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SIFAT IKATAN ANTARAMUKA ANTARA KONKRIT BIASA DAN KONKRIT 
GENTIAN BERPRESTASI ULTRA TINGGI SEBAGAI BAHAN BAlK PULIH 

ABSTRAK 

Sebagai satu peraturan kebiasaan, ikatan antaramuka struktur konkrit lama dengan 

lapisan baru bahan baik pulih merupakan salah satu faktor penting untuk memastikan 

struktur berfungsi dengan baik, selamat serta tahan lasak. Oleh itu, untuk meningkatkan 

rintangan terhadap penetrasi bahan-bahan yang merosakkan, satu ikatan yang baik dan 

efektif di perlukan antara permukaan _struktur konkrit berkenaan. Objektif kajian ini 

adalah untuk mengkaji sifat-sifat mekanikal, ciri-ciri ketelapan jangka masa pendek dan 

panjang antara ikatan konkrit biasa (NC) dengan lapisan konkrit gentian berprestasi 

ultra tinggi (UHPFC) sebagai bahan baik pulih. Untuk menguji sifat-sifat mekanikal 

dalam ikatan, ujian lereng ricih (slant shear), ujian ketegangan (splitting tensile), Pull 

off test dan ujian lenturan (flexural test) dijalankan bagi menentukan pengaruh 

kepelbagaian kekasaran permukaan serta kesan kelembapan terhadap permukaan 

tersebut. Selain itu, kajian mengenai ciri-ciri ketelapan telah diuji dengan menggunakan 

kaedah ketelapan klorida (rapid chloride permeability), ujian ketelapan gas dan air serta 

ujian keporosan. Dalam kajian ini terdapat lima (5) jenis tekstur permukaan yang telah 
• 

digunakan iaitu tuangan (AC) (tanpa penyediaan permukaan), letupan pasir (SB), 

gosokan dawai (WB), mengerudi lubang (DH) dan berlurah (GR). Kekasaran bagi 

setiap jenis tekstur permukaan ditentukan dengan menggunakan peranti metrologi 3 

dimensi (Alicona Infinite Focus). Selain itu, mikrostruktur zon peralihan antara 

permukaanjuga dikaji dengan menggunakan mikroskop elektron pengimbasan (electron 

microscopy) dan tenaga spektroskopi sinar X (energy dispersive X-ray spectroscopy 

(SEMIEDS)). Keputusan bagi jangka masa pendek dan panjang menunjukan bahawa 
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lapisan baru (UHPFC) mencapai tahap kekuatan ikatan yang tinggi dan terikat dengan 

memuaskan dengan konkrit biasa. Ujian lenturan dan ujian tarik keluar (pull off test) 

menunjukkan bahawa semua kegagalan berlaku pade substratum tanpa mengira 

kekasaran pada permukaan substratum tersebut. Keputusan ujian lereng ricih (slant 

shear) dan ujian ketegangan (splitting tensile) juga menunjukkan bahawa kegagalan 

berlaku pada substratum. Gabungan bahan UHPFC/NC yang mempunyai permukaan 

letupan pasir (SB) berkelakuan menghampiri struktur monolitik apabila diuji 

menggunakan kaedah ujian ketegangan dan ujian lereng ricih. Nilai hubung kait yang 

sangat baik (R2 > 80%) bagi setiap ujikaji telah diperolehi antara parameter kekasaran 

substratum, silinder koyak tegang (splitting cylinder tensile) dan lereng ricih (slant 

shear). Hasil ujian ketelapan telah menunjukan ikatan antara permukaan sangat baik. 

SEM I EDS membuktikan bahawa penggunaan UHPFC sebagai bahan pembaik pulih 

secara kimia, fizikal dan mekanikal mampu meningkatkan lagi penambahbaikan zon 

peralihan antara permukaan menjadi lebih kukuh, padat, seragam, serta tahan lasak. 
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CHARACTERISTICS OF THE INTERFACIAL BONDING BETWEEN 
NORMAL CONCRETE SUBSTRATE AND ULTRA HIGH PERFORMANCE 

FIBER CONCRETE REPAIR MATERIAL 

ABSTRACT 

As a rule of thumb, the interfacial bonding between old concrete structures with a newly 

overlay repair material is one of the most important factors for structural functionality 

and safety as well as durability performance. In order to acquire an enhanced resistance 

against penetration of harmful substances, a good and effective bonding is necessary at 

the concrete interfaces. The objective of this study was to examine experimentally the 

mechanical properties and permeability characteristics short term and long term of the 

interface performance between normal concrete (NC) substrate which represented old 

concrete structures and an overlay of ultra high performance fiber concrete (UHPFC) as 

a repair material. The mechanical interfacial bond characteristics were assessed using 

the slant shear, splitting tensile, pull-off and flexural tests to quantity the influence of 

the differently roughened substrate surfaces and to assess the effect of different 

substrate moisture conditions. On the other hand, the permeability characteristics were 

evaluated by means of the rapid chloride permeability, gas and water permeability and 

~ 

porosity tests. Five types of surface textures were used: as cast (AC) (without surface 

preparation), sand blasted (SB), wire brushed (WB), with drilled holes (DH), and with 

grooves (GR). The roughness of the substrate surfaces was quantified using an optical 

three-dimensional surface metrology device (Alicona Infinite Focus). The 

microstructure of the interfacial transition zone was also studied using scanning electron 

microscopy and energy dispersive X-ray spectroscopy (SEM/EDS). The short and long 

term results showed that the newly overlay UHPFC achieved high bond strength and 
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bonds efficiently with the NC substrates. The pull-off test and flexural test results 

revealed that all failures occurred in the substrate, regardless of the substrate surface 

roughness. Majority of failures in the splitting tensile and slant shear test also occurred 

in the substrate. The composite UHPFC I NC substrate having a sand blasted surface 

behaved closely as a monolithic structure under splitting and slant shear tests. A very 

good correlation, mostly R2 > 80% was obtained between the substrate roughness 

parameters and the results of the splitting cylinder tensile and slant shear tests. The 

permeability tests proved that the interfacial bonding was very good and efficient which 

significantly improved the impermeability of the composites. SEMIEDS proved that the 

use ofUHPFC as repair material chemically, physically, and mechanically improved the 

repaired interfacial transition zone to become stronger and denser, as well as more 

uniform, and durable. 
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CHAPTER! 

INTRODUCTION 

1.1 Background and Rationale 

In this modem era, a highly developed infrastructure is vital for economic 

growth and prosperity of mankind. In many nations throughout the world, a lot of 

structures that constitute the whole infrastructure, especially those made of reinforced 

concrete, have suffered degradation which for some cases commenced after 

construction due to the combined effects of aggressive environments such as freeze-

thaw cycles, deicing salts, marine exposure and significantly increasing live loads. 

Hence, some of the most important challenges faced by today' s civil engineers are to 

save, retrofit and maintain these deteriorated structures. Implementation and 

development of new, efficient as well cost-effective rehabilitation and repair methods 

are required to extend the useful service life of the deteriorated structures (Green et 

al., 2000). 

The repair and rehabilitation of concrete structures have gained increasing 

market value over the past few years. For example, in United States the maintenance 

costs of bridges exceed 1 billion USD per year. The total maintenance costs of all 

types of structures can be assumed to exceed 20 billion USD per year. A significant 

part of these costs are spent on the repair and protection of concrete structures. 

Although the amount of work spent on building new structures has increased, works 



related to repair and protection of these structures have also increased over time. The 

extensive development of new methods and materials for the repair and protection of 

concrete structures has led to the need for standards in such works and products 

(Raupach, 2006). 

Repair and rehabilitation have recently drawn significant attention in the field 

of civil engineering. Although engineers have been repairing deteriorated structures 

for many years now, the rate of unsuccessful concrete repairs remains unacceptably 

high. Lack of knowledge on the influence of certain fundamental parameters is the 

reason of achieving durable repairs (Perez et al., 2009a). 

The early and premature deterioration of reinforced concrete structures is a 

serious issue for many nations, as it could put the public safety in jeopardy and the 

escalating repair cost could directly burden the future economy. In order to reduce this 

problem to a minimum and at the same time to maintain the basic functionalities and 

structural adequacies of these reinforced concrete structures, the frequency and extent 

of repair interventions should be kept to the lowest prob(\ble level (Denarie & 

Biiihwiler, 2006). 

As a rule of thumb, the interfacial bonding between deteriorated concrete 

structures with a newly overlay repair material is one of the most important factors for 

structural functionality and safety as well as durability performance. In order to 
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acquire an enhanced resistance against penetration of harmful substances, a good and 

effective bonding is necessary at the concrete interfaces. 

1.2 Problem Statement 

In the field of rehabilitation and strengthening of concrete structures, the need 

often arises to put new concrete next to old concrete. Examples of these applications 

are highway structures, where concrete overlays are used for rehabilitation of damaged 

concrete structures, and the deteriorated concrete must be replaced with new concrete. 

In these cases, the bond strength between the new and old concrete generally presents 

a weak link in the repaired structures. This is related to interfacial transition zone 

between new and old concrete is the weakest section in repaired concrete. Good 

adhesion and bonding at the interfaces in rehabilitated concrete structures is important 

for safety, durability, and better resistance against penetration of harmful substances 

(Gorst & Clark, 2003; Santos & Julio, 2011; Kuebitz, 2012). 

Increasing the efficiency of the interfacial transition zone between the new and 

• 
old concrete in terms of bond strength remains a challenge in concrete repair 

technology and is thus given considerable attention by researchers. This subject has 

been investigated numerous times, but only the bond strength as a value is addressed 

in most cases. The quantification of substrate surface roughness should be studied to 

better understand the bond mechanisms. Very few researches have studied the 
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permeability properties of the interfacial transition zone between the old and new 

concretes. 

While more and more repair materials such as low slump dense concrete, high 

flow concrete, resin based repair mortar and concrete as well as polymer modified 

mortar and concrete have been developed in the market for concrete repair application 

using different techniques such as patching, overlaying, spraying as well as pressure 

grouting, the current concrete repair experiences portray a mixed bag of repair 

performance (Emmons, 1994; Russell, 2004). A large number of existing concrete 

structures worldwide are in urgent need for effective and durable repair. However, up 

to half of all concrete repairs are estimated to fail (Mather & Warner, 2003). 

Ultra high performance fiber concrete (UHPFC) is one of the breakthroughs in 

concrete technology, providing significant improvement in strength, workability, 

ductility, and durability compared with normal concrete. The properties of UHPFC are 

enhanced through the reduction of the amount of water, removal of all coarse 

aggregates, use of highly refined silica fume, and introduction of steel fibers • 
(Graybeal, 2007b ). The improved durability and high compressive strength of ultra-

high-performance fiber-reinforced concrete (UHPFC) suggest its potential as a 

conventional overlay material and solution; however, this application can only be 

ensured by a strong mechanical bond between the UHPFC as an overlay material and 

normal concrete (NC) as substrate material (El-Dieb, 2009). 
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Concrete repairs are often perceived to lack both early age performance and 

long-term durability. Approximately 75% of the failures can be attributed to the lack 

of durability. This inadequate performance is often ascribed to the lack of a reliable 

and perfect bond (Vaysburd & Emmons, 2000; Naderi, 2008). Therefore, it is of great 

research significance and challenge to develop effective and durable repair systems, 

which not only addressing the underlying concrete deterioration problems but also 

protecting the repaired concrete structures from the aggressive environment in the long 

run (Li & Li, 2006). 

The research on the applications of UHPFC as a new material in construction 

is still in progress. Most of previous researches (Chui-Te Chiu & Wang, 2005) 

studied the properties of UHPFC as a new concrete material. Whereas researchers 

such as (Habel et a!., 2007) studied the used UHPFC as a composite material. There is 

serious dearth of information available about the behavior of UHPFC as a repair 

material. In addition, no research has been conducted to assess the bonding behavior 

of UHPFC as a repair material. 

In this regard, this research aims at studying the early and the long term 

bonding behavior between UHPFC as a repair material and NC substrate as an old 

concrete. In case of the NC substrate, it was treated by different techniques, and the 

roughness parameters were quantified using an optical 3D surface metrology device 

(Alicona Infinite Focus). Different mechanical and permeability tests were also 
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utilized to assess the behavior of interfacial transition zone between UHPFC and NC 

substrate. 

Moreover, the relationship between permeability tests and surface roughness 

are also studied, which has not yet been accomplished by any previous work in this 

field. None of the earlier studies investigated the permeability of the interfacial zone 

between substrate and repair. In general, mostly they focused on the mechanical 

properties of the interfacial zone. 

1.3 Research Objectives 

This research was carried out and designed based on four main objectives. The 

detailed objectives are as follows: 

1. To investigate the bond strength characteristics between NC substrate and 

UHPFC as a repair material. 

2. To examine the short and long term transport properties of the interfacial bond 

between NC substrate and UHPFC. 

3. To quantity the influence of surface roughness of NC substrate on the 

interfacial bond characteristics of composite UHPFC/NC substrate. 

4. To assess the influence of substrate surface moisture condition on the 

interfacial bond characteristics of composite UHPFC/NC substrate. 
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1.4 Scope 

Two types of concrete were used in this study. The first type was normal 

concrete (NC) substrate which was used as an old concrete representing concrete from 

existing structure. The second type was the Ultra high performance fiber concrete 

(UHPFC) which was used as a repair material. Ordinary Portland cement (OPC) was 

used in both types of concrete. The mix proportions of the NC substrate and UHPFC 

were performed through a series of trial mixes to achieve a compressive strength of 45 

MPa and 170 MPa at 28 days, respectively. Five types of NC substrate surface 

preparations were used in this study: (i) as-cast surface (AC); i.e. without surface 

preparation as reference; (ii) sand-blasted surface (SB); (iii) wire-brushed surface 

(WB); (iv) with drilled-holes surface (DH) and (iv) with grooves surface (GR). 

Before casting the UHPFC onto the NC substrates, the roughened NC substrate 

specimens were divided into two categories according to the moistening methods, the 

first was 10 minutes moistening and wiped drying with a damped cloth, while the 

second was 24 hours moistening followed by 30 minutes drying. Stearn curing was 

used to cure the UHPFC and the composite UHPFC/NC sub~trate. In this study no 

bonding agent was used between NC substrate and UHPFC. The experimental study 

involved in the determination of mechanical and permeability properties of NC 

substrate, UHPFC and the interface of the composite UHPFC/NC substrate specimens. 

Furthermore, the microstructure of the interfacial transition zone was studied using the 

scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDS). 
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1.5 Thesis outline 

The present thesis comprises of five chapters. A brief layout of each chapter is 

given hereunder: 

• Chapter one highlights the background of this work and also presents a short 

overview of related published works, problem statement, research objectives, as 

well as the scope of research. 

• Chapter two revwws the literature on background of UHPFC definitions, 

properties, different applications in new constructions around the world and its 

suitability when used in repair and rehabilitation of old concrete structures. In 

addition, the different test methods for assessing bond strength are presented. Also 

the effect of roughness and moistening of the concrete substrate surface on the 

bond strength are discussed. 

• Chapter three represents details of experimental works. It covers the methodology 
• 

used in this research in order to achieve the objectives of this study. This chapter 

describes the materials properties and the mix design used in NC substrate and 

UHPFC. It also describes the casting of NC substrate specimens and the different 

surface preparation methods to affair the different types of roughness. Moreover 

the procedures for carrying out the experimental investigation, test apparatus used 
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in the determination of mechanical and permeability properties of NC substrate, 

UHPFC and the interface of the composite UHPFC/ NC substrate are highlighted. 

• Chapter four presents the experimental results of the mechanical and permeability 

properties of NC substrate, UHPFC and the interface of the composite UHPFC/ 

NC substrate. Discussion and analysis of the results in terms of surfaces roughness 

parameters and moisture content of NC substrate are presented. The short and 

long-terms behavior of the composites are also discussed. In addition to this, the 

results of the microstructure of the interfacial transition zone of the composite 

UHPFC/ NC are discussed in detail. 

• Chapter five is the final chapter outlining the research findings from the current 

observations and offers some recommendations for future research. 
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CHAPTER2 

Literature Review 

2.1 Introduction 

This chapter reviews the relevant literature related to the topic of this study. 

Some of the important findings with respect to ultra high performance fiber concrete, 

its preparation, properties and applications for various construction projects are 

discussed in detail. 

2.2 Ultra high performance fiber concrete (definitions, contents, properties 

and applications) 

The demand for high strength concrete (HSC) is increasing day by day owing 

to the spectacular progress made in terms of mega projects and high-rise complexes 

that are being constructed all around the world. One important aspect of HSC is that 

its definition has continuously changed over time and is expected to mean something 

• 
else in near future. The last 2 decades have seen tremendous progress in the field of 

concrete science and technology that it far exceeds the total progress that was made 

over the previous 150 years (Graybeal, 2010). In the recent years the research in 

improving the performance of cementitious composites has yielded a construction 

material that possess as ultra-high performing material properties comparable with that 

of steel. The progress made with high-performance cementitious composites over the 
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years have resulted in a very good optimized grain-binder matrix suitable for both 

granular structure and the cementitious/binder composition, which are nowadays 

commonly referred to as Ultra-High-Performance Fiber-Reinforced Cement 

Composites (UHPFC). They showcase exemplary mechanical properties in terms of 

compressive strength, elastic modulus, tensile strength, and elastic post-cracking 

bending strength. Moreover, they are highly durable having a dense microstructure 

resulting in less or no porosity, water and gas permeability. Furthermore, it possesses 

negligible water absorption with very low diffusion coefficient (Toledo Filho et a!., 

2012). 

Figure 2.1 shows the classification of Fiber-Reinforced Concrete (FRC) that 

exhibit strain-hardening under uniaxial tension force. UHPFC which is the last 

developed type of FRC, is characterized by a dense matrix and, consequently, very 

low permeability when compared with high performance fiber reinforced cement 

composites (HPFRCC) and with normal-strength concretes (Habel eta!., 2006b ). 

HPFRCC 

Fiber reinforced concretes 

Cementitious materials 

Figure 2.1: Classification of FRC. 
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2.2.1 Definition of Ultra high performance fiber concrete 

UHPFC is an important type of construction material that was recently 

developed. This material has a very efficient high-technology cement-based matrix 

and high fiber content, which make it both extremely strong and very durable. 

However, this material is rarely used in real structures, due to the new design concepts 

that are required for its successful and cost-effective application (Morin et al., 2001). 

It is an advanced cementitious material comprising a dense, high-strength matrix that 

contains a large number of evenly embedded steel fibers. UHPFC has exemplary 

mechanical and transport properties such as high tensile strength, strain hardening, and 

density that results in low permeability (Rossi, 2002). 

When compared with HPC, UHPFC demonstrates better compressive 

behavior, tensile behavior, and durability (Parra-Montesinos et al., 2005). 

The significant improved properties of UHPFC is realized via the reducing in 

amount of mixing water, the removal of coarse aggregates, the use of highly refined 

silica fume and the introduction of steel fibers (Voort, 2008). 

UHPFC are cementitious composites with outstanding material propreties, it 

has very high strengths (compressive strength> 150 MPa, tensile strength> 8 MPa, 

flexural strength > 18 MPa) and display strain-hardening behavior under uniaxial 

tension. In addition the permeability ofUHPFC is very low. (Voo et al., 2011). 
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Ultra-high performance concrete (UHPC) is of the promising types of concrete 

that has been developed in the last decade. The efficiency of UHPC is particularly 

dependent on its density, which can be maximized by optimizing the particle packing 

to achieve ultra-high consolidation of the concrete matrix. The optimized particle 

packing can be achieved through an almost "perfect" grain size distribution by 

incorporating a homogeneous gradient of fine and coarse particles in the mixture 

(Ghafari et al., 2012). 

2.2.2 Ultra-high performance fiber concrete components 

2.2.2.1 Typical Mix of Ultra high performance fiber concrete 

The excellent properties of UHPFC are mainly achieved by improving the 

homogeneity of the mix compared with NC and by eliminating coarse aggregates. The 

grain size distributions of cement, silica fumes, and sand have to be optimized to 

achieve high capacity and, thus, a dense matrix with a very low permeability (Richard 
~ 

& Cheyrezy, 1995). Very finely graded sand with a size ranging from 150 f.!m to 600 

f.!m is dimensionally the largest granular material in the mix. The second largest 

particle is cement, with an average diameter of 15 f.!m. Silica fume is the smallest 

particle used in the UHPFC. The main function of silica fume particles is to fill the 

interstitial voids between the cement and crushed quartz particles. Another fine 

particle is crushed quartz, which has an average diameter of 10 f.!m. Steel fibers are 
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dimensionally the largest components in the mix and are used to improve the ductility 

ofthe mix (Graybeal, 2005). Table 2.1 shows the ranges ofUHPFC mix components. 

Table 2.1: Range ofUHPFC mix components (Graybeal, 2005). 

Component Typical range by weight (kg/m3
) 

Sand 490-1390 

Cement 610-1080 

Silica Fume 50-334 

Crushed Quartz 0-410 

Fibers 40-250 

Superplasticizer 9-71 

Water 126-261 

The following sections present a more detailed description of the role of each 

component of the UHPFC mix. 
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2.2.2.2 Ultra-high performance fiber concrete constituents 

a. Sand 

Sand serves as UHPFC aggregate. The elimination of coarse aggregates aids in 

improving the durability ofUHPFC. Quartz sand is proposed for its high hardness and 

good paste-aggregate interfaces. The mean particle size is often smaller than 1 mm. 

However, UHPFC with maximum particle sizes of 8 mm to 16 mm has also been 

produced (Richard & Cheyrezy, 1995). Sand confines the cement matrix to add 

strength. In addition, variety of quartz sand that is not chemically active in the cement 

hydration reaction at room temperature is typically used (Porteneuve et a!., 2001 ). 

b. Cement 

Ordinary Portland Cement (OPC) is the primary binder used in UHPFC. The 

cement content (2:700 kg/m3) is more than two times higher than that for normal-

strength concrete. The cement should have low alkali content, low to medium 

fineness, and low C3A-content to reduce water requirements, ettringite formation, and 

~ 

heat of hydration. In most cases, CEM I 52.5 is used. However, promising alternatives 

such as CEM IIIIB are also available (Richard & Cheyrezy, 1995). 

Interestingly, not all of the cement in the UHPFC matrix becomes hydrated because of 

the low water content of the mix. Although hydrated cement acts as a bonding agent, 
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unhydrated cement grains can act as high elastic modulus reinforcements in the matrix 

(Vernet, 2004). 

c. Crushed Quartz 

Given that not all of the cement is hydrated, a portion of unhydrated cement 

can be replaced by crushed quartz powder. Experimental works by Ma & Schneider 

(2002) showed that up to 30% of the volume of cement can be replaced by crushed 

quartz with no reduction in compressive strength. Aside from reducing the cement 

requirement, crushed quartz also improves the flowability of UHPFC mix. 

d. Silica Fume 

Silica fume, a highly reactive pozzolanic material, is a necessary ingredient for 

HPC and UHPFC. Silica fume was initially employed as early as 1969 in Norway; 

however its systematic application carne to light in the early 1980s in North America 

and Europe. Since then, its demand has increased considerably either as partial 

replacement for cement or used as additive for special purpose. cements, attributed to 

its desirable effects on the mechanical properties of cernentitious composites 

(Mazloorn et al., 2004). 
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Silica fume is the smallest component in UHPFC with a diameter of 0.2 J..Lm. It 

serves three basic functions in UHPFC: 

1. it fills voids between cement grains, 

11. enhances the rheological characteristics, and forms hydration products 

by pozzolanic activity. The pozzolanic reaction refers to the reaction of 

silica hydrates with Ca(OH)2 (portlandite) produced by the hydration of 

OPC. The portlandite is consumed to produce C-S-H hydrates 

(Detwiler & Mehta, 1989; Goldman & Bentur, 1993; Megat Johari et 

al., 2011). 

111. in addition to this, silica fume content increases the length of C-S-H 

chains (Porteneuve et al., 2001 ). Moreover, the mechanical strength is 

increased, and the microstructure and compacity of the UHPFC are also 

enhanced (Ma & Schneider, 2002). 

e. Fibers 

Although the UHPFC without fibers (Figure 2.2) demonstrates higher strength, 
~ 

it is also very brittle. The addition of fibers improves the ductility and increases its 

tensile properties. Moreover, the inclusion of steel fibers limits crack width and 

permeability by overcoming the propagation of microcracks and macrocracks that 

usually sets in normal concretes (Graybeal, 2005). Fibers carry tension forces across 

micro-cracks in the UHPFC. The orientation of fibers relative to the plane of cracking 

affects the ductile behavior of UHPFC. Thus, care must be taken in mixing and 
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placing UHPFC to avoid the clustering of fibers and to ensure proper fiber dispersion 

within each UHPFC element (Bayard & Ple, 2003). 

The workability of any concrete mix that contains fibers is a function of both the 

fiber size and the coarse aggregate size in the mix. Given that UHPFC typically does 

not contain coarse aggregates, the dimensions of the fibers primarily affect concrete 

flowability. The workability of UHPFC mixes clearly decreases with increasing fiber 

size (Voo & Foster, 2010). A 2% fiber volume represents the most common content 

for UHPFC and corresponds with the most economic content identified by (Richard & 

Cheyrezy, 1995). 

Figure 2.2: Steel fiber. 

f. Superplasticizer 

Superplasticizers are high-range water reducers made up of organic polymers. 

They are used to disperse cement particles and silica fume, and thus improves the 

flowability of UHPFC mixes. Thus, superplasticizers facilitate the achievement of a 
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. lower water/cement (w/c) ratio and lower water/binder (w/b) ratio (binder includes 

both silica fume and cement) without sacrificing the workability of the mix. Given that 

UHPFC uses low w/c and w/b ratios, the optimum amount of superplasticizer is 

relatively high, with a solid content that is approximately 1.6% of the cement content 

(Richard & Cheyrezy, 1995). Superplasticizers of the third-generation 

polycarboxylates and polycarboxylate ethers are generally used for their high 

efficiency and lack of appropriate threshold for low w/c ratios (Habel, 2004). 

g. Water 

The goal in a UHPFC mix is not to minimize water content, but to maximize 

relative density (Schmidt et al., 2003). The minimum w/b ratio for a workable mixture 

is 0.08 (Richard & Cheyrezy, 1995). The relative density, however, is not maximized 

at this w/b ratio, as shown in Figure 2.3. As the w/b ratio is increased above the 0.08 

minimum, water replaces air without increasing the volume of the mixture up to a w/b 

ratio of approximately 0.13. In case the w/b ratio is increased beyond 0.13, the volume 

increases on account of additional water and as a consequence • density of the mixture 

decreases significantly. In Figure 2.3, the mixtures represented by the descending 

branch of the graph have superior performance and workability compared with those 

represented by the ascending branch. Thus, the practical optimum w/b ratio used is 

chosen to be slightly toward the higher values of the w/b ratio to ensure that the w/b 

ratio of the actual mixture is slightly higher than the theoretical optimum (Voort, 

2008). 
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Richard and Cheyrezy (1995) identified 0.14 as the optimal w/b ratio for 

UHPFC, which agrees exactly with the study by De Larrard & Sedran (1994) where a 

solid suspension model was used. The result also agrees closely with that of Gao et al., 

(2005), where an optimum w/b ratio of 0.15 was reported based on experimental test 

samples. 
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Figure 2.3: Relative density versus water content (Richard and Cheyrezy, 1995) 
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2.2.3 Properties of Ultra-high performance fiber concrete 

2.2.3.1 Tensile behavior 

One of the concrete types belonging to the HPFRCC group is the UHPFC. In 

addition to its regular high performing features it has additional advantage of being a 

very dense low-permeable matrix. A comparative study of the uniaxial tensile 

behavior for UHPFC, conventional steel fiber-RC (SFRC), and conventional concrete 

are depicted in Figure 2.4. The results clearly show that UHPFC exhibits higher tensile 

strength and strain-hardening behavior when compared to other cementitious materials 

(Habel, 2004). 
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Figure 02.4: Uniaxial tensile behavior: comparing UHPFC, conventional SFRC, and 

conventional concrete (Habel, 2004 ). 
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2.2.3.2 Flexural Strength 

UHPFC showcases very high flexural strength and extremely good ductility 

behavior about 250 times greater conventional concrete (Voo & Foster, 2010). The 

behavior ofUHPFC under flexure loading can be characterized by three phases: 

I. the linear elastic behavior up to the first cracking strength of the 

material, 

II. a displacement-hardening phase up to the maximum load, and 

III. a deflection-softening phase after the maximum load is reached. 

Figure 2.5 shows the load-deflection diagram for UHPFC during bending with the 

typical phases labeled (Acker & Behloul, 2004b ). 
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Figure 2.5: Flexural strength versus midspan displacement (Voo & Foster, 2010) 
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. 2.2.3.3 Durability 

The greatly improved microstructure of UHPFC not only results in higher 

compressive strength but also leads to greater durability. These properties make 

UHPFC both a high-strength and high-performance material. The very low porosity of 

UHPFC, particularly capillary porosity, greatly improves its durability (Voort, 2008). 

The various durability properties for UHPC compared with HPC and NC are compiled 

in Figure 2.6 (Voort, 2008). The exceptional durability property of UHPC reduces the 

maintenance costs and possibly decreases the cover concrete required to resist 

weathering effects compared with NC. 
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Figure 2.6: Durability ofUHPC and HPC versus NC (lowest values identify the most 

favorable material) (Voort, 2008) 
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· 2.2.3.4 Curing of UHPFC 

In order to avail all the superior benefits arising from UHPFC, steam curing 

treatment must be utilized. Several researchers have reported that the standard heat 

curing after the initial curing lasts for 48 hat 90 °C, as shown in Figure 2.7. (Ujike et 

al., 2006), (Wu et al., 2009), (Farhat et al., 2010), (Voo & Foster, 2010), (Graybeal, 

2011), (Trinh & Chanh, 2012). 

90'Cx48hrs 

Time 

Figure 2.7: Conditions of standard heat curing (Ujike et al., 2006) 

Heat curing promotes high density and high strength, reduces delayed 

shrinkage and creep effects, and improves durability (Richartl & Cheyrezy, 1995). 

Moreover, it must be accomplished only after the concrete has set to avoid any risk of 

delayed ettringite formation and therefore it requires good knowledge of setting time 

(Resplendino & Petitjean, 2003). 

The total porosity of UHPC appears to depend on the curing process applied to 

the material. Figure 2.8 shows the cumulative porosity of both a heat-treated and an 
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