Laporan Akhir Projek Penyelidikan Jangka Pendek

Investigating T-Way Test Data Reduction
Strategy Using Particle Swarm
Optimization Technique

by
Assoc. Prof. Dr. Kamal Zuhairi Zamli
Mr. Bestoun S. Ahmed

2012



. 'Jrglrch{ boF (ISl — oub T Al Fo52 0

-

&
BORANG FRGS - P3(R) Kod Projek : | FRGS/IFASA1-2009/(BIDANG)/(NAMA IPT)/(NO.RUJ. KPT)
f*““ > FINAL REPORT
1 : FUNDAMENTAL RESEARCH GRANT SCHEME (FRGS)
"%,,mj Laporan Akhir Skim Geran Penyelidikan Asas (FRGS) IPT

Pindaan 1/2009

A | RESEARCH TITLE : Investigating T-Way Test Data Reduction Strategy Using Particle Swarm
Optimization Technique

Tajuk Penyelidikan
; PROJECT LEADER : Assoc Prof Dr Kamal Zuhairi bin Zamli
; Ketua Projek
| PROJECT MEMBERS : 1. Bestoun S. Ahmed
(including GRA) 2.
I Ahli Projek

' |B O ' . ACHIEVEMENT PERCENTAGE =
l Project progress according to ’
milestones achieved up to this 0-50% 51-75% 76 -100%
period
[
. Percentage 100%

RESEARGHIEINDINGS SRS it e s AN i

|
| Indexed Journal Non-Indexed Journal
Number of articles/ manuscripts/
books 318l
3 SCOPUS
|
International National
| Paper presentations
' 3 |EEE Conf. papers 2
\

Others
I (Please specify)

HUMAN CAPITAL DEVELOPMENT

Number {

- Human Capital Others (Please specify):
! On-going | Graduated

1 (graduate
| PhD Student April 2012
| 3 Mixed

Masters Student Hisde

! Undergraduate Students
| Temporary Research Officer 1

Temporary Research Assistant
Total 5




C | Budget Approved (Peruntukan diluluskan) : RM 48,000.00

Amount Spent (Jumlah Perbelanjaan) : RM 35,024.59
Balance (Baki) : RM12,975.41
Percentage of Amount Spent ; 72.96%

(Peratusan Belanja)

.GHIAGTIVITIES THAT Lg{jJ‘MLIJT TOWARDS DEVELG

DDITIONAL RES|

iviti Renyelidike

G/'SOFT'AND HARD ~:i'

1IN

npingan yang ﬁﬁ@ﬂﬁ”lmhﬂﬂ[&_&-ﬂﬁ@@ P embangunan (_:!n'nP1nlln']r| lln%‘r‘lnrﬂm p

International

Activity Date (Month, Year)

Organizer

Kamal Z. Zamli, Combinatorial Software 3rd October 2010, Park Royal, Penang
Testing: From Pairwise and Beyond, Invited
tutorial in the |IEEE Interational Symposium
on Industrial Electronics and Applications
(ISIEA 2010)

|EEE Industrial Electronics

National

Activity : Date (Month, Year)

Organizer

Kamal Z. Zamli, Keynote Speaker, Software 6th July 2011, Prince Hotel, KL
Testing Conference 2011, SOFTEC2011

Malaysian Software Testing Board

AINTSHEANY (M

E | None

EC xou VIME I»Sunb'n" ONI(Cadangan Penambahbaikan)

F | None




ABstzak NG T
i T

Recently, researchers have started to explore the use of Artificial Intelligence (Al)-based algorithms as t-way (where ¢
indicates the interaction strength) and variable-strength testing strategies. Many Al-based strategies have been
developed, such as Ant Colony, Simulated Annealing, Genetic Algorithm, and Tabu Search. Although useful, most
existing Al-based strategies adopt complex search processes and require heavy computations. For this reason, existing
Al-based strategies have been confined to small interaction strengths (i.e., t<3) and small test configurations. Recent
studies demonstrate the need to go up to =6 in order to capture most faults. This research presents the design and
implementation of a new interaction test generation strategy, known as the Particle Swarm-based Test Generator
(PSTG), for generating t-way and variable-strength test suites. Unlike other existing Al-based strategies, the lightweight
computation of the particle swarm search process enables PSTG to support high interaction strengths of up to £=6. The
performance of PSTG is evaluated using several sets of benchmark experiments. Comparatively, PSTG consistently
outperforms its Al counterparts and other existing strategies as far as the size of the test suite is concerned.
Furthermore, the case study demonstrates the usefulness of PSTG for detecting faulty interactions of the input
components.

Date : 24 July 2012 Project Leader’s Signature:w’

I-r@@l'?
| (Komen,

Tandatangan Ketua Projek

ORSEMENT; BY.RESEARCHMANAGEMENT/CENTER/(RMC)
ahan oleh Pusat Pengurusan Renyelidikan)

s O B ¥ o

IMENTS; IF E
sekiranya ada/Penge

Name: Signature:
Nama: Tandatangan:
Date: 1}

Tarikh: Jj{ :]/ t

LIST OF OUTPUTS

ISI/SCOPUS Journals

AHMED, B. S., ZAMLI, KAMAL Z. ZAMLI & C. P. LIM 2012. Application of Particle Swarm Optimization for uniform and
variable strength covering array construction. Applied Soft Computing Journal, 12(4), pp. [ISI Impact Factor
=2.612].1330-1347

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011. A variable strength interaction test suites generation strategy using
Particle Swarm Optimization. Journal of Systems and Software, 84(12), pp. 2171-2185. [ISI Impact Factor =0.836].

AHMED, B. S., ZAMLI, KAMAL Z. ZAMLI & C. P.LIM 2012. Constructing a t-way interaction test suite using the particle
swarm optimization approach. International Journal of Innovative Computing, Information and Control (IJICIC), 8(1A),
pp. 431-452. [ISI Impact Factor =1.66].




BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011. A review of covering arrays and their application to software testing.
Journal of Computer Science, 7(9), pp. 1375-1385.(SCOPUS Indexed).

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011. The development of a Particle Swarm Based Optimization strategy for
pairwise testing. Journal of Artificial Intelligence, 4(2), pp.156-165. (SCOPUS Indexed).

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011. A greedy Particle Swarm Based Optimization strategy for t-way testing.
Journal of Artificial Intelligence, 5(2), pp.85-90. (SCOPUS Indexed).

Conference Proceedings

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2009. Motivation for developing a high combinatorial interaction strength
testing suite via the Grid Computing approach. Proceedings of theElectrical and Electronic Postgraduate Colloquium
EEPC2009, Jawi, Malaysia.

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2010. PSTG: a t-way strategy adopting particle swarm optimization.
Proceedings of the4th Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation,
Kota Kinabalu, Borneo, Malaysia. IEEE Computer Society, pp. 1-5.

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2010. T-way test data generation strategy based on particle swarm
optimization. Proceedings of the2nd International Conference on Computer Research and Development, Kuala Lumpur,
Malaysia. IEEE Computer Society, pp. 93-97.

BESTOUN S. AHMED, KAMAL Z. ZAMLI, 2011. Comparison of metaheuristic test generation strategies based on
interaction elements coverage criterion. Proceedings of theThe 2011 IEEE Symposium on Industrial Electronics and
Applications (ISIEA 2011), Langkawi, Malaysia. IEEE Computer Society, pp. 550-554.

AHMED, B. S. & ZAMLI, K. Z. 2011. A greedy Particle Swarm Optimization strategy for t-way software testing.
Proceedings of theThe Electrical and Electronic Postgraduate Colloquium (EEPC2011), Dusun Eco Resort, Bentong,
Pahang, Malaysia

Human Capital Developments

BESTOUN S. AHMED, Adopting a Particle Swarm-based Test Generator Strategy for Variable Strength and T-Way
Testing, PhD (completed March 2012)

JULIANA MD SHARIF, Implementing Seeding and Constraint Mechanism for Pairwise Test Data Generation, MSc
Mixed Mode Dissertation (completed June 2010)

NOR HIDAYAH SAAD, Enhancing a Pairwise Test Data Generation to Support High T-Way Interaction, MSc Mixed
Mode Dissertation (completed June 2010)

AMIR ABU BAKAR, Enhancing T-Way Strategy with Seedings and Constraints Support, MSc Mixed Mode Dissertation
(completed Dec 2010)




Voo._—ookl. AL ___ . ___ i . e ... . _"age” 11
Purchase Requisttion » Purchase Order » Suppllers 4 Maintenance » Financlals » Coda Info » Reports » Admin »
UserCodea: ZAIDA / USMKCTLIVE / PELECT : Program Code: Votebook9100 C Program : Votebook (Headar)

Current Dato : 24/07/2012 12:01:41 PM lon: 15,03, Lost Updated at 15/03/2012 DB: 13,00, 09/18/2010 VB: 13,01, 03/14/2011 Switch Language : English /Malay

Wildeard : eg. Like 180%, Like 10%1, Like %2

Bemert 1 Semert 2 Sement ¢

Eement5: Yer. I
Datall Excol ::‘.?“ 2:2:‘, Account Description Budgst Account Code Rofl over Budgst Cash Recelved Advanced Commit Actuzl Avallable Peresatage
Detalf Excel 116 T Penyelidikan Fundamentals (FGRS) 203.111.0.PELECT.6071186 17,902.14 0.00 0.00 0.00 0.00 0.00 17,902.14 0.00%
116 T SubTotal 17,902.14 0.00 0.00 0.00 0.00 0.00 17,802.14 0.00%
Detafl Excel 117 T Penyelidikan Fundamentals (FGRS) 203.221.0.PELECT.6071186 2,841.30 0.00 0.00 0.00 0.00 0.00 2,841.30 0.00%
Detzil Exced 117 T Penyelidikan Fundamentals (FGRS) 203.223.0,PELECT.6071186 1,000.00 0.00 0.00 0.00 0.00 0.00 1,000.00 0.00%
Detall Excel 117 T Penyelidikan Fundamentals (FGRS) 203.227.0.PELECT.6071186 880.00 0.00 0.00 0,00 0.00 1,780.00 +500.00 0.00%
Detsll Excel 117 T Penyefidikan Fundamentals (FGRS) 203.228.0.PELECT.6071186 1,500.00 0.00 0.00 0.00 0.00 0.00 1,500.00 0.00%
Detail Excel 117 T Penyelidikan Fundamentals (FGRS) 203.229.0.PELECT.6071186 -6,186.20 0.00 0.00 0.00 2,694.92 48691 3,368.03 0.00%
117 T SubTotal 35.10 0.00 0.00 0.00 2,654.92 2,266.91 -4,926.73 0.00%
9999 GrandTotal 17,937.24 0.00 0.00 0.00 2,694.92 2,266.91 12,975.41 0.00%

http://efasbursary.eng.usm.my/eprocurement.kct/Votebook9100A_LIST.aspx 7/24/2012



—————

INVESTIGATING T-WAY TEST DATA REDUCTION
STRATEGY USING PARTICLE SWARM
OPTIMIZATION TECHNIQUE

BY

ASSOC PROF DR KAMAL Z. ZAMLI

FRGS - Final Grant Report

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING
USM

2012



Table of Contents

Table OF CONLENLS......covererrerrrrerrressssessacsmentssesessssssessssssassssssssssansssssssassenssssssssssssssssssssesssnsasss ii
LSt OF TADIES ....eouvereeirirnerrraereeeseressrsessrsesesenssssssssesssssasessassnesessensssnsassasasasssnsansnsssassasanssse iv
List of Figures and IIUSITAtionS .........cceucuceemssserrersessneresssssssnsssssssescssssssssensasinsssisssssssssessenes v
AADSITACE c.cveereererrinrereereeseenresesessassesssssassssssssssssssasssesesssessessesessssssnssssssensessnsscsstssesssstsssesnansss vi
CHAPTER 1 ..eerrerreeenessesesssesessssssesessssssssenssesssassssssnssenssssssesssssssasssssssstssessasssssassssassssss 7
INTRODUCTION ....couruirrerriiererersesessmsssesesasssssscssssssssassenmsssssesssessssasssasssssssssssssasasasstsssssses 7
1.1 Problem StatemENLts ......cccerereeeeeessseereerecsssssssensaesesssssessesnssssssssssssssnsnssssassssssssssnssees 9
1.3 Methodology of the ReS€arch..........ceeeeeietsistennnesinsscsiscsistiisieinesss s 10
1.4 REPOIt OQULHNE. .....veceerainsisinsensisensnsnnrisssssssssessessasissississasssssssssasssssssssssasesssesssasiasis 14
CHAPTER 2 ....vevrrievereeeenesssesessnsssssssssesssessssessassssssssasssasstssssesssassosssssssssssssssssnsssasansasnass 15
LITERATURE REVIEW .....ocoevirireeernesecesesesssssessissscsesssesssesssssssssassassssssssssssassssasssnsasnes 15
2.1 Theoretical Framework........couuveeeinisssessissnseseenscssssissesmsssnesssssssasssssssssssssussssssessasens 15
2.2 LIteratire REVIEW ....c.veeveeeerereeeressssesssssisassnessesssessessessesssnsssssassesassssssssassssssnssnsssssnsnns 18
2.2.1 Uniform-Strength Covering Array COnStruCtion.........isevsuecersessecssssissnsasanns 18

2.2.2 Variable Strength Covering Array ConsStruCtion.........oveeeesssscscscesnsssssanssenscs 22

2.3 The Adoption of PSO for t-way TeStiNg......ccccvurrrinrsrusensesenesssisiissasersssnsssscasensens 23
2.4 SUDNATY .....cvuevrerrceseessessessisessesessstassssessssssssasssssssssssssssssssssssssssssessssstssssssessasssssssasss 27
CHAPTER 3 ..eeeeeeriereseensssesssssssesssasstssssessbess svsstessntassssasssssssssssnssssssasesssssassasassasssns 28
DEVELOPMENT OF THE PSTG STRATEGY ....ceoiviirrenicncereersessssseenessssasssssssnes 28
3.1 Overview of PSTG............ Letesessessesseseeststentesteteatet et seesaasaseensns teatbsrssatersansassasenes 28
3.1.1 The IE Generation AlZorithm.......ccccveeennueiminiireienersssesesssnsnssnenanns 29

3.2 The CA Generation AIZOHthIM ........cceeereerereerrntenneneenesrensssssesssassstes s ssassanes 32
3.3 PSTG Parameter SEttNE ......c..eeveiiverererssmssaressssniesssstasssssssssssssssssnsassssssasssasssassssss 37
CHAPTER 4 ...eeeeeteeesesseesesssassseesesssesessstasss sssasesssesssssssbessssssasensassasssssnsssssssasassssenss 45
EVALUATION......ooiiinietiretisieresesssssssssssssessssstssssssssssssssssssssssssassassasssssssssssssssessssssssnssass 45
4.1 EXperimental SEtUD........cocccururmrireserenmmsinicnsesesssissssisssistssssssstscssassiaisssssassssssassssssass 45
4.2 The t-way Comparative EXPeriments .......c.ccecvieereimersencsnsescscnicsencscsensuisiseinsisasesnes 46
4.2.1 Comparing PSTG with Existing Al-based Strategies ............cocvcvvuvuiusincrinninns 47

4.2.2 Comparing PSTG with Computational-based Strategies ............ccccuvuunuurennecs 48

4.3 Variable-Strength Comparative EXperiments .........ccoeeovueemeeesisicisisininnisieniesisnans 58
4.4 Analysing the Results from ~way and Variable-Strength Experiments.................. 66
4.5 SUITINATY c..voueeennenesesesesesssensssansisesesssesssssstsass cssssasssasossasassstens et sass e sasanasassnsesnssscas 68
CHAPTER S o.oeeeeeeeeteeseessssaessssssesesessrsssasssssssessssssessssssssssessssssssnsssssssssssnsressssssnsassssssssnsassns 70
CONCLUSION & FUTURE WORK .....ccecrercscirtmrncrirnnsissesesrensmssessssssssssssssssssesssasscsssses 70
5.1 CONIIDULION c..cveeverinrerireneerseeressesrsseessetsssstesaessssssasessssnssessessssassonssneescsssssssssssnsansns 70
5.2 Future Research DITECHIONS. ....cuveeuereeeeressessissisissirmsnssssssssisssssssssssessssssssssnssesssssas 73

ii




------------------------------------------------------------------------------------------------------------------

iii



List of Tables
Table 4-1 Comparison with Existing AI-Based Strategies.........ceuerreererrereereererensnsescsenns 47
Table 4-2 P&V Constants (10, 5), But £ Varied t0 6......ccevveeerrerreeeresnsreresesssssssssasssssennaeee 51
Table 4-3 t&V Constants (4, 5), But P Varied........cccecererreerereereneerensesnesnenesevesnesnesesssones 51
Table 4-4 P&¢ Constants (10, 4), But V Varied........cccceueveereerereencerreennreeerneressssessesessssens 52
Table 4-5 Five Multi Domain Configurations .............ccceeeeeereeeveereseeseresssssssesssenssesenens 52
Table 4-6 Variable Number of Parameters 3< P <12, Each With 3 Values ¢ Varied to
Bttt e esae s st e e s e R s s e R st s e et e Rttt e bt a e e bt et s e Reae bt e b saternene 53
Table 4-7 Seven Parameters, Each Having Variable Number of Values 2<V <5, With
FVATEA 10 6 ...vccrerinirininiiiniiecststsissseeesessesasssssessssssessesessssesessssssessesesssassessessssssens 54
Table 4-8 Four Real-World Software System Configurations, With ¢ Varied to 6 .......... 55
Table 4-9 Sizes of Variable-Strength Interactional Test Suites for the Configuration
VSCA (52,3, {C1) cicmrnrrrerssmnnneeresssmssecsscssssssssesssessssssssssssssssssssssssssssssssssens 60
Table 4-10 Sizes of Variable-Strength Interactional Test Suites for the Configuration
VSCA (11; 2, 42 5% 62, {C})rveummrreveerrsmmmsmssssssesssssssnssssssssssssssesssssmssssossssssmnssssssssens 61
Table 4-11 Sizes Of Variable-Strength Interactional Test Suites for the Configuration
and VSCA (0; 2, 320 10%, {C}) cvvevurrrrmermmmnrrreeenssessnsssssnesssessssssssmmsssssssnssssssssnssseees 62
Table 4-12 Test Size for Variable-Strength Configuration VSCA (m; 3, 3, {C})........ 63
Table 4-13 Test Size for Variable-Strength Configuration VSCA (m; 3, 4' 37 22,
LC1) sttt er st s s e bbb s ebenne 64
Table 4-14 Test Size for Variable-Strength Configuration VSCA (m; 2, 10' 9! 8! 7' 6!
5141 31 21{C}) e sss s sssss s ssass b seseses s snesssn 64
iv




List of Figures and Illustrations

Figure 1-1 The Research’s Activities and FIOW ........cccecvuevererevereeerneveeeeeereccessceeenene 13
Figure 2-1 The Representation of Uniform and Variable Strength CAs..............couuu..... 17
Figure 2-2 The PSO AlgOrithm.......cccceiievinicirernrrereeenenrieneseiennnsrseenssesssesssesssessssessaens 25
Figure 3-1IE Generation Algorithm of PSTG .......cccccooeeomennertreceeececeere et 30
Figure 3-2 A Flowchart of the PSTG CA Generator Algorithm ...........ccovvvevennerrcnnncne.. 36
Figure 3-3 The Best and Average Sizes obtained with the Variation Inertia
Component (w) and Acceleration Coefficients (c; , c;) for CA (N; 2, 4 %)............... 39
Figure 3-4 The Best and Average Sizes obtained with the Variation Inertia
Component (w) and Acceleration Coefficients (c; , ¢z) for CA (N; 2, 5')............... 39
Figure 3-5 The Best and Average Sizes obtained with the Variation of Swarm Size
and Repetition for CA (N; 2, 4 ©)c.ccoveeeummmmeemrmnnennrrnrer e ssessesssssssssssssnssssssssessesssessenee 41
Figure 3-6 The Best and Average Sizes obtained with the Variation of Swarm Size
and Repetition for CA (N 2, 57) c..uueeevvvoeeeseseecesseveeensseernesseseesssssessssssssssseseses s 42
‘Figure 3-7 Average Generation Time obtained in second with the Variation of Swarm
Size and Repetition for CA (N; 2,4 ©) ...c.vvvveeervemmessseeseesseesssessssssssssssssssssssssssssssssessee 42
Figure 3-8 Average Generation Time obtained in second with the Variation of Swarm
Size and Repetition or CA (N; 2, 57) cuueeueeeeeeereeeeeseeeeeosseeeseeseeeseeessnssssesssesssessseesons 43
v



- —— R ——— - - — N —_ - ——
o

Abstract

Recently, researchers have started to explore the use of Artificial Intelligence
(AI)-based algorithms as t-way (where ¢ indicates the interaction strength) and variable-
strength testing strategies. Many Al-based strategies have been developed, such as Ant
Colony, Simulated Annealing, Genetic Algorithm, and Tabu Search. Although useful,
most existing Al-based strategies adopt complex search processes and require heavy
computations. For this reason, existing Al-based strategies have been confined to small
interaction strengths (i.e., t<3) and small test configurations. Recent studies demonstrate
the need to go up to #=6 in order to capture most faults. This research presents the design
and implementation of a new interaction test generation strategy, known as the Particle
Swarm-based Test Generator (PSTG), for generating t~way and variable-strength test
suites. Unlike other existing Al-based strategies, the lightweight computation of the
particle swarm search process enables PSTG to support high interaction strengths of up to
t=6. The performance of PSTG is evaluated using several sets of benchmark experiments.
Comparatively, PSTG consistently outperforms its Al counterparts and other existing
strategies as far as the size of the test suite is concerned. Furthermore, the case study
demonstrates the usefulness of PSTG for detecting faulty interactions of the input

components.
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CHAPTER 1
INTRODUCTION

Software testing is an activity that aims to evaluate the capability of a program as well
as to determine whether it meets its required results or not [1]. Owing to its usefulness
in the software development life cycle, software performance testing comprehends a
variety of activities, including stress, isolation, and configuration testing [2, 3]. In each
activity, test cases are used in an established test plan to run experiments occupying the
software system components. In large software systems, this process is limited by cost
because the addition of each test case leads to additional expenditures. This, in turn,

leads to the inability of exhaustive testing in performing such a testing process.

Design of Experiment (DOE) has been used to aid the sofiware performance testing [4].
Here, each component of the system is called a “factor,” and each test case is called an
“experimental run.” An experimental run represents a test case to comprehend the
system components, where each component is represented by its valid numeric value or
configuration [5]. When the system is tested exhaustively, the “full factorial” design of
experiment is used [5]. However, when the system is large and the full factorial design
is not desirable, the “fractional factorial” design is used to reduce the experimental run
to a subset of the full factorial design. The fractional factorial design is used with
systems of numeric factors; conversely, systems with categorical factors cannot use this

method for experiments [6].



The D-Optimality design, on the other hand, has been used with systems, -including
categorical factors, to reduce the experimental run by selecting a subset of runs from the
full factorial [7, 8]. Instead of a purely random selection of subsets of experimental runs
from the full factorial de‘sign, the use of the D-Optimality design method in experiments

leads to the production of experimental runs that are closer to full factorial design [4].

Recently, an alternative design based on Covering Array (CA) has been used for the
approximation of full factorial design [4]. Compared with D-Optimality, empirical
evidence demonstrates that CA produces better results than full factorial approximation
experiments [4, 8]. In such a design, each #-set of factors (or system components) is
covered by a set of experimental runs (at least once) to form a CA.

The use of CAs has proven to be adequate and effective in several applications,
including drug screening, regulation of gene expression, data compression, code
coverage and GUI testing [9-14]. Motivated by the effectiveness of CAs, a number of
recent studies have focused on the construction of CAs for combinatorial interaction
testing using f-way strategies, where ¢ signifies the interaction strength of the
component. These strategies aim to optimally reduce the number of test cases (ie., the
number of rows in the CA) by ensuring that each test case greedily covers the required
t-interactions (or ¢-set of factors) at least once for a typically large space of possible test
values. This mechanism uniformly covers z-interactions of the system components to
generate test cases. However, often, the interactions between parameter components are

typically non-uniform [15, 16]. As an example, a system with an overall component

8




values of two-way (pairwise) strength might have a subset of higher strength than the
component values for the test [17]. Therefore, the strength might vary and be non-
uniform during the testing process of the system component values. Taking both cases
(i.e., uniform and variable interaction strength) as an NP hard computational
optimization problem [16, 18, 19], many strategies based on Artificial Intelligence (AI)
have been developed. Recent researches demonstrate that strategies based on Genetic
Algorithm (GA), Ant Colony Algorithm (ACA), Simulated Annealing (SA), and Tabu

Search (TS) can effectively generate small-sized CAs.

1.1 Problem Statements

Although useful, most existing Al-based z-way testing strategies require complex
computations (i.e., in terms of the need to deal with mutations, crossovers, and the local
minima problem [17, 20-22]). For these reasons, existing Al-based r~way testing
strategies have been confined to small interaction strengths (i.e., #<3) and small test
configurations [15, 23-25]. To be effective, recent studies and empirical evidence
demonstrate the need to go up to =6 in order to capture most faults in a software

module [10, 26-28].

Particle Swarm Optimization (PSO) is known for the simplicity of its algorithm
structure over other optimization methods [29-32]. PSO is also requires lightweight
computations. In this research, we investigate the competitiveness of our proposed
Particle Swarm-based z-way Test Generator (PSTG) based on PSO for uniform and

variable strength CA generation. Unlike other existing Al-based z-way testing strategies,
9



the use of PSO leads to lightweight computation in PSTG, thus, enabling it to support

high interaction strengths of up to =6 [33, 34].

1.2 Report Aim and Objectives

The aim of the research is to design, implement, and evaluate a new interaction testing
strategy, called Particle Swarm Test Generator (PSTG), for constructing #-way and
variable interaction strength test suites based on Particle Swarm Optimization. To

realize this aim, the following objectives are adopted:

i. To investigate the application of Particle Swarm Optimization for PSTG’s
design and implementation in order to support +~way and variable-strength test
suites construction.

ii. To investigate and evaluate the performance of the PSTG strategy against other
computational and Al-based strategies in term of the generated test suite size.

iii. To investigate and evaluate the effectiveness of the test suites generated by the

PSTG strategy for interaction fault detection.

1.3 Methodology of the Research

Overall, the research’s methodology is divided mainly into three phases.

10




ii.

iii.

Literature review: in this phase, the literature survey is undertaken to establish
the state-of-the-art on interaction testing. The literature starts by reviewing the
importance of the software testing in the software quality assurance process. By
establishing this importance, the existing sampling and test design techniques
are reviewed also and the importance of the interaction testing as
complementary technique in software test design is established. Then, the
existing literature of interaction testing strategies is reviewed to identify the
features and drawbacks of the strategies and techniques. Based on the literature
review survey, the requirement of the research is established in this phase. From
the requirement, how the PSO, #-way, and variable-strength algorithms will be

implemented is decided here.

Design and Implementation: here, the adoption of PSO is established and the
required algorithms are decided. Then, the complete algorithms making up the
PSTG strategy are designed, implemented, and optimized in this phase. In

addition, the parameter tuning of the strategy is performed here also.
Evaluation, Benchmarking, and Case study: experiments with well-known

benchmarking configuration as well as a case study are undertaken in this phase

to investigate and evaluate the performance and effectiveness of the strategy.

11
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To illustrate how the aforementioned phases are related, Figure 1-1 summarizes the

research’s activities.
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1.4 Report Outline

This rest of the report is organised into four other chapters as follows.

Chapter 2 presents theoretical framework along with a survey of existing t-way
strategies. Towards the end of Chapter 2, an analysis of existing work is presented

which provides the requirements and justification for the development of PSTG.

Chapter 3 discusses and justifies the detailed algorithms and implementation for PSTG
based on the requirements from Chapter 2. Additionally, this chapter also elaborates on

tuning of the PSTG parameters.

In Chapter 4, a detailed account for evaluating PSTG is presented. Here, PSTG will be

compared against existing strategies in terms of the number of generated test data.

The conclusion of this work is given in Chapter 5, where the achievements,
contributions and problems are summarised. Conclusions are drawn from the
experience gained from this work and the significance of findings along with a

consideration for future work.
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CHAPTER 2
LITERATURE REVIEW
The previous chapter has established the needs for a new (uniform and variable
strength) strategy that is sufficiently lightweight in order to cater for high interaction
strength up to 6. In doing so, the previous chapter has also advocated the use of Al-

based strategies based on Particle Swarm Optimization (PSO) called PSTG.

In this chapter, the development of PSTG will be further justified by giving an overview
of the theoretical framework and a survey of existing literature. This survey and
analysis is then used to provide the requirements for PSTG. Finally, this chapter closes

by providing a short summary.

2.1 Theoretical Framework

In order to illustrate the basic of t-way testing, there is a need to understand the
theoretical framework on Covering Arrays (CA). Originally, the CA has emerged to
complement Orthogonal Array (OA) limitations. An OAy (N; t, k, v) of strength ¢ is
an array of size N and k& components with v values, in which for every Nxt sub-
array, the t-interaction elements occur exactly A times, and A=NA' [35, 36]. It has
been shown that the OA is often too restrictive because it requires the component
values to be uniform [9]. To complement the OA construction and to overcome its
limitation, the CA has been introduced. The notation CAy (N;t,k,v) represents an
array of size N with v values, such that every Nx¢ sub-array contains all ordered

subsets from the v values of size ¢ at least A times [16, 37], and £ is the number of

15




components. To cover all t-interactions of the components, it is normally sufficient
to occur once in the CA. Therefore, with A=1, the notation becomes CA (N;t,k,v).
When the CA contains a minimum number of rows (#), it can be considered an

optimal CA according to the definition in eqn. (1) [9].

CA (t,kv)= min{ N: d Cdz (N: . v)} (1)

However, when the number of component values varies, this can be handled by the
Mixed Covering Array (MCA) (N;tKk,(vi,v2,...v)) [38]. The notation can also be

represented by MCA (N ;tk,vo).

With the availability of these notations, #-way test suites can effectively be abstracted.
For example, Figure 2-2 (a), represents an MCA (9; 2, 32 2?) of size 9 (i.e., nine test
cases) for a system with four components (two components having three values and two

components having two values) to cover two-way interactions.

16
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B, C, and D, i.e., under the “main-config” bracket. In addition, the VSCA covers the

three-way interactions among B, C, and D, i.e., under the “sub-config” bracket.

Having described the notations, the following section presents a survey of existing
studies on constructing uniform and variable strength CAs in order to reflect the current

progress and achievements thus far in the literature.

2.2 Literature Review

Many strategies have been developed to construct uniform and variable strength CAs.
The construction methods of the uniform strength CAs came first. Based on those
construction methods, the ideas of constructing the variable strength CA have emerged.

The next sub-sections review these two construction methods.

2.2.1 Uniform-Strength Covering Array Construction

There are two main methods for the construction of CAs, namely: algebraic [9, 39] and

computational methods [39, 40]. Algebraic methods are based on the construction of the

OA. The OA is derived from the extensions of mathematical functions. Despite its

usefulness, the OA is too restrictive because it exploits mathematical properties, thereby

requiring the components and values to be uniform. To overcome this limitation, the

Mutual Orthogonal Array (MOA) [41] has been introduced to support non-uniform
18



values. However, a major drawback exists for both MOA and OA, i.e., a feasible

solution is only available for certain configurations [42].

In most cases, computational methods generate all possible interactions. Test cases are
then generated to cover these interactions. The method of generating candidate test
cases is the main differentiation among the generation strategies. There are two main
ways for constructing test cases computationally: one-test-at-a-time or one-parameter-
at-a-time [39, 40, 42]. In the former case, the strategy candidate a single or a set of
complete test cases per iteration then searches for the test case that covers most of the
generated interactions for the CA. Based on this framework, a number of strategies have
been developed in previous studies. The most well-known strategies in this approach
are Automatic Efficient Test Generator (AETG) [43], mAETG [38], Pairwise
Independent Combinatorial Testing (PICT) [44], Deterministic Density Algorithm
(DDA) [45, 46], Classification-Tree Editor eXtended Logics (CTE-XL) [47, 48], Test
Vector Generator (TVG) [49, 50], Jenny [51], Test Configuration (TConfig) [52], and

Intelligent Test Case Handler (ITCH) [53].

In the case of one-parameter-at-a-time, the CA is constructed incrementally by
horizontal extension. Each time a component is added to the CA, the strategy performé
a coverage check and chooses the best value of the component. If the horizontal
extension is performed and some interaction elements have not been covered, the
vertical extension immediately begins to cover the uncovered interactions. The ,CA is

constructed completely when these two algorithms are performed. In-Parameter-Order-
19




General (IPOG) [54] and its improvements, i.e., IPO-s [55], and IPOG-D [42] are three
of the most recent strategies that have adopted this approach for the construction of

uniform-strength CAs.

As a main part of the computational one-test-at-a-time construction method, significant
efforts have emerged to adopt Al-based strategies for CA generation. Thus far, SA, TS,
GA, and ACA have been successfully implemented for small-scale interaction strengths

[25, 39, 56].

Stardom [56] first implemented SA, GA, and TS to support pairwise (two-way)
interactions. The experimental results showed that, because of its algorithmic
complexity in finding good solutions, the GA is the least effective as compared with SA
and TS. In addition, TS is effective in constructing test cases where the search space is
small, whereas SA performs better with larger search spaces. This implementation of
TS has also been used by K. Nurmela [57] for pairwise testing and has produced similar

results.

Cohen [38] later developed and implemented SA to support up to three-way
interactions. The results showed that, in comparison with the greedy search technique of
TCG and AETG, SA performed better in generating smaller-sized CAs for pairwise
interactions. However, in the case of strength three, SA did not perform as well as

compared with the existing algebraic approaches [17]. Hence, the results indicated that

20




SA is more effective than other approaches for finding optimal sizes in cases of small

strengths.

Toshiaki et al. [25] also developed and implemented the GA to support up to three-way
interactions. In addition, Toshiaki et al. employed ACA to support up to three-way
interactions. In both cases, a “compaction algorithm™ that merges the CA rows for
optimality, and further optimizes the resulting CA of the algorithm. Their results have
been compared with those from AETG, IPO, and SA. Although GA and ACA
outperform AETG, SA outperforms GA and ACA in all cases for strengths two and
three. Meanwhile, as demonstrated by Afzal et al. [17], it is noticeable that the results of
the GA did not match with those produced by Stardom [56]. This indicates that the GA
performs poorly for CA generation, although several attempts have been made to

modify the algorithm structure.

Although the existing Al-based strategies appear to perform well, a closer look reveals
some limitations fn terms of complexity of both the search process and algorithm
structure. As an example, the large random search space and the update rule of SA
make the search process computationally intensive, leading to an increase in
computation time, especially when the interaction strength grows up (i.e., £3) [17, 38,
39, 58]. This problem can be seen clearly in the complexity of the GA crossover and
mutation processes, and the increasing numbers of ants in ACA when the problem

grows. Similarly, TS suffers from the same problem when it keeps and updates its Tabu

21
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list sets. For these reasons, most strategies implementing SA, GA, and ACA have been

limited to small configurations with strengths two and three [17, 25].

2.2.2 Variable Strength Covering Array Construction

A number of existing strategies have started to support VSCA construction (e.g., PICT,
TVG, and ITCH). In addition to these computational strategies, a number of Al-based
strategies have emerged. Wang et al. [24] adopted the DDA algorithm for a variable
strength strategy called Density. Wang et al. [24] also adopted the IPO algorithm for a
variable strength strategy called ParaOrder. This, in turn, has motivated the IPOG
research group to add the support of variable strength in the ACTS tool implementation

[59, 60].

Cohen et al. [15] also developed SA to support VSCA construction. The results
reported in their study focused on strengths of two and three only. Moreover, the only
published results for this strategy in the case of variable strength are three test

configurations.

Xiang et al. [23] adopted an improved version of ACA in a strategy called Ant Colony
System (ACS) to support VSCA construction. In their study, a “compaction algorithm”
was also used to merge the rows in order to further optimize the final VSCA. The

results were focused on strengths of two and three only, as indicated in Cohen [15] and
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Wang [24]. Overall, SA generated better sizes, whereas ACS achieved comparative

results in some cases.

As in the case of uniform-strength, the existing Al-based strategies appear to perform
better than other strategies for VSCA construction. However, these strategies often
adopt exhaustive search processes with complex algorithm structures. This explains the

limited support of up to strengths two and three only.

2.3 The Adoption of PSO for t-way Testing

Enhancing and complementing existing work on AI approaches as t-way testing
strategies, this research deploys PSO to derive a strategy for uniform and variable
strength CA construction. PSO has been demonstrated as an efficient optimization
method for many problems [20, 61, 62]. In most cases, PSO does not suffer from the
difficulties encountered by other Al techniques, e.g., [21, 30, 31, 61]. Compared with
other Al-based techniques, PSO differs in three main points: recombination, mutation,

and selection, as follows.

With respect to recombination, PSO does not have a direct recombination operator;
despite the fact that stochastic acceleration of a particle towards its previous best
position resembles the recombination procedure of other techniques. Instead of
recombination, PSO manages information exchange only between the particle’s
possession experience and the experience of the best particle in the swarm. On

mutation, PSO has the advantage of not using evolutionary operators such as crossover
23



and mutation [32], thereby enabling a lighter computational load. Concerning selection,
PSO does not use the survival of the fitness concept, as it does not use direct selection.
Therefore, during optimization, particles with lower fitness values can survive and are

able to visit any point of the search space [63].

In addition to the above features, PSO is computationally inexpensive because its
requirements for memory and CPU speed are low. PSO does not need the calculation of
derivatives from other particles, and has few parameters that need to be tuned [64].
Moreover, PSO does not require information of the objective function under testing; it
requires only the value, which is used within primitive mathematical operators, hence,

leading to a low computation time [63].

The origin of PSO dates back to 1995, when it was first developed by Eberhart and
Kennedy as an optimization technique [65] inspired by the swarm behavior of fish and
bird schooling in nature. Initially, the main idea was to simulate the unpredictable
choreography of a flock of birds. Based on observation of evolutional aspects of the
PSO algorithm, it has been realized as an optimizer. Indeed, PSO has received much

attention as an optimizer that is applicable to many fields of engineering [63].

A random population of solutions, in which each likely solution is assigned a
randomized velocity, initializes the global version of PSO. The likely solutions, called
particles, are then “flown” through the problem space iteratively. Each particle

remembers its coordinates in the solution space where it has its best solution thus far,
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which is called pBest. In addition to the best value, the PSO algorithm tracks the overall
best value and its location obtained by any particle in the population, which is called
gBest. When each particle keeps track of the local best solution /Best and the
neighborhood, in addition to pBest, the process is known as the local version of PSO.

Figure 2-3 summarizes the PSO algorithm.

Begin
Initialize an array of particle’s population with random positions and velocities
in D-dimension;
Evaluate fitness for each particle;
While termination criteria is not met do {
For each particle {
Modify the velocity according to Eq (2);
Modify the position according to Eq (3);
Update the particle’s personal best using the update rule;
}
For each particle {
Update the IBest;

Update the gBest;

/

End;

Figure 2-2 The PSO Algorithm
25




Taking a D-dimensional search space, the velocity and position of the i% particle in the d

* dimension are updated according to the following rules [32]:

Via(t) =w Vya(t-1) +c; 1,a(pBestia (t-1) = Xja (¢-1)) + ¢z r'ja (IBestia (t-1) - Xja (1)) @

Xja= Xpa(t-1)+ V,aft) ()

where ¢ is the iteration number or time, d is the dimension of the j particle index, (¢, ¢3)
are the acceleration coefficients that adjust the weight between components, w is the
inertia weight, and (7, »’) are two random factors, which are two random real numbers
in the range of (0,1). According to the updated rule, each particle updates its velocity for
better movement around the search space, and the new velocity is used to find a new

position for the particles, depending on a cost factor that controls this movement.

In addition to the standard version of PSO, the discrete version of PSO (DPSO) came
into existence because of different applications [61, 66]. Using DPSO, some changes
must be made to facilitate the adaptation of discrete space [67). Owing to the restriction
of discrete component values in the system under test, we have selected DPSO in this
work. In fact, the DPSO procedure is similar to standard PSO. However, in standard

PSO, an array of particles is initialized, in which the values of the particles are
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continuous and are not restricted, In DPSO, however, the values of the particles are

restricted [66].

Based on the aforementioned features and considering the generation of t-way and
variable strength test suites as optimization problem, this work has considered PSO as

the basis of PSTG.

2.4 Summary

In this chapter, the theoretical framework and the survey of t-way strategies for both
uniform and variable interaction testing have been discussed. The adoption of PSO has
been justified including its features and advantages to be implemented for an interaction

testing strategy.

Building on that, the next section addresses the adoption of PSO in the proposed

strategy, PSTG. The next chapter illustrates the algorithms implemented in the strategy

and how PSO is implemented for PSTG.
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CHAPTER 3
DEVELOPMENT OF THE PSTG STRATEGY

In the previous chapter, the theoretical background, notations, and definitions for
interaction testing have been presented. An extensive review of the existing literature on
t-way and variable-strength strategies and their applications in real world has also been
given. Moreover, justifications for the adoption of PSO in the proposed PSTG strategy
are provided. This chapter discusses the design and implementation of the PSTG
strategy including its corresponding algorithms. The chapter also describes how to

apply PSO in the strategy and how to choose and set its design parameters properly.

3.1 Overview of PSTG

This section describes the application of PSO in our proposed PSTG strategy. PSO is
adopted in an algorithm named the CA Generation Algorithm. The algorithm generates
test cases based on PSO in a greedy fashion. The fitness function is used to choose the
best particle. In our strategy, the fitness function is the number of interactions that the
particle can cover. Hence, in order to compute the fitness function for each particle, we
must first generate the Interaction Elements (IEs) and provide a mechanism for
computing the fitness function undertaken by the IE Generation Algorithm. Therefore,
the next sub-section describes the IE Generation Algorithm, after which the CA

Generation Algorithm is described.
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3.1.1 The IE Generation Algorithm

As previously described, the number of covered IEs determines the fitness function in
PSTG. As such, generation of the IEs is required. To illustrate the generation algorithm
clearly, the left hand side of Figure 3 shows the flowchart of the IE generation
algorithm, whereas the right hand side of Figure 3 shows an example of the generation

process described in a step-by-step manner.

The algorithm receives the input of PSTG in the form of the CA, MCA, or VSCA.Inall
cases, the algorithm scans the input to determine whether the input is of a uniform or
variable strength. In the case of a variable strength, the algorithm identifies and
separates the main and sub-configurations. However, in a uniform-strength case, the
algorithm skips this step directly and proceeds to the next step. For a better

understanding, we take a VSCA configuration as the example in Figure 3-1.
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After identifying the main and sub-configurations, the algorithm further identifies the
strength, components, and the values of each component for each configuration. From
the information gathered, the algorithm first generates the component combinations.
Based on these combinations, the IEs are generated. In the example in Figure 3, the
variable strength configuration VSCA (m; 2, 233! {CA (3, 23)) has fqur components
with strength two for the main configuration and three components with sh‘ength”thrée
for the sub-configuration. The first three components have two values (0 and 1), and the
last component has three values (0, 1, and 2). The first three components are used for

the sub-configuration with strength three.

For each configuration, all binary number possibilities are generated. The number of
digits for the binary number is equal to the number of components, i.e., four digits for
the main-configuration and three digits for the sub-configuration here. Then, based on
the strength, the binary numbers are selected. The strength of the main-configuration is
two; thus, the binary numbers that contain two ones are selected. As an example, binary

number 0101 refers to the k2. k4 combination.

Based on the generated combinations of the components, the IEs are generated
accordingly. In the above example, strength two of the components has six possible
combinations. For combination 0101, whereby the second and fourth components are
available (ie., k2 and k4), there are 2x3 possible IEs between them. For each
combination, the value of the corresponding component is included in the IEs. When

the component is not available (i.e., in case of 0 in the combination), the corresponding
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values are marked as “don’t care”. This process is iteratively repeated for the other five
combinations for the main-configuration, i.e., (k1, k2), (k1, k3), (k1, k4), (k2, k3), and

(k3, k4) as well as for the sub-configuration, i.e., (k1, k2,k3).

Upon the generation of the IEs, each group of elements is stored in an indexed list
called Ps (Figure 3). The indexing reference of each combination is also stored in a
deferent list. The indexing reference represents two integer numbers that refer to the
start and the end of a given combination of IEs in the Ps list. Thus, the search for a

given IE can be performed efficiently and quickly.

3.2 The CA Generation Algorithm

The CA generation algorithm is performed immediately after the generation of the Ps
list. The use of the Ps list is essential for computing the fitness factor. The fitness factor
is used with PSO in a greedy fashion to identify the better particles. Owing to the

discrete component values, DPSO is adopted.

The CA generation algorithm is initialized by generating a random swarm search space.
The swarm search space takes the form of a D-dimensional vector, Xj= (Xj1,
- X2 Xjd- - , X;p), where each dimension represents a component and contains integer

numbers between 0 and (v;) (i.e., the number of values of the i component). The
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velocity of each particle is also simultaneously initialized with random integer numbers

(zero in our case).

As previously discussed, during the iteration of the algorithm, the velocity and the
position of the particles are updated according to equations (2) and (3) (i.e., when the
particle moves around in the search space). During the update process, there is a
possibility of producing non-integer velocitieé for the particles, leading to the
production of non-integer positions. To avoid such a situation, the velocity is rounded to

the nearest integer number.

Owing to the continuous space of the velocity, there is a possibility of producing
velocity values that cause the particles to fly outside the swarm during the iteration and
update process. As such, boundary conditions to restrict the values of the velocity to
both lower and higher bounds must be established. The boundary condition is set to V;
max = Vif2 because the particle dimensions are between 0 and vi. This is in accordance

with the recommendations in [68] and [61]. Hence, the velocity bound is between [-Vi

max » Vi max]'

By restricting the velocities to a certain boundary, the particles are also required to
avoid the appearance of invalid values of the components. Based on the previous
studies, there are three different boundary conditions for DPSO: invisible, reflecting,
and absorbing walls [32, 68]. In invisible walls, when the particle goes outside the

boundary and an invalid value of the particle appears, the corresponding fitness value is
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not computed. In reflecting walls, the motion of the particle is reversed when a particle
reaches the boundary. As a result, the particle is reflected back to the search space. In
absorbing walls, the velocity changes to zero in the dimension where the particle goes

outside.

In our case, the above-mentioned boundary conditions require time for generation, and

lead the particle away from the component values. As such, we have configured our

boundary conditions in such a way that when the velocity reaches a certain dimension

bound, it continues its motion with the same velocity, starting from the other bound of
that dimension, by resetting the position to the other endpoint. As an example, in case of
a parameter with a range of values from 0 to 3, when the position is greater than 3, the

position is reset to 0.

Selection of the personal best from the neighborhood represents another important
issue. Different topologies have been proposed to find pBest from its neighbor. In this
research, we have adopted the simplest topology as proposed by [68], i.e., the particles

in a swarm matrix or array choose the neighbors next to them.

The CA generation algorithm uses the aforementioned design to generate the final
optimized CA. Figure 3-2 summarizes the algorithm. The algorithm receives the Ps list
from the IE generation algorithm. Then, the algorithm randomly initializes each particle
with its associated component values. For each particle in the swarm search space, the

algorithm computes the weight of coverage using the check weight function. The check
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weight function converts the given test case to its base IE, and returns the number of IEs
covered, i.e., when the weight equals six, six IEs can be covered by the candidate test
case. When the weight is equal to the maximum weight, i.e., the test case covers all the
component interactions of specific values, the algorithm directly considers that test case
as a row in the final CA, and removes the covered IEs. Otherwise, based on the result of
the check weight function, the algorithm chooses the test case that covers the most IEs
to be IBest. For the next iteration, the algorithm updates the positions of the particles

according to the update rule, considering the /Best value that has been achieved so far.

After updating the positions of the particles, the algorithm re-evaluates the particles, and
searches for a better /Best value. If a better /Best value is found, the new value is set as
the new /Best value replacing the old /Best value. This iteration continues until the end,
or until a better /Best value can no longer be obtained. In this case, /Best is set as gBest,
and the algorithm adds gBest to Ts of the output test cases, i.e., to form the final CA. At
the same time, the covered r-interaction elements are removed from Ps. The algorithm
continues until Ps becomes empty. Here, indexing is necessary in order to expedite the

process of finding the covered interaction.
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Figure 3-2 A Flowchart of the PSTG CA Generator Algorithm
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3.3 PSTG Parameter Setting

Referring to PSO equations in Section 2.3, choosing suitable parameter values for the
parameters is necessary for achieving the best performance of PSO in different types of
applications, depending on the problem at hand. As discussed in previous studies,
selection of these parameters varies from one application to another, depending on the
problem [32, 63]. Therefore, in our case, selection of these parameters has to be

addressed.

Choosing a large velocity for the particles facilitates global exploration, whereas
choosing a small value facilitates local exploration. The inertia weight, w, is regarded as
a balance provider between the local and global exploration abilities. A good choice of
w results in a reduction of the number of iterations required to locate the optimum
solutions. In fact, the inertia weight has been designed to have a better control of the

particle velocity.

The learning factors, ¢; and c,, control the stochastic acceleration process of the
particles and attempt to pull each particle towards the best achieved solutions [32, 63].
Choosing a low value for these parameters leads the particle to move away significantly

from the target region. On the other hand, choosing a high value for these parameters
37
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optimal sizes of 19, and 29, respectively [71, 72]. Figures 3-3 and 3-4 show the results

of the experiments.
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Figure 3-3 The Best and Average Sizes obtained with the Variation Inertia Component
(w) and Acceleration Coefficients (c; , c,) for CA (N; 2, 4 6)
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leads the particle to move sharply towards the target region. Thus, there must be a

balance in choosing these parameters.

In addition to the parameters mentioned above, the swarm search space and the iteration '
number also represent important parameters that must be considered. A large iteration
number may consume more time without obtaining better solutions, whereas a small
iteration number may lead to interruption of transition of the particles when they try to
move through the best solutions. In the same way, a large swarm search space may
consume more time, whereas a small search space may hinder the appearance of some

good solutions.

According to [32, 61], PSO performs well when (ci,c;) are set between 0.5 and 2.
Therefore, this range is used as the basis for the parameter-tuning process. The tuning
process of (ci, ¢;) and w is performed with large values of repetition and the swarm size,
i.e., 60 and 200, respectively, to ensure the appearance of the most optimal particles in
the swarm search space. We have adopted the experiments undertaken by Stardom [56]
for SA, GA, and TS parameter setting, while taking into account the parameter setting
for PSO in the literature [61, 69, 70]. The experiments are performed to determine the
optimal size of the CA by fixing ¢, and c; and by varying w, and then performing the
reverse experiment. Here, to have a better statistical significance, each experiment is
repeated 80 times and the best and average sizes are recorded. Two well-known CAs

are used as the base problem for construction: CA (N; 2, 4 %), and CA (N; 2, 57), with

38



Aversge Test Sulte Stze

values deduced earlier [i.e., (c1, c2) =1.375 and w = 0.3]. Various values of the swarm
size and repetition are then tested by fixing the swarm size and by varying the
repetition, and then performing the reverse experiment. The average generation time is
recorded in order to determine its effects with the variation of the swarm size and
repetition. All experiments employ the two CAs used earlier, ie., CA \N; 2,4 6), and
CA (N; 2, 57). Figures 3-5 and 3-6 depict the best and average test sizes obtained with
the variation of the swarm size and repetition, whilst Figures 3-7 and 3-8 depict the

average generation time obtained with the variation of the swarm size and repetition.
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Figure 3-5 The Best and Average Sizes obtained with the Variation of Swarm Size and
Repetition for CA (N; 2, 4 6)
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Aé sﬁown in Figures 3-3 and 3-4, the acceleration coefficients (¢ and cz) and their
respective inertia weight (w) have a direct impact on the size obtained. The strategy
generates poor results for the range of (c1, ) greater than 0.1 and smaller than 1,
whereas it performs well in case of (c1, ¢;) smaller than 1 when w increases towards 0.9.
The interpretation of this observation is that the strategy seems to trust the global
solution of (ci, c;) smaller than 1. Nevertheless, the strategy tends to facilitate local

solutions, leading towards better choices of test cases, as w approaches 0.9.

However, because the range of w is greater than 0.7 and (c1, c2) are greater than 1.6, the
strategy is either unable to generate any results, or it takes a long time to generate (non-
optimal) results, which are not plotted in Figures 3-3 and 3-4. This observation implies
that, with increasing w, the particle tends to go out of the search space faster, thereby
hindering the appearance of some solutions. The strategy appears to be effective by
forcing the particle to return it to the search space, thereby rendering inability, or taking

a long time to reach the desired solution.

Based on the aforementioned discussion, a good choice for (c1, ¢2) would be a value
greater than 1.2 and smaller than 1.4, whereas the suggested value of w would be

between 0.2 and 0.5. Specifically, (c1, c2) =1.375 and w=0.3 give the best result.

After determining the suitable choices for w and (c1, ¢2), it is necessary to determine the

swarm size and repetition. During the process, the values of ¢ and w are fixed to the
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Figures 3-5 and 3-6 reveal that there is a trade-off between the swarm size and
repetition. From the results, one can observe that, because of the larger search space, the
increase in the swarm size leads to an improvement in the generated CA size. This
jmprovement is not linear with the swarm size because sufficient repetitions are needed
for the appearance of good solutions. However, it is noticeable from Figures 3-7 and 3-8

that the average generation time increases linearly with the swarm size and repetition.

From Figures 3-5 and 3-6, the best size is obtained from 80 repetitions. In the case of
CA (N; 2, 46), the best size is obtained when the swarm size is 80. In contrast, in the
case of CA (N; 2, 57), the best size is obtained when the swarm size -is éO. After-
obtaining these values of iteration and swarm size, no significant improvements in the

overall test sizes have been observed. This observation is because the result of the
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strategy has arrived at the theoretical optimal sizes [19 in case of CA (N; 2, 4%), and 29
in case of CA (N; 2, 57)]. There is a need to allow sufficient repetitions and swarm size
to increase the chances of finding good (and optimal) sizes. For this reason, we have
chosen 20 repetitions with a swarm size of 160 particles for all configurations. By
choosing these values, we can also achieve a reasonable generation time, as shown in

Figures 3-7 and 3-8.

3.4 Summary

The design and implementation of the PSTG strategy have been presented in this
chapter. Specifically, the chapter presents the main algorithms of the strategy and
illustrates how these algorithms are related to each other. The chapter also shows how
PSO is used in the strategy to optimize the size of the generated test suite. In addition,
the PSO parameter tuning process is also presented to ensure an optimal setting for
better optimization of the strategy. The next chapter presents the experimental results of

the evaluation process for the PSTG strategy.
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CHAPTER 4

EVALUATION

Chapter 3 has illustrated the design and implementation of the PSTG strategy.
Moreover, the design parameter setting of the strategy has been given in the chapter
also. To characterize the performance of the strategy, this chapter presents the results of
an extensive evaluation and characterization experimental process. The experiments are
divided into three essential parts. In the first part, the 7~way comparative experiments
-are performed to evaluate the propc;sed PSTG strategy in term of the generated test suite
size. Then, the variable-strength experiments are carried out to compare against existing
strategies. In both cases, the benchmarking process considers the existing Al- and
computational-based strategies for comparison. The final part presents an empirical case
study that was conducted on a non-trivial software system to show the applicability of

the strategy and to determine the effectiveness of the generated test suites to detect

faults.

4.1 Experimental Setup

’ For the first and the second parts of the experiments, the environment consists of a
desktop PC with Windows 7, 2.8 GHz Core 2 Duo CPU, 3 GB of RAM, while the
. l experimental environment for the third part consists of a a desktop PC with Ubuntu
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10.10 operating system with gcc 4.4.5, 1.73 GHz Centrino Duo CPU, and 1 GB of

RAM.

Throughout the experiments, each table represents the smallest test suite size obtained.
The darkened cells with bold numbers show the best results obtained for the test
configurations. Cells marked NA (Not Available) indicate that the results are
unavailable for more than a week or it is not available from the literature, and cells
marked NS (Not Supported) indicate that the tool is unable to generate the test case for

a specific configuration.

All the Al-based strategies and some of the computational-based strategies produce
non-deterministic results because they depend on some degree of randomness. The
published results of those strategies were achieved by running each configuration 10
times and selecting the smaller size, which is considered the best test suite size (Cohen
et al., 2003, Wang et al., 2008, Chen et al., 2009, Renee et al., 2007). However, for the
other strategies, one run is sufficient because they do not depend on randomness and
instead produce deterministic results. Since PSTG produces non-deterministic results,

all configurations are executed 10 times to select the best test suite size.

4.2 The t-way Comparative Experiments

Here, basically the experiments are divided into two parts. The first part deals with

evaluation and comparison of PSTG with existing published results from Al-based
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strategies. As the generated test size is not influenced by the system specifications, the
results are compared directly with those existing published results. The second part

deals with comparison of PSTG with other computational-based strategies.

4.2.1 Comparing PSTG with Existing Al-based Strategies

At this stage of the experiments, the results are compared directly with those of SA,
GA, and ACA, as published in (Shiba et al., 2004). In addition, the AETG and mAETG
results are taken into account because both GA and ACA results are derived from them.
The original results of AETG and mAETG are taken from (Cohen, 2004). Table 4-1

shows the sizes of the smallest test set generated by each strategy for 2 <7<3.

Table 4-1 Comparison with Existing Al-Based Strategies

Configurations AETG | mAETG | GA | SA | ACA | PSTG

CA (N;2,3%)

CA (N;2,3" - 17 BTN T 17
CA (N;2,2") NA NA NA | 13 15
CA (N;2,10") NA NA NA | 159 | 163
CA (N;2,10%) | 198 | 227 | 183 [ 225 | 229
CA (N;3,5° 198 NA 152 167
CA (N;3,39 47 38 42
CA (N;3,4° 105 7 102
CA (N;3,10°%) 1508 | 1473 | 1501 1496 | 1506
CA (N;3,5)) 229 218 218 BOM 218 | 229
CA (N;3,6% 343 330 331 330 | 338
MCA (N;3,10" 6% 4°3") NA 377 361 | 385
MCA (N;2, 5" 4* 3" 2% 30 25 26 25 28
MCA (N;2,5° 4° 39 NA 114 | 108 106 | 112
MCA (N;2, 4737 2%) 41 34 37 37 | 40
MCA (N;2,5'3°2%) 19 20 5. | 21
MCA (N;2, 6' 5" 4°3°2%) 34 35 33 32 39
MCA (N;2,7 6:5°4°3°2%) | 45 44 ) 48
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In these configurations, PSTG performs poorly. Putting PSTG aside, if SA, GA, ACA,
mAETG, and AETG are taken into account, clearly GA and. ACA generate slightly
better test sizes than AETG and mAETG for these configurations. Owing to its large

random space, SA generates the best results in most cases.

The design and implementation of both GA and ACA mainly depend on the AETG
algorithm. Here, GA and ACA are summoned after AETG. As illustrated in Chapter 2,
the final test suite is further optimized by a “compaction algorithm” that merges the test
cases for optimality. As a result, the underlying performances of both GA and ACA are
not clear despite showing good results.

Concerning SA, despite producing the best overall result, to the best of our knowledge,
there appears to be no reported SA results for >3 in any configurations in the literature.

For this reason, the performance of SA for high interaction strengths is unknown.

4.2.2 Comparing PSTG with Computational-based Strategies

To further demonstrate the performance in terms of test suites sizes, PSTG is compared
with other well-known computational-based strategies, including Jenny (Jenkins, 2005
), TConfig (Williams, 2008), ITCH (Hartman, 2005), PICT (Czerwonka, 2008), TVG
(Arshem, 2009), CTX-XL (2003), and IPOG (Kuhn, 2009). All the tools are

downloaded and implemented within the aforementioned environment. The comparison
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aims to study the growth in the size of the test suites generated in terms of strength of

coverage (?), the number of parameters (P), and the number of values (V).

To facilitate the comparison, different sets of experiments are established by adopting

and extending the experiments conducted by (Lei et al., 2008, Lei et al., 2007, Calvagna

and Gargantini, 2009) as well as by Bryce et al (2005). The experiments consist of

seven sets of comparison, as follows:

il.

iii.

iv.

Experiment 1: The number of parameters (P) and the parameters’ values (V)
are constant with the variation of the interaction strength (f) from 2 to 6.
Experiment 2: The interaction strength (f) and the parameters’ values (V) are
set to 4 and 5 respectively with the variation of the parameter number (P) from 5
to 12.

Experiment 3: The number of parameter (P) and the interaction strength (#) are
set to 10 and 4 respectively, but the parameters’ values (V) are varied from 2 to
6.

Experiment 4: Five system configurations with mixed variable sizes with the
constant interaction strength (7) set to 4.

Experiment 5: The number of parameters’ values (V) is set to 3 and the
interaction strength (¢) is varied from 2 to 6, while the parameter number P)is

varied from 3 to 12 for each value of the interaction strength.
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vi. Experiment 6: The number of parameters (P) is set to 7 and the interaction
strength () is varied from 2 to 6, while the number of parameters’ values (V) is
varied from 2 to 5 for each value of the interaction strength.

vii. Experiment 7: Four real-world software system configurations are adopted.

The four real-world software system configurations that are adopted in the Experiment
7 are: Basic Billing System (BBS), Traffic Collision Avoidance System (TCAS),
Mobile Phone, and Spin Simulator. BBS is a model of a basic telephone billing system
consisting of four components. Each component has three values, as used in (Lott et al.,
2005). TCAS represents the specification model of a software module part for 12
parameters (two 10-value parameters, one 4-value parameters, two 3-value parameters,
and seven 2-value parameters), as presented in (Lei et al., 2007, Kubn and Okum,
2006). In addition, the Mobile Phone example, as presented in (Cohen et al., 2007,
Calvagna and Gargantini, 2009), models real-world mobile phone optional features in
five parameters (two 2-value parameters, and three 3-value parameters). Finally, the
Spin Simulator is a model-checking tool, as presented in (Holzmann, 1997, Calvagna
and Gargantini, 2009). The tool is publicly available for use as a simulator undertaking

the state machine run, or as a verifier used for specification properties check.

Tables 4-2 to 4-8 summarize the results for each stage of the above experiments

respectively.
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Table 4-4 P&t Constants (10, 4), But V Varied

y | Jenny TConfig [ ITCH | PICT | TVG | IPOG | PSTG
Size Size Size | Size | Size | Size Size
2| 39 45 58 43 40 49 3%
3| 221 235 336 | 231 | 228 | 241 |2
4| 703 718 704 | 742 | 782 | 707 :
5 1719 | 1878 | 1750 | 1812 | 1917 | 1965 .
6 |35 NA NA | 3735 | 4159 | 3935 | 3880
Table 4-5 Five Multi Domain Configurations
. Jenny | TConfig | ITCH | PICT | TVG | IPOG | PSTG
Configurations Size | Size | Size | Size | Size | Size | Size
MCA (N4, 3°4°) 457 499 704 487 | 463
MCA (N34, 5" 3°2%) 303 302 1683 | 310 | 313 | 324
MCA (N:4, 87 6° 59 4580 4317 4565 | 5124 | 4776
MCA (N4, 6° 5° 39 3033 NA NA [B§ 2881 | 3273
MCA (N;4,107978" 776" 57 4" 3'2") [6138 5495 5922 | 5916 | 6698
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Table 4-6 Variable Number of Parameters 3< P <12, Each With 3 Values ¢ Varied to 6

sy | P Jenny | TConfig | ITCH | PICT | TVG | CTE-XL | IPOG PSTG
Size Size Size | Size | Size Size Size Size
3 9 10 9 10 10 10 11 9
4 13 10 9 13 12 14 12 9
5 14 14 15 13 13 14 14 12
6 15 15 15 14 15 14 15 13
7 16 15 15 16 15 16 17 15
2 3 17 17 B 16 |15 17 17 [N
9 18 17 15 17 15 18 17 17
10 19 17 15 18 16 18 20 17
11 17 20 15 18 16 20 20 17
12 19 20 15 19 16 20 20 18
4 34 32 27 34 34 34 39 30
5 40 40 45 43 41 43 43 39
6 51 48 45 48 49 52 53 45
7 51 55 45 51 55 54 57 50
3 8 58 58 45 59 60 63 63 54
9 62 64 75 63 64 66 65 58
10| 65 68 75 65 68 71 68 62
11 65 72 75 70 69 76 76 64
12 68 77 75 72 70 79 76 67
3 109 97 153 100 105 115 96
6 140 141 153 142 139 181 133
7| 169 166 216 168 172 185 155
4 8 187 190 216 189 192 NS 203 175
9 206 213 306 21 215 238 195
10| 221 235 336 231 233 241 210
11| 236 258 348 249 | 250 272 222
12 | 252 272 372 269 | 268 275 244
6 | 348 305 310 | 321 393 312
7 | 458 477 452 | 462 608 441
8 | 548 583 555 562 634 515
5 9 | 633 684 NS 637 | 660 NS 771 598
10| 714 773 735 750 784 667
11| 791 858 822 833 980 747
12| 850 938 900 | 824 980 809
7 | 1087 921 1015 | 1024 1281 977
8 | 1466 1515 1455 | 1484 2008 | 1402
6 9 | 1840 1931 NS 1818 | 1849 NS 2160 168'4
10 | 2160 NA 2165 | 2192 2726 | 1980
11| 2459 NA 2496 | 2533 2739 | 2255
12 | 2757 NA 2815 | 2597 3649 | 2528
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Table 4-8 Four Real-World Software System Configurations, With # Varied to 6

-
& Q = = ~ 0 =
. E|f 135 |2(k3 2|2
z Spec. Task - & l &
e
7] 7] wn w wn wn wn wn
5 5 & 5 5 5 & 3
o (¢ [+ (¢ (¢ (-] o (-]
BBS 34 13 10 9 13 12 10 12 9
TCAS | 273%4'10%| 106 | 109 | 120 | 100 | 100’ | 100" | 100 100
2 I‘Pfll‘l’::lt 2233 2 12115 10| 109 1 9
i ﬁﬁ;:tor 218 45 6 | 20 | 28 | 23 | 27 | 26 | 200 | 24
BBS gt 34 32 |[EE 34 32 | 37 39 27
TCAS | 273%4"10* | 413 | 472 | 23883 | 4000 1| 434 | 426 |/ 400 400
3 Ig‘:;’:: 2233 29 | 30 | a5 | 20 | 30 | 32| 272 | 27
Sin?ui:l::tor 28545 111 | 113 | 196 | 96 | 111 | 113 | 78 101
TCAS |273%4'10% | 1536 | 1548 | 1484 |[11369 | 1599 1377 | 1520
Mobile 2 A3 4
4 Pt 23 59 56 | 138 59 55 | ns 54 54
Sin?tl:ll:tor 2845 | 412 | 427 | 1296 | 353 | 288 341 | 380
TCAS | 273%4"10% | 4621 | NA 425000 4773 4283 | 4566
S Sh:":l':mr 2345 | 1308 | Na | NS | 1185 [saz| MO | 1243 | 1270
TCAS | 273%4'10% | 11625 | NA 11342 | NA 11939 | 11743
6 Shfl‘l’;:mr 213 45 3538 | A | NS | 3420 | NA NS | 3516 | 3648
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Table 4-2 shows that ITCH produces satisfactory results with small values of 7 (i.e.,
1<4); however, no outputs are produced by ITCH after =4 because it does not support
the case £>4. Similar to ITCH, CTE-XL does not provide the support for £~3 but it can
generate satisfactory result for +=2 and 3. TConfig and TVG provide the support for the
case £4 but also they do not produce any specific results in case of £>4 for these testing
configurations. Jenny produces a reasonable result with /=5; however, it fails to produce
any results with /=6. Although it does not generate any optimal solutions in all

configurations, IPOG seems to be the only strategy that can generate test suite at /=6.

For the configuration in Table 4-3, the results for CTE-XL are not reported because it
does not support £>3. ITCH produces the most optimal test sizes for P=5, P=6, P=11,
and P=12. Jenny, PICT, TVG, and IPOG still produce satisfactory results but could not
produce any optimal results for these configurations. It is noticeable that TConfig could
not generate any specific results for P=12, although it generated reasonable results for

the other parameters. PSTG produces the most optimal test sizes for P=7 to P=10.

Table 4-4 examines the sizes of the generated test suites by the strategies and tools with
the values (V) growing. Here, ITCH generate mixed results, i.e., in some case, the
generated test suite size is satisfactory compared with the other tools and strategies,
while in some other cases, the generated test suite size is bigger than the others. In case
of V=6, ITCH could not produce any specific result although it is support #=4. The
strategies PICT, TVG, and TConfig also produced reasonable results but they could not

produce any optimal results for these values. In addition, TConfig failed to produce the
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test suite size in case of V=6. In another hand IPOG and Jenny produced better results
than the aforementioned strategies in most cases. IPOG does not produce any optimal
results, while Jenny produced the optimal test suite size in case of V=6. However, in

most cases, PSTG produce optimal test suite sizes.

In the Tables 4-2 to 4-4, PSTG produces competitive results, and is able to compete
with other strategies in most cases. Notably, the test sizes of PSTG grow exponentially
and logarithmically as the number of 7, parameters, and values increase in line with the

theoretical value of O (v log p) (Lei et al., 2007).

Considering multiple-domain (Mixed values) configurations in Table 4-5V,’ PSTG
appears to scale well against most other strategies in all configurations. In the case
where PSTG is not the best, the test sizes are still within an acceptable value. The other
strategies could generate optimal results for some of the configurations and failed to

generate optimal sizes for some other configurations.

Based on the results obtained in Tables 4-6 to 4-8, CTE-XL generates satisfactory
results in most cases. However, it is unable to generate competitive results in some
cases. In addition, CTE-XL is unable to support values of ¢ higher than 3. Similarly,
TConfig, PICT, TVG, and Jenny produce satisfactory results in most cases. In fact, they
produce optimal results for some cases. However, referring to certain test cases in the
tables, these strategies failed to produce specific results when t=6. IPOG performs well

for all values of ¢, although they do not generate the optimal solution in most cases.
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However, IPOG seems to generate satisfactory results in cases of multi-domain
configurations, as in the real-world systems in Table 4-8. ITCH generates satisfactory

results for small values of z. However, it is unable to support values of ¢ higher than 4.

Overall, the PSTG strategy outperforms other strategies in most of the configurations.
In cases where the best results are not generated, the test suite size generated by PSTG

is within an acceptable value and more competitive than most of the other strategies.

4.3 Variable-Strength Comparative Experiments

To benchmark against other variable-strength strategies, PSTG is compared with other
available strategies that support the variable-strength test suite construction, including
PICT, SA, ACS, TVG, Density, ParaOrder, ITCH, CTE-XL, and IPOG. Here also, the
comparison aims to investigate the PSTG’s generated test suite size against other

strategies based on well-known benchmark configurations.

SA, ACS, Density, and ParaOrder strategies are not available for implementation and
have little evidence to support them. Hence, results are directly compared with
published results for strategies in Chen et al., Cohen et al., and Wang et al. (Cohen et
al., 2003, Wang et al., 2008, Chen et al., 2009). The comparison is fair because the

generated test size is not influenced by system specifications. However, publicly
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available PICT, TVG, ITCH, CTE-XL, and IPOG strategies were implemented within

the aforementioned environment.

The experiments consist of six sets of comparisons. For the first three sets, three
available experiments conducted by Cohen (Cohen et al., 2003, Cohen, 2004) are
adopted. In addition, the comparison results achieved by Wang et al. (2008) and Chen et
al.(2009) for these experiments are included. However, as mentioned earlier, previous
studies do not consider higher interactions. Thus, the experiments are extended to
consider this situation also. For the other three experiments, three system configurations
are adopted and several variable-strength settings are considered, particularly for high
interaction strengths of #, and #. In the first three sets of the experiments, most of the
available and published strategies that support variable-strength test suite constructions
were considered, i.e., ITCH, PICT, TVG, CTE-XL, ACS, SA, Density, ParaOrder, and
IPOG. However, in the next three sets of the experiments, available strategies for
implementation were merely considered, i.e., PICT, TVG, ITCH, and IPOG. The CTE-
XL, strategy is not considered also in the last three sets of the experiments because it
does not support interaction strength higher than three. Tables 4-9 to 4-14 summarize

the results obtained for these experiments.
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Table 4-10 Sizes of Variable-Strength Interactional Test Suites for the Configuration VSCA (m; 2 4 5% 67, {C}H

Configuration VSCA (m; 2,4°5° 67, {C})

{C} ITCH | PICT | TVG | CTE-XL | ACS | SA | Density | ParaOrder | IPOG | PSTG
[} 48 43 44 47 41 | 36| 41 49 43 42
CA (3,4 97 384 67 67 64 | 64 64 64 83 64
MCA (3,4°5%) | 164 781 132 134 104 [ 100 131 141 147 | 124
CA (3,5) 145 750 [ 125 125 | 125 [125] 125 126 136 | 125
MCA (4,4°5") | 354 | 1920 [ 320 NS NA |[NA| NA NA 329 | 320
MCA (5, 43;5’-) 1639 | 9600 |[1600| NS NA [NA| NA NA 1602 | 1600
CA(3,4) : :
CA G, 5;)1 194 | 8000 | 125 126 125 | 125 | 125 129 136 | 125
ﬁgi E:: gz 2% 1220 | 288000 | 900/ | NS | NA |NA| NA NA 900 | 900
3 ;
Mgﬁ g’:;‘g)ﬁl) 819 | 48000 | 750 NS | NA |NA| NA NA 750 | 750
CAG:4) | 4560 | 288000 4500 NS | NA [NA| Na NA | 4500 | 4500
MCA (5, 5° 6%) :
MCA (4,45) | 510 | 2874 | 496 NS NA |[NA| NA NA 512 |2
MCA (5,4°5%) | 2520 | 15048 [ 2592 | NS NA [NA| NA NA 2763 | 2430
MCA (3,45°6") | 254 | 1266 | 237 236 201 [171] 207 247 215 | 206
MCA 3,5°65) | 188 | 900 ['180 180 | 180 | 180 | 180 180 180 | 180
MCA (3,456 | 312 | 261 | 302 301 255 |[214| 256 307 NS | 260
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Table 4-13 Test Size for Variable-Strength Configuration VSCA (m; 3, 413722 (ChH)

Configuration VSCA (m; 3, 4" 3”2, {C})
{C} ITCH | PICT | TVG
[2] 112 | 72 [ 70
MCA (4, 4" 3% 193 | 1377 | 111
MCA (4, 4'3%) CA 4,39 253 | 17496 | 112
MCA (4,4' 3% 217 | 1500 | 141
MCA (4, 4' 3% 226 | 1547 | 183
MCA (4, 4" 3%) MCA (5,3’ 2%) 307 | NS | 141
MCA (5, 4" 3*) MCA (5,3 2% 482 | NS | 325

Table 4-14 Test Size for Variable-Strength Configuration VSCA (m; 2, 1g* o' 8" 7 6 5
4! 8l 2lrch

Configuration VSCA (m; 2,10' 9" 8' 7" 6" 5" 4" 3' 2'{C})

{C} ITCH | PICT | TVG | IPOG | PSTG

0 119 | 102 | 99 | 91 97
MCA (3,10 9' 8") 765 | 31256 |17200 72000 7200
MCA (3,7 6' 5" 301 | 19515 [F2108] 221 |W21000
MCA (3,4'3'2) 140 | 2397 | 99 o1 | 97
MCA (3,10°9" 8'7) | 806 | 22878 | 784 | 772 | 742

MCA (3,10' 9" 8
MCA (3,7' 6' 5% 2L iyt N

MCA (3,10' 9' 8")

MCA (6,7' 6' 5' 4* 3' 2" oslos LN
MCA (3, 10' 9' 8"
MCA (3,7' 6! 5" 968 | NA
MCA (3,4 3' 2}
MCA (4,5"4'3'2Y 237 | 1200 | 123 | 142 0

MCA (5, 10" 9 47372%) | 2276 | 124157 | 21600121605 1216
MCA (6,7° 6'5° 4329 | 5157 | NA [150401 5041 [F5040°0
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Referring to the comparative results in Tables 4-9 to 4-11, when the strength of the
interactions is small, such as in cases of small strengths (maximum two for t,, and three
for t; ), SA frequently generates optimum results, and PICT generates the worst results.
For the same configurations, ParaOrder, Density, TVG, and ITCH appear to generate
satisfactory results most of the time. IPOG also generate reasonable results; however, the
results are worse than those achieved by ParaOrder, albeit they use the same method of
generation. PSTG and ACS generate results either equal or close to the results obtained
by SA. Moreover, PSTG generates results similar to or more optimal than ACS.

Considering the configurations with interaction strengths higher than three, the results are
unavailable for ParaOrder, Density, ACS, and SA. For the remaining implemented
strategies, PICT still produces the worst results for most configurations, whereas PSTG
produces the most optimal results. ITCH, TVG, and IPOG produce satisfactory results.
TVG and IPOG frequently yield comparable results. PICT and IPOG are unable to
produce results when the main and sub-configurations strength (t and t;) are equal; as

mentioned, such cases are marked NS in the tables.

In cases with higher strength configurations, as shown in Tables 4-12 to 4-14, merely the
results of PICT, TVG, ITCH, and IPOG are reported, which are the only strategies that
address this situation, to provide a comparison with PSTG. For these configurations,

PICT still produces the worst results for most of the configurations, whereas PSTG
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produces the most optimal results. TVG and IPOG produce satisfactory results; however,
TVG generates results that are either similar to or comparable with those of PSTG in

some cases.

4.4 Analysing the Results from 7~way and Variable-Strength Experiments

In accordance with the ~way and variable-strength results, the strategies that generate
satisfactory results in cases of z-way are not necessarily appropriate for the generation of
variable-strength. In addition, finding a general strategy for the construction of both cases
is difficult. For example, the results show that, although PICT generates reasonable
results for z-way cases, it is not effective for variable-strength cases. The main reason is
the construction algorithm wherein each parameter is independent, which leads to the loss
of the ability to nest the parameters (Czerwonka, 2006). The problem of independence of
the parameters can be solved by defining some negative values, such that a test case can
only have one negative value appearing in a given test. However, this method is more
restricted than nesting parameters because it is only applied to failure testing (Barrett and
Dvorak, 2009). This, in turn, requires the construction method to generate more test
cases, such as the construction of independent #-way test suite for the main and sub-

configurations.
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SA, on the other hand, often achieves small test sizes for most of the configurations,
when the interaction strengths for the main and sub configurations are two and three,
respectively. This optimality is owing to the use of the binary search process with a large
random generated search space. Nevertheless, this construction method is time-
consuming, particularly for interactions higher than three, or for more complicated

configurations.

ACS also generates satisfactory results. In some cases, its results are similar or close to
those from SA. However, in the implementation stage, the final test suite, which is the
outcome of the algorithm, is optimized further by a merging algorithm that attempts to
merge the test cases. As a result, the performance of the algorithms is not clear, and we
cannot consider the outcome of the research as a pure performance of ACS, although
research has shown impressive results for some small configurations when the interaction
strengths for the main and sub-configurations are two and three, respectively. This
elimination in interaction generation reveals that this method faces the problem of

computation owing to the complex nature of the ACS algorithm.

ParaOrder and Density also generate satisfactory results. However, there is a lack of
results for other configurations and interaction strengths. This gap has been filled for
ParaOrder by the availability of IPOG, which uses the same construction method. IPOG
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generates test suites more effectively, particularly for large-scale interaction strengths and
configurations. However, its performance is similar to or worse than that of TVG,

although its construction speed is better as compared with those of other strategies.

The TVG construction method is more effective, particularly for large-scale interaction
strengths and configurations. However, for TVG and ITCH, the user must manually enter
all interactions of the sub-configurations parameters, leading to a considerable loss of

time in the entry procedure before the construction process.

PSTG is effective in configurations owing to its ability to locate solutions with a fewer
number of moves. This effectiveness is also owing to the use of previous best-achieved
test cases (IBest) in the update rule. This, in turn, leads to the generation of a search space
surrounding the best solution, resulting in a set of better test cases. Therefore, the

algorithm quickly locates the global best to be added to the final test suite.

4.5 Summary

This chapter highlighted the evaluation of the PSTG strategy extensively. Six different
sets of experiments were performed to evaluate the efficiency of the chosen strategy and
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were compared with existing strategies and tools. Overall, PSTG gives promising results.
The next chapter summarises and concludes the findings and contributions of this

research. The possible future directions of the research are also provided.
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CHAPTER §
CONCLUSION & FUTURE WORK

In this work, a novel interaction testing strategy, called PSTG, is implemented. The new
strategy aimed to construct minimized ~way or variable-strength test suites by combining
PSO with an algorithm for t-interaction element generation. The main focus of the work
is to optimize the generated test suites sizes as well as to effectively detect interaction

based faults.

In order to conclude and discuss the importance of the achieved results as well as the
directions for the future researches, this chapter summarizes the earlier chapters’

important indications and gives the future research directions.

5.1 Contribution

Summing up, a number of contributions can be derived from this research work. Firstly,
this research work has investigated the use of PSO as the base of implementing a novel
variable-strength and t-way strategy, PSTG. Furthermore, this work has also evaluated

and benchmarked PSTG against both existing t-way and variable strength strategies. In
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doing so, this work has also evaluated the effectiveness of PSTG for testing of real word
applications. Based on the experimental benchmarks and case study evaluation in Chapter

4, a number of observations can be discussed here.

First, different kinds of CAs can be used as interaction test suites, which in turn used in
the interaction testing process. As discussed previously in Chapter 1, the exhaustive
testing is useful to tackle most of the faults in the software under test; however it is not
applicable practically due to time, and resource constraints. Table 4-15 illustrates this
situation clearly. From the table, it can be seen that the exhaustive test suite with 41,472
test cases can tackle most of the faults in the software. However, the same amount of
faults can be tackled using MCA as a test suite with 764 test cases or using VSCA as a
test suite with 104 test cases. Hence, the use of CAs as interaction test suites can serve as
a compromise technique to exhaustive testing whilst complementing the other test suite

design techniques.

Second, it can be seen from the results that interaction test suites construction (or the
construction of CAs) is an optimization problem. Therefore optimization methods could
be useful to be used within strategies for construction. Here, the prospect of using PSO

for generating f-way and variable-strength test suites is useful. As such, using PSO here
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with the proposed PSTG strategy offers a viable solution to undertake this problem,

ranging from small to high interactions.

Third, as mentioned previously in Chapter 1, Tables 4-1 to 4-14 showed that searching
for an optimum set of test cases can be a painstakingly difficult task, and it is a challenge
to find a unified strategy that generates optimum results all the time. Therefore, it is
customary to find a strategy that can achieve minimum test suites sizes for some

interactions, parameters, or values, while it cannot be achieved by others.

Fourth, most of the strategies support the construction of CA and MCA (i.e., t-way test
suites). However, few strategies support the construction of VSCA. A number of ~way
strategies have started to support VSCA construction (e.g., PICT, IPOG, TVG, CTE-XL
and SA). In addition to these strategies, a number of new strategies emerged to particularly
construct VSCA using the published techniques. For those published strategies, there has
been little evidence on their performance and how they construct the variable strength

test suites.

Finally the limitation for existing strategies is going for higher . As previously
mentioned in Chapter 1, for practical concern, it is needed to support up to /=6, which is
not provided by most of the implemented Al-based z-way strategies, as can be seen in
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Table 4-1. In addition, for those strategies that support the generation of ~way test suites
with interaction strength up to /=6, they may not necessarily support that situation in case
of variable strength interaction. This situation can be seen clearly in Tables 4-12 to 4-14.
Moreover, even those variable-strength strategies that support higher ¢ (i.e., ITCH, PICT,
TVG, and IPOG), few of them support the cumulative case, i.c., when the main and sub
configurations strength are equals. Compared with existing strategies, the proposed PSTG
strategy overcome those limitations and deal with the strength of interactions more
flexibly than the existing strategies, that is, by supporting ~way and variable-strength

interactions up to =6.
5.2 Future Research Directions

There are different directions for this work in the future. Considering the current
implementation of PSTG, introducing seeding and constraints is important for the future
developments. In addition, releasing the beta version of the PSTG implementation is also

a useful endeavour.

Considering the construction methods of the interaction test suites, this direction of
research still needs further researches and investigations. There is a need to investigate
more construction methods and identify better methods. In doing so, there is a distinct
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possibility to produce new and better strategies by investigating the features of different

optimization algorithms and combine them together to produce hybrid strategies.

As part of future work, exploring the applicability and effectiveness of the strategy on
many real systems is also desirable. As can be noted from Chapter 2, there are few
researches dealing with the application of interaction test suites. The strategy could be
applicable in many research areas, such as hardware testing, by considering the
interaction of the hardware components. It could also be effective in network
performance evaluation by considering different interactions among the network

components to achieve best performance.

Considering the application of interaction testing, different areas need more assessments
and improvements, although the exiting researches achieved impressive results. One of
those areas is the components’ interaction testing. So far, the effectiveness of using the
interaction test suites in this area is not clear. Although it is studied theoretically in many
researches, there is little evidence showing its effectiveness. It seems to be encouraging
area for an empirical study for the PSTG strategy. An interesting direction, for example, is
to apply the strategy on e-commerce software systems. It is interesting if a research study
the effect of the component interactions on some performance criteria practically. In
addition, the application of VSCA is an open research direction also. It is noticeable from
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the literature that there is little evidence for the application of VSCA. As illustrated in
Chapter 2, this could be also applied with e-commence systems by taking stronger

interaction strength among some special related components in the system, for example.

Finally, another important direction of research is to combine the interaction test suites
features with other software testing methods. As previously mentioned, interaction test
suites have been used with regression testing and test case prioritization. It also could be
useful if the interaction test suite features are combined with fault localization techniques.
So far, the use of interaction test suites has not been sufficiently investigated to address

fault localization which in turn could further strengthen existing testing techniques.
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