conducted on a non-trivial software system to show the applicability of

the strategy and to determine the effectiveness of the generated test suites to detect

faults.

4.1 Experimental Setup

For the first and the second parts of the experiments, the environment consists of a

desktop PC with Wmdows 7, 2.8 GHz Core 2 Duo CPU, 3 GB of RAM, while the

experimental environment for the third part consists of a a desktop PC with Ubuntu

45

10.10 operating system with gcc 4.4.5, 1.73 GHz Centrino Duo CPU, and 1 GB of

RAM.

Throughout the experiments, each table represents the smallest test suite size obtained.

The darkened cells with bold numbers show the best results obtained for the test

configurations. Cells marked NA (Not Available) indicate that the results are

unavailable for more than a week or it is not available from the literature, and cells

marked NS (Not Supported) indicate that the tool is unable to generate the test case for

a specific configuration.

All the Al-based strategies and some of the computational-based strategies produce

non-deterministic results because they depend on some degree of randomness. The

published results of those strategies were achieved by running each configuration 10

times and selecting the smaller size, which is considered the best test suite size (Cohen

et al., 2003, Wang et al., 2008, Chen et al., 2009, Renee et al., 2007). However, for the

other strategies, one run is sufficient because they do not depend on randomness and

instead produce deterministic results. Since PSTG produces non-deterministic results,

all configurations are executed 10 times to select the best test suite size.

4.2 The /-way Comparative Experiments

Here, basically the experiments are divided into two parts. The first part deals with

evaluation and comparison of PSTG with existing published results from Al-based
46

strategies. As the generated test size is not influenced by the system specifications, the

results are compared directly with those existing published results. The second part

deals with comparison ofPSTG with other computational-based strategies.

4.2.1 Comparing PSTGwith Existing Al-based Strategies

At this stage of the experiments, the results are compared directly with those of SA,

GA, and ACA, as published in (Shiba etal., 2004). In addition, the AETG and mAETG

results are taken into account because both GA and ACA results are derived from them.

The original results ofAETG and mAETG are taken from (Cohen, 2004). Table 4-1

shows the sizes of the smallest test set generated by each strategy for 2 < t < 3.

Table 4-1 Comparison withExisting AI-Based Strategies

Confieurations

CA

CA

CA

MCA

MCA

MCA

MCA

MCA

MCA

MCA(N:2.r 6' 5' 4° 3^2

AETG I mAETG I GA I SA | ACA [PST^
JZI'[IZfIT]13ZlIIZ [[i:i:r[ir

O'l! ' II 17 17_ 16 17 17

NA NA NA 13 15

NA NA L'fe] NA 159 163

teos- 198 227 183 225 229

198 NA 152 125 167

47 38 33 33 42

105 77 RHI 102

1508 1473 1501 m 1496 1506

229 218 218 EMM 218 229

343 330 331 330 338

NA 377 r mm 361 385

30 25 26 |2T 25 28

NA 114 108 llOO' 106 112

41 34 37 ijM 37 40

19 r".oijinPT 16 21

34 35 33 IKcill 32 39

45 44 r .-ij" •vir 48

In these configurations, PSTG performs poorly. Putting PSTG aside, if SA, GA, ACA,

mAETG, and AETG are taken into account, clearly GA and ACA generate slightly

better test sizes than AETG and mAETG for these configurations. Owing to its large

random space, SAgenerates thebestresults inmost cases.

The design and implementation ofboth GA and ACA mainly depend on the AETG

algorithm. Here, GA and ACA are summoned after AETG. As illustrated in Chapter 2,

the jOnal test suite is further optimized by a"compaction algorithm" that merges the test

cases for optimality. As aresult, the underlying performances ofboth GA and ACA are

notclear despite showing good results.

Concerning SA, despite producing the best overall result, to the best of our knowledge,

there appears to be no reported SA results for f>3 in any configurations in the literature.

For this reason, the performance ofSA for high interaction strengths is unknown.

4.2.2 Comparing PSTG with Computational-based Strategies

To further demonstrate the performance in terms oftest suites sizes, PSTG is compared

with other well-known computational-based strategies, including Jenny (Jenkins, 2005

), TConfig (Williams, 2008), ITCH (Hartman, 2005), PICT (Czerwonka, 2008), TVG

(Arshem, 2009), CTX-XL (2003), and IPOG (Kuhn, 2009). All the tools are

downloaded and implemented within the aforementioned environment. The comparison

48

aims to study the growth in the size ofthe test suites generated in terms of strength of

coverage (/), the number ofparameters (P), and the number ofvalues (V).

To facilitate the comparison, different sets of experiments are established by adopting

and extending the experiments conducted by (Lei etal., 2008, Lei etal., 2007, Calvagna

and Gargantini, 2009) as well as by Bryce et al (2005). The experiments consist of

seven sets ofcomparison, as follows:

)

i. Experiment 1: The number ofparameters (P) and the parameters' values (V)

are constant withthe variation of the interaction strength (t) from 2 to 6.

ii. Experiment 2: The interaction strength (/) and the parameters' values (V) are

set to4 and 5respectively with the variation ofthe parameter number (P) from 5

to 12.

iii. Experiment 3: The number ofparameter (P) and the interaction strength (t) are

set to 10 and 4 respectively, but the parameters' values (V) are varied from 2 to

6.

) iv. Experiment 4; Five system configurations with mixed variable sizes with the

constant interaction strength (/) set to 4.

V. Experiment 5: The number of parameters' values (V) is set to 3 and the

interaction strength (t) is varied from 2 to 6, while the parameter number (P) is

varied from 3 to 12foreach value of the interaction strength.

49

vi. Experiment 6: The number of parameters (P) is set to 7 and the interaction

strength (/) is varied from 2 to 6, while the number ofparameters' values (V) is

varied from 2 to 5 for each value ofthe interaction strength.

vii. Experiment 7: Four real-world software system configurations are adopted.

The four real-world software system configurations that are adopted inthe Experiment

7 are: Basic Billing System (BBS), Traflhc Collision Avoidance System (TCAS),

Mobile Phone, and Spin Simulator. BBS is a model ofa basic telephone billing system

consisting offour components. Each component has three values, as used in (Lott et al.,

2005). TCAS represents the specification model of a software module part for 12

parameters (two 10-value parameters, one 4-value parameters, two 3-value parameters,

and seven 2-value parameters), as presented in (Lei et al., 2007, Kuhn and Okum,

2006). In addition, the Mobile Phone example, as presented in (Cohen et al., 2007,

Calvagna and Gargantini, 2009), models real-world mobile phone optional features in

five parameters (two 2-value parameters, and three 3-value parameters). Finally, the

Spin Simulator is a model-checking tool, as presented in (Holzmann, 1997, Calvagna

and Gargantini, 2009). The tool is publicly available for use as a simulator undertaking

the state machine run, orasa verifier used for specification properties check.

Tables 4-2 to 4-8 summarize the results for each stage of the above experiments

respectively.

50

T
ab

le
4-

2
P&

V
C

on
st

an
ts

(1
0,

5)
,B

ut
tV

ar
ie

d
to

6

t-
w

a
y

Je
n

n
y

T
C

o
n

jB
H

IT
C

H
P

IC
T

T
V

G
C

T
E

-X
L

IP
O

G
P

S
T

G

S
iz

e
S

iz
e

S
iz

e
S

iz
e

S
iz

e
S

iz
e

S
iz

e
S

iz
e

2
*[•

tn
r
-

4
8

4
7

5
0

5
0

5
0

3
2

9
0

3
1

2
3

1
0

3
4

2
3

4
7

3
1

3
2

8
7

4
1

7
1

9
1

8
7

8
1

7
5

0
1

8
1

2
1

9
7

1
N

S
1

9
6

5
i

W
im

!

5
9

4
3

7
N

A
N

S
9

7
0

6
N

A
N

S
1

1
0

0
9

1

6
N

A
N

A
N

S
N

A
N

S
5

7
2

9
0

5
0

3
5

0

T
ab

le
4-

3
f&

V
C

on
st

an
ts

(4
,5

),
B

ut
P

V
ar

ie
d

P
Je

n
n

y
T

C
o

n
fi

g
IT

C
H

P
IC

T
T

V
G

IP
O

G
P

S
T

G

S
iz

e
S

iz
e

S
iz

e
S

iz
e

S
iz

e
S

iz
e

S
iz

e

5
8

3
7

7
7

3
8

1
0

8
4

9
9

0
8

7
7

9

6
1

0
7

4
1

0
9

2
1

0
7

2
1

1
2

8
1

2
3

9
1

0
0

1

7
1

2
4

8
1

3
2

0
1

7
5

0
1

2
7

9
1

3
8

4
1

3
4

9

8
1

4
2

4
1

5
3

2
1

7
5

0
1

4
6

8
1

5
9

5
1

7
9

2
-ii

^4
a!

7H
9

1
5

7
8

1
7

2
4

1
7

5
0

1
6

4
3

1
7

9
5

1
7

9
3

\-
m

n
m

1
0

1
7

9
1

1
8

7
8

1
7

5
0

1
8

1
2

1
9

7
1

1
9

6
5

1
1

1
8

3
9

2
0

3
8

1
9

5
7

2
1

2
2

2
0

9
1

1
9

0
2

1
2

1
9

6
4

N
A

i
m

sj
®

1
2

1
0

3
2

2
6

8
2

2
8

5
2

0
1

5

5
1

Table 4-4 V&tConstants (10,4), But V Varied

V
Jenny TConfig ITCH PICT TVG IPOG PSTG

Size Size Size Size Size Size Size

2 39 45 58 43 40 49

3 221 235 336 231 228 241

4 703 718 704 742 782 707

5 1719 1878 1750 1812 1917 1965 1 'IMBr i

6 NA NA 3735 4159 3935 3880

Table 4-5 Five Multi Domain Configurations

Configurations
Jenny TConfig ITCH PICT TVG IPOG PSTG

Size Size Size Size Size Size Size

MCA(N;4,3'4®) 457 499 704 487 463 447

MCA (N;4,5' 3' 2^) 303 302 1683 310 313 324

MCA(N;4,8^7n^5^) 4580 4317 4565 5124 4776 4506

MCA(Ni4,6=5'3^) 3033 NA NA 2881 3273 3154

MCA (N;4,10* 9' 8' 7' 6' 5* 4' 3' 2') 6138 5495 5922 5916 6698 5906

52

Table 4-6 Variable Number ofParameters
[I I Jennv I TConfie I ITCH

3 10 I 9..,

34

40

51

51

58

9 I 62
10 65

11 65

12 68

10 221

11 236

12 252

6 348

477

583

684

10 714 773

11 791 858

12 850 938

1087

1515

1931

10 2160 NA

II 2459 NA

12 2757 NA

3< P <12, Each With 3 Values t Varied to 6
PICT ITVG I CTE-XL IEPOG IPSTG"

' 9

Iran

Ta
bl

e
4-

7
Se

ve
n

Pa
ra

m
et

er
s,

Ea
ch

H
av

in
g

V
ar

ia
bl

e
N

um
be

ro
fV

al
ue

s
2<

V
<5

,W
ith

tV
ar

ie
d

to
6

V
-Je

n
n

y
T

C
o

n
fI

g

S
iz

e
S

iz
e

2
8

7
^

3
1

6
i-

1
5

5

4
2

8
2

8

5
-̂^

3
7

^
4

0

1
4

1
6

5
1

5
5

1
2

4
1

1
2

5
2

3
6

2
3

9

3
1

3
6

1
6

9
1

6
6

5
1

7
5

6
8

i
5

1
2

4
8

1
3

2
0

Q
5

7
5

6

a
4

5
8

A
ll

a
1

9
3

8

5
5

8
9

5
N

A

B
8

7

B
1

0
8

7

D
6

1
2

7
N

A

5
2

3
4

9
2

N
A

P
IC

T
T

V
G

C
T

E
-X

L

S
iz

e
S

iz
e

S
iz

e

7
7

8

16
I
S

5
'

16
2

7
2

7
3

0

4
0

4
2

4
2

1
5

1
5

5
1

5
5

1
2

4
1

3
4

2
4

1
2

6
0

3
2

3
1

1
6

8
1

6
7

5
2

9
5

5
9

1
2

7
9

1
3

8
5

5
7

5
9

4
5

2
4

6
4

1
9

3
3

2
0

1
0

5
8

1
4

6
2

5
7

7
2

7
8

1
0

1
5

1
0

1
6

5
8

4
7

5
9

7
8

2
2

5
0

2
2

3
2

1
8

IP
O

G

S
iz

e

8 1
7

2
8

4
2

1
9

5
7

2
0

8

2
7

5

4
8

5
0

9

1
3

4
9

1
2

8

2
8

5
1

3

P
S

T
G

S
iz

e

'6
.

s

•1
5

L

2
6

3
7

^

Table 4-8 Four Real-World Software System Configurations, With t Varied to 6

BBS

TCAS

Mobile

Phone

Spin
Simulator

BBS

TCAS

Mobile

Phone

Spin
Simulator

TCAS

Mobile

Phone

Spin
Simulator

TCAS

Spin
Simulator

TCAS

Spin
Simulator

2"^3M'10'

2233

XH §O g

(/) </) £/) (/)

R' R- R- fi
re re re

9 13 12 10

109 120 .'TOO

12 15 10

100 loor 100'

27 26

39 1 27

400

D
a 101

1377 1520

Q 54

341 380

4283 4566

1243 1270

11939 11743

3516 3648

34 32 34 32 37

413 472 2388 434 426

29 30 45 29 30 32

111 113 196 96 111 113

1536 1548 1484 1369 1 1599

59 56 138 59 55
NS

412 427 1296 353

4621 NA 4773

1304 NA
NS

1185 i'842,
NS

11625 NA NA

3538 NA
NS

NA
NS

Table 4-2 shows that ITCH produces satisfactory results with small values of t (i.e.,

/<4); however, no outputs are produced by ITCH after /=4 because it does not support

the case />4. Similar to ITCH, CTE-XL does not provide the support for f>3 but it can

generate satisfactory result for t=2 and 3. TConfig and TVG provide the support for the

case />4 but also they do not produce any specific results incase of/>4 for these testing

configurations. Jenny produces areasonable result with t=S\ however, itfails to produce

any results with r=6. Although it does not generate any optimal solutions in all

configurations, BPOG seems to be the only strategy that can generate test suite at/=6.

For the configuration in Table 4-3, the results for CTE-XL are not reported because it

does not support t>2>. ITCH produces the most optimal test sizes for P—5, P=6, P=ll,

and P=12. Jenny, PICT, TVG, and IPOG still produce satisfactory results but could not

produce any optimal results for these configurations. It is noticeable that TConfig could

not generate any specific results for P=12, although itgenerated reasonable results for

the other parameters. PSTG produces the most optimal test sizes for P=7 to P—10.

Table 4-4 examines the sizes ofthe generated test suites by the strategies and tools with

the values (V) growing. Here, ITCH generate mixed results, i.e., in some case, the

generated test suite size is satisfactory compared with the other tools and strategies,

while in some other cases, the generated testsuite size is bigger than the others. In case

of V=6, ITCH could not produce any specific result although it is support r=4. The

strategies PICT, TVG, and TConfig also produced reasonable results but they could not

produce any optimal results for these values. In addition, TConfig failed to produce the
56

test suite size in case of V=6. In another hand IPOG and Jenny produced better results

than the aforementioned strategies in most cases. IPOG does not produce any optimal

results, while Jenny produced the optimal test suite size in case of V=6. However, in

mostcases, PSTG produce optimal test suite sizes.

In the Tables 4-2 to 4-4, PSTG produces competitive results, and is able to compete

with other strategies inmost cases. Notably, the test sizes ofPSTG grow exponentially

and logarithmically as the number oft, parameters, and values increase in line with the

theoretical value of O (vMog p) (Lei et al.,2007).

Considering multiple-domain (Mixed values) configurations in Table 4-5, PSTG

appears to scale well against most other strategies in all configurations. In the case

where PSTG is not the best, the test sizesare stillwithinan acceptable value. The other

strategies could generate optimal results for some of the configurations and failed to

generate optimal sizes for some other configurations.

Based on the results obtained in Tables 4-6 to 4-8, CTE-XL generates satisfactory

results in most cases. However, it is unable to generate competitive results in some

cases. In addition, CTE-XL is unable to support values of t higher than 3. Similarly,

TConfig, PICT, TVG, and Jenny produce satisfactory results in most cases. In fact, they

produce optimal results for some cases. However, referring to certain test cases in the

tables, these strategies failed to produce specific results when t=6. IPOG performs well

for all values of t, although they do not generate the optimal solution in most cases.
57

However, IPOG seems to generate satisfactory results in cases of multi-domain

configurations, as in the real-world systems in Table 4-8. ITCH generates satisfactory

results for small values oft. However, it is unable to support values of t higher than 4.

Overall, the PSTG strategy outperforms other strategies in most ofthe configurations.

In cases where the best results are not generated, the test suite size generated by PSTG

is within an acceptable value and more competitive than most ofthe other strategies.

4.3 Variable-StrengthComparativeExperiments

To benchmark against other variable-strength strategies, PSTG is compared with other

available strategies that support the variable-strength test suite construction, including

PICT, SA, ACS, TVG, Density, ParaOrder, ITCH, CTE-XL, and IPOG. Here also, the

comparison aims to investigate the PSTG*s generated test suite size against other

strategies based on well-known benchmark configurations.

SA, ACS, Density, and ParaOrder strategies are not available for implementation and

have little evidence to support them. Hence, results are directly compared with

published results for strategies in Chen et al., Cohen et al., and Wang et al. (Cohen et

al., 2003, Wang et al., 2008, Chen et al., 2009). The comparison is fair because the

generated test size is not influenced by system specifications. However, publicly

58

available PICT, TVG, ITCH, CTE-XL, and IPOG strategies were implemented within

the aforementioned environment.

The experiments consist of six sets of comparisons. For the first three sets, three

available experiments conducted by Cohen (Cohen et al., 2003, Cohen, 2004) are

adopted. In addition, the comparison results achieved by Wang etal. (2008) and Chen et

al.(2009) for these experiments are included. However, as mentioned earlier, previous

studies do not consider higher interactions. Thus, the experiments are extended to

consider this situation also. Forthe otherthree experiments, three system configurations

are adopted and several variable-strength settings are considered, particularly for high

interaction strengths of tm and ts. In the first three sets of the experiments, most of the

available and published strategies thatsupport variable-strength test suite constructions

were considered, i.e., ITCH, PICT, TVG, CTE-XL, ACS, SA, Density, ParaOrder, and

IPOG. However, in the next three sets of the experiments, available strategies for

implementation were merely considered, i.e., PICT, TVG, ITCH, and IPOG. The CTE-

XL strategy is not considered also in the last three sets of the experiments because it

does not support interaction strength higher than three. Tables 4-9 to 4-14 summarize

the results obtained for these experiments.

59

Ta
ble

4-
9

Si
ze

so
fV

ar
iab

le-
St

re
ng

th
In

ter
ac

tio
na

lT
es

tS
uit

es
fo

rt
he

Co
nf

igu
rat

ion
VS

CA
(m

;2
,3

^^
,{

C}
)

C
on

fi
gu

ra
ti

on
V

SC
A

(m
;2

,3
'^

,a
)

IT
C

H
P

IC
T

T
V

G
C

T
E

-X
L

A
C

S
S

A
D

en
si

ty
P

a
ra

O
rd

e
r

IP
O

G
P

S
T

G

0
3

1
3

5
2

2
2

1
1

9
M

M
2

1
3

3
2

1
1

9

C
A

(3
,3

^
4

8
8

1
2

8
•*

-
!

2
8

C
A

(3
,3

Y
5

9
7

2
9

3
0

3
1

=1
2

8
3

3
3

0

C
A

(3
,3

Y
6

9
7

8
5

3
0

3
1

W
^

r\
2

8
3

3
3

3

C
A

(3
,3

^
5

9
1

0
5

3
5

3
6

IM
"
:!

*
.
i

3
2

p
'm

•••
1

3
9

3
0

C
A

(3
,3

S
6

2
1

3
1

4
1

4
3

3
8

4
0

4
5

3
9

3
8

C
A

(4
,3

'^
1

0
3

2
4

5
N

S
N

A
N

A
N

A
N

A
a
®

z
l

C
A

(4
,3

°)
1

1
8

3
0

1
1

0
3

N
S

N
A

N
A

N
A

N
A

1
2

2
w

*

C
A

(4
,3

')
1

8
9

5
0

5
1

6
8

N
S

N
A

N
A

N
A

N
A

1
8

1
K

O
M

S
H

C
A

(S
,3

')
2

6
1

7
3

0
E

iS
j

N
S

N
A

N
A

N
A

N
A

L
li

fc
i

B
8

i8
M

C
A

(5
,3

')
4

8
1

1
3

5
6

4
6

2
N

S
N

A
N

A
N

A
N

A
5

8
1

C
A

(6
,3

')
7

4
5

2
1

8
7

N
S

N
A

N
A

N
A

N
A

1

C
A

(6
,3

')
1

0
5

0
3

0
4

5
1

0
2

8
N

S
N

A
N

A
N

A
N

A
1

1
9

6

C
A

(3
,3

'^
C

A
(3

,3
^

C
A

(3
,3

^
1

1
4

1
3

7
6

5
3

4
9

4
0

[W:
4

6
4

4
5

1
4

5

C
A

(3
,3

'^
6

1
1

4
6

4
8

4
9

4
5

r
*

4
6

4
9

5
3

4
5

C
A

(3
,3

'')
6

8
1

5
4

5
4

5
5

4
8

H
M

5
3

5
4

5
8

4
9

CA
(3

,3
=^

9
4

1
7

7
6

2
6

5
5

7
6

0
6

2
6

5
5

7

C
A

(3
,3

'')
1

3
2

8
3

8
1

8
7

7
6

7
0

8
2

N
S

7
4

6
0

Table 4-10 Sizes of Variable-Strength Interactional Test Suites for the Configuration VSCA (m; 2,4^ 5^ 6^ {C})

0

OA(3,4'r~
MCA (3,4' ^

CA (3, 5")^
MCA (4, 4' ^
MCA (5,4'?)

CA(3,4-')
CA (3, 5^)

MCA (4,4' 5')
MCA (4, SW)

CA(3,4-')
MCA (4,5^6^)

CA(3,4')
MCA (5, 5^ 6^)
MCA (4,4'^
MCA(5,4-*"^

MCA (3,4' 5' 6'
MCA (3, 5'"^

MCA (3,4' 5' 6'

ITCH

48

97

164

145

354

1639

Configuration VSCA (m; 2,4 5 6 , (Cj)
PICT ITVG ICTE-XL 1ACS I SA IDensit

43 44 47 41 ^36 41
384 67 67 64 £64 ___64_

781 132 134 104 SlOO 131

1220 288000 ^900

48000 ^SO'I
•m' ''

4569 288000 ©500

510 2874 496

2520 15048 2592

254 1266 237

188 900 gHa
312 261 302

NA NA

NA NA

NA NA

NA NA

NA |NA
201

ParaOrder IPOG PSTG

900 900

512 472

2763 2430

Ta
ble

4-1
1

Siz
es

Of
Va

ria
ble

-S
tre

ng
th

In
ter

ac
tio

na
lT

es
tS

uit
es

fo
rt

he
Co

nf
igu

rat
ion

an
dV

SC
A

(m
;2

,3^
°1

0^
,{

C}
)

1
C

on
fi

gu
ra

ti
on

V
SC

A
(m

;
2,

3^
"

10
^,

fC
))

(C
)

IT
C

H
P

IC
T

T
V

G
C

T
E

-X
L

A
C

S
S

A
D

e
n

si
ty

P
a
ra

O
rd

e
r

IP
O

G
P

S
T

G

0
N

A
1

0
1

1
0

8
f

""
"i

ro
T

S
)''

^'
ir

•
"

"M
O

T
•

1
10

1
1

1
0

2

C
A

(3
,3

^"
)

N
A

9
4

0
1

0
3

1
2

1
l-

M
O

l
1

39
®

))
\

1
0

3
[

n
m

s
m

1
0

5

M
C

A
f3

,3
^

",
10

^)
N

A
4

2
3

4
2

3
5

0
9

3
9

6
B

fO
ll

4
0

1
4

4
2

N
S

4
8

1

M
C

A
(4

,3
^

10
^)

N
A

8
1

0
N

S
N

A
N

A
N

A
N

A
2

7
3

M
C

A
(5

,3
^

10
^)

N
A

2
8

0
0

M
E

N
S

N
A

N
A

N
A

N
A

[
W

S
S

S
M

.r
j

M
C

A
(6

,3
\

10
^)

N
A

N
A

i
s
a
m

i
N

S
N

A
N

A
N

A
N

A
r
m

m
iH

»
0

1
0

}
-

1

6
2

Table4-12TestSizeforVariable-StrengthConfigurationVSCA(m;3,,{C})

ConfigurationVSCA(m;3,3*^,(Cj)
iC)ncHPICTTVGIPOGPSTG

075838482

CA(4,3'*)12915079391

CAf4,3Y1831974997IMlQiMUMi

CAf4,3V23753144197106

CA(4,3YCA(3,3^)237NA98106

CAf5,3^2735366244r"i^E
CA(5,3Y459177300250isMii

CA(5,3Y645NA1M261

CAf6,3'^75912609L®)Jf
CAf6,3Y1431NAf'̂3(1iL]744734

CA(6,3TCA(3,3^)1431NAmm744734

CA(4,3^1511793118119iiMiiS

CA(5,3'^2875387323337yi

CA(6,3')10441679210181215

CA(4,3')2192781168183

CA(4,3'')2893095214227

CA(4,3^h3542824256259

CA(4,3^^498NS327NS

CA(5,3^)4817475471713L*.::
CA(5,3'')6208690556714

CAf5,3''S8689774745862iK.;.:
CA(5,3^')NA89099251130

CA(5,3'^NANSNANSP([02%
CA(6,3'')15132283314792108

CA(6,3'')19642672518402124

CA(3,3^)CA(4,3")CA(5,3^^NA331419

63

Table 4-13 Test Size for Variable-Strength Configuration VSCA (m; 3, 4^ 3"^ 2^, {C})

Configuration VSCA (m; 3,4 3 2
(C> IITCH IPIC
0 112 72

MCA (4,4' 3'

ITCH PICT TVG IPOG PSTG
112 72 70 73 ""65 i
193 I 1377 I 111 rids 108 B
112 72 70 73

193 1377 111

00
•031—1

j

253 17496 112

217 1500 141 149

226 1547 183 207

307 NS 141 149

482 NS 325 mm

MCA (4,4' 30 CA (4,3 108 I
136

MCA (4,4^ 3
MCA (4,4^ 30 MCA (5,3'2
MCA (5,4' 30 MCA (5,3^2^

Table 4-14 Test Size for Variable-Strength Configuration VSCA (m; 2,10^ 9' S' f 6' 5'
4' 3'2^{C})

Configuration VSCA
|C)
0

MCA 13,10^ 9^ 8^

(m; 2,10^ 9^ 8^ 7^ 6^ 5^ 4^ 3'2^(C|)
ITCH I PICT ITVG IIPOG IPSTG

119 102 99 91 " 97
765 I 31256 |i720 | 7^_ 720 .

221 i

MCA (3,10^ 9^ 8^)
MCA (3,7^ 6^ 5^)
MCA (3,10^ 9^ 8^)

MCA (6,7^ 6^ 5^ 4^ 3^ 2*)

MCA(3,10^ 9^ 8^)
MCA(3, t 6^ 5^)
MCA(3,4^ 3^ 2^)

MCA(4,5^ 4^ 3^ 2^)
MCA (5,10' 9' 4' 3' 2

mil301 19515 i

140 2397

806 22878

947 NA

5803 NA

968 NA

237 1200

2276 124157

5157 NA

TO/ "'
^26" 720

Referring to the comparative results in Tables 4-9 to 4-11, when the strength of the

interactions is small, such as in cases of small strengths (maximum two for tm and three

for ts), SA frequently generates optimum results, and PICT generates the worst results.

For the same configurations, ParaOrder, Density, TVG, and ITCH appear to generate

satisfactory results most ofthe time. IPOG also generate reasonable results; however, the

results are worse than those achieved byParaOrder, albeit they use the same method of

generation. PSTG and ACS generate results either equal or close to the results obtained

by SA. Moreover, PSTG generates results similar to or more optimal than ACS.

Considering the configurations with interaction strengths higher than three, the results are

unavailable for ParaOrder, Density, ACS, and SA. For the remaining implemented

strategies, PICT still produces the worst results for most configurations, whereas PSTG

produces the most optimal results. ITCH, TVG, and IPOG produce satisfactory results.

TVG and IPOG frequently yield comparable results. PICT and IPOG are unable to

produce results when the main and sub-configurations strength (tm and ts) are equal; as

mentioned, such casesare marked NS in the tables.

In cases with higher strength configurations, as shown in Tables 4-12 to 4-14, merely the

results ofPICT, TVG, ITCH, and IPOG are reported, which are the only strategies that

address this situation, to provide a comparison with PSTG. For these configurations,

PICT still produces the worst results for most of the configurations, whereas PSTG
65

produces the most optimal results. TVG and IPOG produce satisfactory results; however,

TVG generates results that are either similar to or comparable with those ofPSTG in

some cases.

4.4 Analysing theResults from ^-way and Variable-Strength Experiments

In accordance with the /-way and variable-strength results, the strategies that generate

satisfactory results in cases of/-way are not necessarily appropriate for the generation of

variable-strength. In addition, fmding ageneral strategy for the construction ofboth cases

is difficult. For example, the results show that, although PICT generates reasonable

results for /-way cases, it is not effective for variable-strength cases. The main reason is

the construction algorithm wherein each parameter is independent, which leads to the loss

ofthe ability to nest the parameters (Czerwonka, 2006). The problem ofindependence of

the parameters can be solved by defining some negative values, such that a test case can

only have one negative value appearing in a given test. However, this method is more

restricted than nesting parameters because it is only applied to failure testing (Barrett and

Dvorak, 2009). This, in turn, requires the construction method to generate more test

cases, such as the construction of independent /-way test suite for the main and sub-

configurations.

66

SA, on the other hand, often achieves small test sizes for most of the configurations,

when the interaction strengths for the main and sub configurations are two and three,

respectively. This optimality is owing to the use ofthe binary search process with a large

random generated search space. Nevertheless, this construction method is time-

consuming, particularly for interactions higher than three, or for more complicated

configurations.

ACS also generates satisfactory results. In some cases, its results are similar or close to

those from SA. However, in the implementation stage, the final test suite, which is the

outcome of the algorithm, is optimized further by a merging algorithm that attempts to

merge the test cases. As a result, the performance ofthe algorithms is not clear, and we

cannot consider the outcome of the research as a pure performance of ACS, although

research hasshown impressive results for some small configurations when the interaction

strengths for the main and sub-configurations are two and three, respectively. This

elimination in interaction generation reveals that this method faces the problem of

computation owing to the complex nature ofthe ACS algorithm.

ParaOrder and Density also generate satisfactory results. However, there is a lack of

results for other configurations and interaction strengths. This gap has been filled for

ParaOrder by the availability ofIPOG, which uses the same construction method. IPOG

67

generates test suites more effectively, particularly for large-scale interaction strengths and

configurations. However, its performance is similar to or worse than that of TVG,

although its construction speed is better as compared with those ofother strategies.

The TVG construction method is more effective, particularly for large-scale interaction

strengths and configurations. However, for TVG and ITCH, the user must manually enter

all interactions of the sub-configurations parameters, leading to a considerable loss of

time intheentry procedure before theconstruction process.

PSTG is effective in configurations owing to its ability to locate solutions with a fewer

number of moves. This effectiveness is also owing to the use of previous best-achieved

test cases {West) in the update rule. This, in tum, leads to the generation ofasearch space

surrounding the best solution, resulting in a set of better test cases. Therefore, the

algorithm quickly locates the global best to be added to the final test suite.

4.5 Summary

This chapter highlighted the evaluation of the PSTG strategy extensively. Six different

sets of experiments were performed to evaluate the efficiency of the chosen strategy and

68

were compared with existing strategies and tools. Overall, PSTG gives promising results.

The next chapter summarises and concludes the findings and contributions of this

research. The possible future directions oftheresearch arealso provided.

69

CHAPTERS

CONCLUSION & FUTURE WORK

In this work, a novel interaction testing strategy, called PSTG, is implemented. The new

strategy aimed to construct minimized f-way or variable-strength test suites by combining

PSO with an algorithm for /-interaction element generation. The main focus ofthe work

is to optimize the generated test suites sizes as well as to effectively detect interaction

based faults.

In order to conclude and discuss the importance of the achieved results as well as the

directions for the future researches, this chapter summarizes the earlier chapters'

important indications and gives the fiiture research directions.

5.1 Contribution

Summing up, a number ofcontributions can be derived from this research work. Firstly,

this research work has investigated the use of PSO as the base of implementing a novel

variable-strength and /-way strategy, PSTG. Furthermore, this work has also evaluated

and benchmarked PSTG against both existing t-way and variable strength strategies. In

70

doing so, this work has also evaluated the effectiveness ofPSTG for testing ofreal word

applications. Based on the experimental benchmarks and case study evaluation in Chapter

4, a number of observations canbe discussed here.

First, different kinds ofOAs can be used as interaction test suites, which in tum used in

the interaction testing process. As discussed previously in Chapter 1, the exhaustive

testing is usefiil to tackle most ofthe faults in the software under test; however it is not

applicable practically due to time, and resource constraints. Table 4-15 illustrates this

situation clearly. From the table, it can be seen thattheexhaustive testsuite with 41,472

test cases can tackle most of the faults in the software. However, the same amount of

faults can be tackled using MCA as a test suitewith 764 test cases or using VSCA as a

test suite with 104 test cases. Hence, the use of CAs as interaction test suites can serve as

a compromise technique to exhaustive testing whilst complementing the other test suite

designtechniques.

Second, it can be seen from the results that interaction test suites construction (or the

construction of CAs) is an optimization problem. Therefore optimization methods could

be useful to be used within strategies for construction. Here, the prospect of using PSO

for generating ^-way and variable-strength test suites is useful. As such, using PSO here

71

with the proposed PSTG strategy offers a viable solution to undertake this problem,

rangingfromsmall to high interactions.

Third, as mentioned previously in Chapter 1, Tables 4-1 to 4-14 showed that searching

for an optimum set oftest cases can be apainstakingly difficult task, and it is a challenge

to find a unified strategy that generates optimum results all the time. Therefore, it is

customary to find a strategy that can achieve minimum test suites sizes for some

interactions, parameters, orvalues, while itcannot beachieved by odiers.

Fourth, most of the strategies support the construction of CA and MCA (i.e., r-way test

suites). However, few strategies support the construction ofVSCA. A number ofr-way

strategies have started to support VSCA construction (e.g., PICT, IPOG, TVG, CTE-XL

and SA). In addition to these strategies, anumber ofnew strategies emerged to particularly

construct VSCA using the published techniques. For those published strategies, there has

been little evidence on their performance and how they construct the variable strength

test suites.

Finally the limitation for existing strategies is going for higher t. As previously

mentioned inChapter 1, for practical concern, it is needed to support up to f=6, which is

not provided by most ofthe implemented Al-based f-way strategies, as can be seen in

72

Table 4-1. In addition, for those strategies that support the generation of /-way test suites

with interaction strength up to /=6, theymaynot necessarily support that situation in case

of variable strength interaction. This situation canbe seen clearly in Tables 4-12 to 4-14.

Moreover, eventhosevariable-strength strategies that support higher t (i.e., ITCH, PICT,

TVG, and IPOG), few of them support the cumulative case, i.e., when the main and sub

configurations strength areequals. Compared with existing strategies, theproposed PSTG

strategy overcome those limitations and deal with the strength of interactions more

flexibly than the existing strategies, that is, by supporting f-way and variable-strength

interactions up to t=6.

5.2 Future Research Directions

There are different directions for this work in the future. Considering the current

implementation of PSTG, introducing seeding and constraints is important for the future

developments. Inaddition, releasing the beta version ofthe PSTG implementation isalso

a useful endeavour.

Considering the construction methods of the interaction test suites, this direction of

research still needs further researches and investigations. There is a need to investigate

more construction methods and identify better methods. In doing so, there is a distinct

73

possibility to produce new and better strategies by investigating the features of different

optimization algorithms and combine them together to produce hybrid strategies.

As part of future work, exploring the applicability and effectiveness of the strategy on

many real systems is also desirable. As can be noted from Chapter 2, there are few

researches dealing with the application of interaction test suites. The strategy could be

applicable in many research areas, such as hardware testing, by considering the

interaction of the hardware components. It could also be effective in network

performance evaluation by considering different interactions among the network

components to achieve best performance.

Considering the application of interaction testing, different areas need more assessments

and improvements, although the exiting researches achieved impressive results. One of

those areas is the components' interaction testing. So far, the effectiveness of using the

interaction test suites in this area is not clear. Although it is studiedtheoretically in many

researches, there is little evidence showing its effectiveness. It seems to be encouraging

area for anempirical study for the PSTG strategy. Aninteresting direction, for example, is

to apply the strategy on e-commerce software systems. It is interesting ifa research study

the effect of the component interactions on some performance criteria practically. In

addition, the application ofVSCA is an open research direction also. It isnoticeable from

74

the literature that there is little evidence for the application of VSCA. As illustrated in

Chapter 2, this could be also applied with e-commence systems by taking stronger

interaction strength among some special related components inthe system, for example.

Finally, another important direction of research is to combine the interaction test suites

features with other software testing methods. As previously mentioned, interaction test

suites have been used widi regression testing and testcase prioritization. It also could be

useful if the interaction test suite features are combined with fault localization techniques.

So far, the use of interaction test suites has not been sufficiently investigated to address

fault localization whichin turn couldfurther strengthen existing testingtechniques.

75

REFERENCES

[1] W.C. Hetzel, B. Hetzel, The complete guide to software testing, John Wiley &Sons, Inc,
1991.

[2] M. Woodside, G. Franks, D.C. Petriu, The future ofsoftware performance engineering, in:
Future of Software Engineering Conference, FOSE '07, IEEE Computer Society,

Minneapolis, Minnesota, USA, 2007, pp. 171-187.

[3] E.J. Weyuker, F.I. Vokolos, Experience with performance testing of software systems:
issues, an approach, and case study, IEEE Transactions on Software Engineering, 26
(2000) 1147-1156.

[4] D.S. Hoskins, C.J. Colboum, D.C. Montgomery, Software performance testing using
covering arrays: efficient screening designs with categorical factors, in: 5th International
Workshop on Software and Performance, ACM, Palma, Illes Balears, Spain, 2005, pp.
131-136.

[5] F.T. Chan, T.Y. Chen, I.K. Mak, Y.T. Yu, Proportional sampling strategy: guidelines for
software testing practitioners. Information and Software Technology, 38 (1996) 775-782.

[6] D.C. Montgomery, Design and analysis ofexperiments, John Wiley &Sons, 2006.
[7] T.J. Mitchell, An algorithm for the construction of "D-optimal" experimental designs,

Technometrics, 42 (2000) 48-54.

[8] D. Hoskins, R.C. Turban, C.J. Colboum, Experimental designs in software engineering: d-
optimal designs and covering arrays, in: ACM Workshop on Interdisciplinary Software
Engineering Research, ACM, Newport Beach, CA, USA, 2004, pp. 55 - 66.

[9] M. Chateauneuf, D.L. Kreher, On the state of strength-three covering arrays. Journal of
Combinatorial Designs, 10 (2002) 217-238.

[10] X. Yuan, M.B. Cohen, A.M. Memon, GUI interaction testing: incorporating event
context, IEEE Transactions on Software Engineering, 99 (2011).

76

[11] S. Huang, M.B. Cohen, A.M. Memon, Repairing GUI test suites using a genetic
algorithm, in: 3rd IEEE International Conference on Software Testing, Verification and
Validation, IEEE Computer Society, Washington, DC, USA, 2010, pp. 245-254.

[12] M. Ellims, D. Ince, M. Petre, The effectiveness oft-way test data generation, in: 27th
international conference on Computer Safety, Reliability, and Security, Springer-Verlag,

Newcastle upon Tyne, UK, 2008.

[13] C.J. Colboum, Combinatorial aspects ofcovering arrays, Le Matematiche (Catania), 58
(2004) 121-167.

[14] M.C. Golumbic, I.B.-A. Hartman, A. Hartman, Software and hardware testing using
combinatorial covering suites, in: R. Sharda, S.VoB (Eds.) Graph Theory, Combinatorics

andAlgorithms, Springer US,2005, pp.237-266.

[15] M.B. Cohen, P.B. Gibbons, W.B. Mugridge, C.J. Colboum, J.S. Collofello, Variable
strength interaction testing ofcomponents, in: 27th Annual Intemational Conference on

Computer Software and Applications, IEEE Computer Society, Dallas, Texas, USA,

2003, pp. 413-418.

[16] C. Yilmaz, M.B. Cohen, A. Porter, Covering arrays for efficient fault characterization in
complex configuration spaces, ACM SIGSOFT Software Engineering Notes, 29 (2004)
45-54.

[17] W. Afzal, R. Torkar, R. Feldt, A systematic review of search-based testing for non
functional system properties. Information and Software Technology, 51 (2009) 957-976.

[18] G. Seroussi, N.H. Bshouty, Vector sets for exhaustive testing of logic circuits, IEEE
Transactions on Information Theory, 34 (1988) 513-522.

[19] L. Yu, K.C. Tai, In-parameter-order: a test generation strategy for pairwise testing, in:
3rd IEEE Intemational Symposium on High-Assurance Systems Engineering, IEEE
Computer Society, Washington, DC, USA 1998, pp. 254-261.

77

[20] B. Jarboui, M. Cheikh, P. Siany, A. Rebai, Combinatorial particle swarm optimization

(CPSO) for partitional clustering problem, Applied Mathematics and Computation, 192

(2007) 337-345.

[21] S. Panda, N.P. Padhy, Comparison of particle swarm optimization and genetic algorithm

for FACTS-based controller design. Applied Soft Computing, 8 (2008) 1418-1427.

[22] K.P. Anagnostopoulos, L. Kotsikas, Experimental evaluation of simulated annealing

algorithms for the time-cost trade-off problem. Applied Mathematics and Computation,

217 (2010) 260-270.

[23] X. Chen, Q. Gu, A. Li, D. Chen, Variable strength interaction testing withan ant colony

system approach, in: 16th Asia-Pacific Software Engineering Conference, IEEE

Computer Society, Penang, Malaysia, 2009,pp. 160-167.

[24] Z. Wang, B. Xu, C. Nie, Greedy heuristic algorithms to generate variable strength

combinatorial test suite, in: 8th International Conference on Quality Software, IEEE

ComputerSociety,Oxford,UK, 2008, pp. 155-160.

[25] T. Shiba, T. Tsuchiya, T. Kikuno, Using artificial life techniques to generate test cases

for combinatorial testing, in: 28th Armual International Computer Software and

Applications Conference, IEEE Computer Society, Hong Kong, 2004, pp.72-77 vol.71.

[26] D.R.Kuhn, M.J. Reilly, An investigation of the applicability of designof experiments to

software testing, in: 27th Annual NASA Goddard Software Engineering Workshop

(SEW-27'02), IEEE Computer Society, Greenbelt, Maryland, 2002, pp. 91.

[27] D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., Software fault interactions and implications

for software testing, IEEE Transactions on Software Engineering, 30 (2004) 418-421.

[28] S.R. Dalai, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton, B.M. Horowitz,

Model-based testing in practice, in: 21st International Conference on Software

Engineering, ACM, LosAngeles, California, United States, 1999, pp.285 - 294.

[29] J. Jie, J. Zeng, C. Han, Q. Wang, Knowledge-based cooperative particle swarm

optimization. Applied Mathematics and Computation, 205 (2008) 861-873.
78

[30] M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a

multidimensional complex space, IEEE Transactions on Evolutionary Computation, , 6

(2002) 58-73.

[31] M.P. Wachowiak, R. Smolikova, Z. Yufeng, J.M. Zurada, A.S. Elmaghraby, An

approach to multimodal biomedical image registration utilizing particle swarm

optimization, IEEE Transactions on Evolutionary Computation,, 8 (2004) 289-301.

[32]J.J. Liang,A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm

optimizer for global optimization of multimodal functions, IEEE Transactions on

Evolutionary Computation, 10 (2006) 281 - 295.

[33] B.S. Ahmed, K.Z. Zamli, PSTG: a t-way strategy adopting particle swarm optimization,

in: 4th Asia International Conference on Mathematical/Analytical Modelling and

Computer Simulation, IEEE Computer Society, Kota Kinabalu, Borneo, Malaysia, 2010,

pp. 1-5.

[34] B.S. Ahmed, K.Z. Zamli, T-way test data generation strategy based on particle swarm

optimization, in: 2nd International Conference on Computer Research and Development,

IEEE ComputerSociety, Kuala Lumpur,Malaysia, 2010, pp. 93-97.

[35] B. Beizer, Software testing techniques (2nd ed.). Van NostrandReinhold Co., 1990.

[36] A.H. Ronneseth, C.J. Colboum, Merging covering arrays and compressing multiple

sequence alignments. Discrete Applied Mathematics, 157(2009) 2177-2190.

[37] C.J. Colboum, Strength two covering arrays: existence tables and projection. Discrete

Mathematics, 308 (2008) 772-786.

[38] M.B. Cohen, Designing test suites for software interaction testing, in: Department of

Computer Science, University ofAuckland, 2004, pp. 185.

[39] C. Nie, H. Leung, A survey of combinatorial testing, ACM Computing Surveys, 43

(2011) 1-29.

[40] M. Grindal, J. Offiitt, S.F. Andler, Combination testing strategies: a survey. Software

Testing,Verification & Reliability, 15 (2005) 167- 199.
79

[41] C.S. Cheng, Orthogonal arrays with variable numbers of symbols. The Annals of
Statistics, 8 (1980) 447-453.

[42] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG-IPOG-D: efficient test
generation for multi-way combinatorial testing. Software Testing, Verification &
Reliability, 18 (2008) 125-148.

[43] D.M. Cohen, S.R. Dalai, M.L. Fredman, G.C. Patton, The AETG system: an approach to
testing based on combinatorial design, DBEE Transactions on Software Engineering, 23
(1997) 437-444.

[44] J. Czerwonka, Pairwise testing in real world: practical extensions to test case generator,

in: 24th Pacific Northwest Software Quality Conference, IEEE Computer Society,

Portland, Oregon, USA,2006, pp. 419-430.

[45] R.C. Bryce, C.J. Colboum, The density algorithm for pairwise interaction testing:
Research Articles, Software Testing, Verification &Reliabilily, 17 (2007) 159-182.

[46] R.C. Bryce, C.J. Colboum, A density-based greedy algorithm for higher strength
covering arrays. Software Testing, Verification &Reliability, 19 (2009) 37-53.

[47] E. Lehmann, J. Wegener, Test case design by means ofthe CTE XL, in: 8th European

Intemational Conference on Software Testing, Analysis & Review (EuroSTAR 2000),

Kopenhagen, Denmark, 2000,pp. 1-10.

[48] Y.T. Yu, S.P. Ng, E.Y.K. Chan, Generating, selecting and prioritizing test cases from
specifications with tool support, in: 3rd Intemational Conference on Quality Software,
IEEEComputer Society, Dallas, Texas, 2003, pp. 83-90.

[49] Y.-W. Tung, W.S. Aldiwan, Automating test case generation for the new generation of
mission software system, in: IEEE Aerospace Conference, IEEE Computer Society, Big

Sky, MT, USA 2000, pp.431-437.

[50] j.Arshem, TVG download page, http://sourceforge.net/proiects/tvg. 2009.
[51] B. Jenkins, Jenny download web page, in. Bob Jenkins' Web site,

http!//hurtleburtle.net/bob/math/iennv.html. 2005
80

[52] A.W. Williams, Determination of test configurations for pair-wise interaction coverage,

in: IFIP TC6/WG6.1 13th International Conference on Testing Communicating Systems:

Toolsand Techniques, Kluwer, B.V.,Deventer, The Netherlands, 2000,pp. 59-74.

[53] A. Hartman, IBM Intelligent Test Case Handler, in, IBM alphaworks,

httD://www.alphaworks.ibm.coni/tech/whitch. 2005.

[54] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG: a general strategy fort-way

software testing, in: 4th Annual IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems, IEEE Computer Society, Tucson, Arizona,

2007, pp. 549-556.

[55] A. Calvagna, A. Gargantini, IPO-s: incremental generation of combinatorial interaction

test data based on symmetries of covering arrays, in: IEEE International Conference on

Software Testing, Verification, and Validation Workshops, IEEE Computer Society,

Denver, Colorado, USA, 2009, pp. 10-18.

[56] J. Stardom, Metaheuristics and the search for covering and packing array in: Department

ofMathematics, Simon Eraser University, Canada, 2001, pp. 89.

[57] K.J. Nurmela, Upper bounds for covering arrays by tabu search. Discrete Applied

Mathematics, 138 (2004) 143-152.

[58] B.Garvin, M. Cohen, M. Dwyer, Evaluating improvements to a meta-heuristic search for

constrained interaction testing. EmpiricalSoftware Engineering, 16 (2011) 61-102.

[59] M. Forbes, J. Lawrence, Y. Lei, R.N. Kacker, D.R. Kuhn, Refining the in-parameter-

order strategy for constructing covering arrays, Joumal of Research of the National

Institute of Standards and Technology, 113 (2008) 287-297.

[60] R. Kuhn, ACTS download page, 2011, in. National institute ofstandards and technology,
information technology laboratory, 2009.

[61] A. Windisch, S. Wappler, J. Wegener, Applying particle swarm optimization to software
testing, in: 9th Aimual Conference on Genetic and Evolutionary Computation, ACM,

London,England,2007, pp. 1121-1128.
81

4'

4

[62] R. Poli, Analysis of the publications on the applications of particle swann optimisation.

Journal ofArtificial Evolution and Applicationsarticles, 2008 (2008) 1-10.

[63] N.P. Padhy, Artificial intelligence and intellegent systems, Oxford University Press,

2009.

[64] Y. Marinakis, M.Marinaki, A hybrid multi-swarm particle swarm optimization algorithm

for the probabilistic traveling salesman problem. Computers & Operations Research, 37

(2010) 432-442.

[65] J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference

Neural Networks, IEEE Computer Society, Perth, Australia, 1995, pp. 1942-1948.

[66] R.J. Kuo, L.M. Lin, Application of a hybrid of genetic algorithm and particle swarm

optimization algorithm for order clustering. Decision Support Systems, 49 (2010) 451-

462.

[67] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: 6th

International Symposium on Micro Machine and Human Science, IEEE Computer

Sociaty,Nagoya, Japan, 1995,pp. 39-43.

[68] A. Ganjali, A requirements-based partition testing framework using particle swarm

optimization technique, in: Electrical and Computer Engineering, University of

Waterloo, Ontario, Canada, 2008.

[69] Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: IEEE

Congress on Evolutionary Computation (CEC 1999), IEEE Computer Society,

Piscataway, NJ, 1999, pp. 1945-1950.

[70] Z. Li-ping, Y. Huan-jun, a.H. Shang-xu, Optimal choice ofparameters for particle swarm

optimization, Journal of Zhejiang University - Science A, 6 (2005) 528-534.

[71] C.J. Colboum, Covering array tables, in, Arizona State University.

[72] B. Stevens, Transversal Coverings and Packings, in: Graduate Department of
Mathematics, Universityof Toronto, 1988,pp. 148.

82

[73] Renee, C. Bryce, CJ. Colboum, One-test-at-a-time heuristic search for interaction test

suites, in: 9th Annual Conference on Genetic and Evolutionaiy Computation, ACM,

London, England, 2007, pp. 1082-1089.

[74] C. Lott, A. Jain, S. Dalai, Modeling requirements for combinatorial software testing,

SIGSOFT Software Engineering Notes, 30 (2005) 1-7.

[75] D.R. Kuhn, V. Okum, Pseudo-Exhaustive testing for Software, in: 30th Annual

IEEE/NASA Software Engineering Workshop, IEEE Computer Society, Columbia,

Maiyland, 2006, pp. 153-158.

[76] M.B. Cohen, M.B. Dwyer, J. Shi, Interaction testing of highly-configurable systems in

the presence of constraints, in: International Symposium on Software Testing and

Analysis, ACM, London, United Kingdom, 2007, pp. 129-139.

[77] G.J. Holzmann, The model checker SPIN, IEEE Transactions on Software Engineering,

23 (1997)279-295.

[78] A. Barrett, D. Dvorak, A combinatorial test suite generator for gray-box testing, in: 3rd

IEEE International Conference on Space Mission Challenges for Information

Technology, IEEE Computer Society, Pasadena, California, USA, 2009, pp. 387-393.

[79] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with testing

techniques: An infrastructure and its potential impact. Empirical Software Engineering:

An International Journal, 10 (2005) 405-435.

[80] J.R. Ruthruff, S.Elbaum, G.Rothermel, Experimental program analysis. Information and

Software Technology, 52 (2010) 359-379.

[81] E. Engstrm, P. Runeson, M. Skoglund, A systematic review onregression test selection

techniques. Information andSoftware Technology, 52 (2010) 14-30.

[82] Count lines of code web page, in.

[83] J.H. Andrews, L.C. Briand, Y. Labiche, Is mutation an appropriate tool for testing

experiments?, in: 27th international conference on Software engineering, ACM, St.

Louis, MO, USA, 2005, pp. 402-411.
83

4
1

I <•

4

[84] C. Liu, L. Fei, X. Yan, J. Han, S.P. Midkiff, Statistical debugging: a hypothesis testing-

based approach, IEEE Transactions on Software Engineering, 32 (2006) 831-848.

84

	1.pdf
	2

