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ABSTRACT: 
 
Mapping the suitability of landfill sites is a complex field and is involved with multidiscipline. The purpose of this research is to 
create an ArcGIS spatial data mining toolbox for mapping the suitability of landfill sites at a regional scale using neural networks. 
The toolbox is constructed from six sub-tools to prepare, train, and process data. The employment of the toolbox is straightforward. 
The multilayer perceptron (MLP) neural networks structure with a backpropagation learning algorithm is used. The dataset is mined 
from the north states in Malaysia. A total of 14 criteria are utilized to build the training dataset. The toolbox provides a platform for 
decision makers to implement neural networks for mapping the suitability of landfill sites in the ArcGIS environment. The result 
shows the ability of the toolbox to produce suitability maps for landfill sites.  
 
 

1. INTRODUCTION 

1.1 General introduction 

One of the challenges in society these days is the large volumes 
of solid wastes. The rapid development of economies and 
advancement in civic living principles have sped up the 
municipal solid wastes production. With this growth in the 
municipal solid waste volume, numerous hazards have caused 
serious damages to the community wellbeing and inner city 
situation, jeopardizing the long-term sustainable advancement 
of the society.  
 
Threats arise because of the modest choices during suitability 
mapping (Xu et al., 2013). Numerous research are being 
conducted to improve the techniques and methods of landfill 
sites suitability mapping (Gupta et al., 2015). Hence, to map the 
solid waste sites appropriately, a competent technique is vital to 
maximize the performance of the current compound 
methodologies. The technique must deliver satisfactory results 
for both natural resource development and proper solid waste 
management. 
 
Suitability mapping is an approach that facilitates and helps 
decision makers in the suitability evaluation of new landfill sites 
(Malczewski, 2006). Recently, multi-criteria decision analysis 
(MCDA) fuzzy logic practices and approaches have been 
utilized in this field. In the early 90s, various multi-criteria 
evaluation (MCE) methods and decision rules were applied to 
the mapping the suitability assessment of landfill sites (Das and 
Bhattacharyya, 2015; de Souza et al., 2016), such as weighted 
linear combination (WLC) (Shahabi et al., 2014), ordered 
weighted average (OWA) (P. V. Gorsevski et al., 2012), and 
Boolean logic (Pradhan and Billa, 2013).  

In addition, analytic hierarchy process (AHP) was also 
employed in several works (Ghobadi et al., 2013; Shahabi et al., 
2014). MCDA, the current methodology used to select suitable 
locations for new sites, is a time-consuming and complex 
process (Guiqin et al., 2009). Moreover, the method does not 
satisfy the requirements of existing managerial regulations and 
does not address the need to lessen economic, environmental, 
health, and social costs (Nazari et al., 2012). Furthermore, the 
phenomenon of “not in my back yard” (Vasiljević et al., 2012) 
contributes to the drawbacks of this method. Thus, the 
availability of the prevalent collection of decision rules for 
MCE and their techniques make the formulation of a proper 
method difficult.  
 
Considerable progress have been recently made in neural 
networks and spatial data mining (SDM) applications, mostly in 
the prediction and classification areas. Classification clusters 
related structures according to their characteristics. Examples of 
SDM include the flood simulation to evaluate the probability 
levels of potential flood regions (Kia et al., 2012) and landslide 
susceptibility mapping (Conforti et al., 2014).  
 
In addition, classification aims to estimate the predictable 
consequences according to accessible experience or knowledge. 
Several studies revealed the superior performance of the SDM 
technique over earlier techniques (Li et al., 2015). In addition, 
the SDM technique has been recommended for application in 
suitability mapping procedures as an alternative to the MCDA 
methodology (Abujayyab et al., 2015). Generally, artificial 
neural networks (ANNs) are extensively implemented as SDM 
methods in prediction, classification, and pattern recognition 
(Conforti et al., 2014; Pradhan and Lee, 2010). ANNs can be 
applied in the suitability mapping of landfill sites.  
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ANNs toolbox can forecast the suitability level of different 
parcels according to the knowledge and features learned from 
current landfill locations. ANNs obtained a strong standing 
because of their capability for knowledge extraction and 
suitability modelling of new sites based on the current spatial 
characteristics between variables. Since the end of the 1980s, a 
number of ANNs models have been applied. ANNs have 
demonstrated their roles in several areas.  
 
The objective of the present work is to create an ArcGIS spatial 
data mining toolbox for mapping the suitability of landfill sites 
using multi-layer perceptron (MLP) neural networks. The 
toolbox test and applications are based on the dataset from the 
northern states of Malaysia.  
 
1.2 Toolbox description and processing 

The toolbox delivery platform for suitability mapping of landfill 
sites utilizes neural networks in the ESRI ArcGIS 10.2 
environment. The toolbox is executed using the Python 
scripting language, which is accessible in ArcGIS 2013, and 
based on the distribution of existing landfill sites 
(absence/presence calculations). Distribution is represented 
through grid sample points with attribute variables (deliver 
predictors or explanatory variables that represent current 
situations and target data for the training and prediction stages). 
Furthermore, the toolbox tracks suitability patterns or 
knowledge within the distribution of existing landfill sites, then 
predicts potential landfill locations.  
 
In addition, the toolbox employs the MLP neural network with 
regularization and learning rate decay. The MLP neural network 
consists of three layers: input, hidden, and output. (A) The 
number of neurons in the input layer matches the number of a 
certain input forecaster criteria. (B) In the hidden layer, a 
number of neurons will be able to define the requirements of the 
end-user. (C) The output layer only has a single neuron for 
approximation suitability value in any particular geographical 
site (a site in a grid of sample points).  
 
The feedforward algorithm loops around all the nodes in the 
hidden layer and adds all the outputs from the input layer 
together. Their weights are the output of each node, that is, the 
sigmoid function of the sum of all inputs, which is then passed 
on to the next layer. The logistic transfer function is used for the 
output layer. Supervised training is accomplished through a 
backpropagation function. Several calculations should be 
performed in each stage. The learned network can be stored in a 
NumPy file and then imported in the prediction stages. Training 
and prediction are executed separately, in stages. 
 
The toolbox follows a linear track in six sequential eminent 
stages: sample points preparation, dataset pre-processing, NN 
training, dataset processing for final prediction, prediction, and 
suitability mapping (see Figure 1). The purpose of dividing the 
toolbox into several tools is to avoid the high utilization of the 
cache memory of the system and to facilitate the end-user 
utilization of the toolbox by several processing steps. Therefore, 
human errors are avoided and wasted time is reduced because of 
the dispersion.  
 

 
Figure 1. Logic and connections of the tools to each other and 

to the end user. 
 

 (Stage 1) The stage of preparing the sample points includes the 
boundary of the study area formatted as an ESRI polygon-type 
geodatabase feature class binding the grid points. Then, the 
binary target landfill map, which needs to be formatted as an 
ESRI polygon-type geodatabase feature class (0 = non-landfill, 
1 = landfill), is developed. In addition, grid sample points are 
established for the landfill and non-landfill areas. Finally, 
attribute data are extracted from every geographical point in the 
grid from the raster layers of the criteria and binary target map, 
as reflected in Figure 2.  
 

 
Figure 2. Extracting attribute data 

 
The grid should contain only the fields of the suitability criteria 
(input and target) and the OBJECTID/shape fields. Coordinates 
correction must be performed first if necessary.  
 
(Stage 2) This stage verifies the input variables. If an issue 
arises, the tool displays an instructive fault note and dismisses 
the processing. The pre-processing of spatial data starts with the 
collection of points for the geodatabase grid sample points 
layer. During this stage, the tool removes missing samples and 
outliers from the dataset. The landfill attributes are normalized 
for faster training. The end-user should initially select the fitting 
criteria to sidestep extraordinary collinearity. This stage ends 
with the storage of the processed dataset and its export to an 
excel file to allow users to migrate the data to different 
statistical software, select the relevant criteria, and exclude the 
collinearity. This process is repeated using the new criteria.  
 
(Stage 3) This is the core stage of the whole toolbox, that is, the 
neural network training. The network is trained to achieve the 
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error goal and satisfy the process, generating the training 
pattern. Either the whole dataset of sample points or a part of it 
can be trained by the tool as the input dataset. The number of 
neurons in the hidden layer needs to be fed to the tool. This 
stage starts with the collection of the processed datasets and 
ends with the storage of the trained network.  
 
(Stage 4) The fourth stage, which is the dataset processing for 
final prediction, prepares the raster layers of the variables for 
the final prediction of the whole area. The stage starts with the 
addition of the input raster layers of related variables. To ensure 
the correctness of the prediction process of the prediction 
dataset, the end-user has to sort the raster layers according to 
the ranks of the fields in the interior of the training dataset. 
During the prediction stage, the tool iterates through the images 
to prepare the dataset. The stage ends with the storage of the 
multi-parts of the dataset for final prediction.  
 
(Stage 5) The fifth stage is prediction, which starts with the 
collection of the trained network for the given file that was 
previously saved and processed. During this stage, the tool 
iterates through the sample rows of the prediction dataset, and 
the predicted Y values are stored as an array. The predicted 
values typically continues within the (0; 1) interval.  
 
(Stage 6) The final stage is the suitability mapping. This stage is 
executed to process the output Python array from the previous 
stage to produce the suitability map as a raster layer. The scale 
interval of the output is divided into multi-categories by a 
manual trial-and-error specified threshold.  
 
The toolbox (Figure 3) can be utilized as follows: (A) a manual 
tool in the ArcToolbox or by Model Builder and (B) a script in 
the Python commander. The ANN toolbox includes six sub-
tools for the six stages, which are illustrated in Figure 4 to 
Figure 9, respectively. 
 

 
Figure 3. Spatial data mining toolbox for landfill suitability 

mapping using neural networks 
 

 
Figure 4. Parameterization tool to launching the first stage 

 

 
Figure 5. Parameterization tool to launch the second stage 

 

 
Figure 6. Parameterization tool to launch the third stage 
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Figure 7. Parameterization to launch the fourth stage 

 

 
Figure 8. Parameterization tool to launch the fifth stage 

 

 
Figure 9. Parameterization tool to launch the sixth stage 

 

 

2. CASE STUDY IN THE NORTH AREA OF 
MALAYSIA 

A case study based on the distribution of landfill and non-
landfill sites in the northern area of Malaysia is introduced. This 
study focuses on a modelling process containing the input data, 
the relevant criteria, and the modelling outcome. This section 
aims to prove the usability of the toolbox. 
 
2.1 Area of case study 

The area of the case study is located in the northwest region of 
Peninsular Malaysia. Spatially, the case study spans the latitude 
3°40'37.87"N toward 6°43'22.61"N and longitude 
100°11'20.09"E toward 101°44'41.53"E as shown in Figure 10. 
The study area comprises four federations, which are Perlis, 
Penang, Perak, and Kedah. Roughly, the total study area is 
32191 km2, which covers around 9.75% of the Peninsular 
Malaysia area. Total residents were 2,258,428 in 2010. The 
climate is sunny and warm. The relative humidity regularly goes 
beyond 82.3% (Tukimat and Harun, 2011). The annual rainfall 
average reaches up to 3,218 mm/y. Furthermore, the 
temperature is fairly stable, which usually ranges from 23 °C to 
33 °C. Almost half of the study area are mountainous terrains 
whose elevations vary from 1 m to 3,978 m, while the rest are 
plain terrains. 

 

 
Figure 10. Study area (Perak, Penang, Kedah, and Perlis) 

 
2.2 Dataset sources and collection 

The identification of related standards is required to produce the 
suitability index map and ANN model for the selection of 
landfill sites. These criteria are identified based on the literature 
composed of the United Nations Environment Program, the 
National Strategic Plan 2005, and the Japan International 
Cooperation Agency Guideline 2005. From the literature, 34 
criteria are set. Data gathering is divided into two divisions: 
input and target. (A) Input data are gathered from diverse bases, 
such as the NASA website and Malaysian Centre for Geospatial 
Data Infrastructure (MaCGDI). In addition, some thematic maps 
are derived from the collected maps, such as the land slope 
derived from the elevation layer. The collected maps are 
rectified based on the Malayan Rectified Skew Orthomorphic 
Projection. (B) Target data are gathered and constructed from 
various bases, such as the MaCGDI. The current landfill 
location data collected are processed. Subsequently, the target 
binary landfill map is prepared. 
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2.3 Application 

(1) The binary target maps of landfill sites and grid sample 
points are created using the prepared sample points tool (see 
Figures 11 and 12). A sample point embodies a landfill site. 
Grid sample points have a 30-m horizontal resolution to 
guarantee that the cell size will accurately exemplify the areas 
of landfill sites. A total of 4,082 samples are detected in the 
areas of landfill sites. Hence, 4,082 points are also identified for 
non-landfill positions. Subsequently, the dataset is derived from 
the target binary landfill map and 14 layers of criteria based on 
the sample points. The attributes are saved in a table, which is 
exported to an excel file. 
 
(2) The primary dataset is extracted using the dataset 
preprocessing tool. Based on the statistical analysis method 
using the Weka software, ConsistencySubsetEval test is used to 
select the most relevant criteria. Fourteen criteria are identified 
as relevant criteria that embody 14 GIS raster layers out of the 
34, which are the best predictors of landfill suitability in the 
north of Malaysia and are used as explanatory variables. The 
variables, such as rivers, precipitation, caves, dams, faults, 
slope, elevation, land uses, secondary roads, highways, federal 
roads, district boundaries, airports, and hospitals, are the 
thematic layers, as illustrated in Figures 13 to 25. 
 

 
Figure 11. GIS thematic layers (binary target map of landfill and 

non-landfill sites) 

(3) During the training stage, network is trained using 37 
neurons in the first hidden layer until the network reaches the 
error goal and creates a training pattern.  
 
(4) The third stage is dataset processing for final prediction, 
which prepares the raster layers of the variables for the whole 
area for the final prediction. The stage starts with the addition of 
the input raster layers of related variables. During the prediction 
stage, the tool iterates through the images to prepare the dataset. 
The process ends with the saving of 10 datasets for prediction.  

(5) The fifth stage is prediction, which starts with the collection 
of processed datasets and trained network from the given file 
that was previously saved. The network and dataset are used to 
predict the Y values of suitability and store it as an array.  
 
(6) The sixth stage is suitability mapping. The output array from 
the previous stage is processed to produce the suitability map 
(see Figure 27). 

 

 
Figure 12. Grid sample points 

 
Figure 13.  GIS thematic layers (Rivers) 
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Figure 14.  GIS thematic layers (Precipitation) 

 

 
Figure 15.  GIS thematic layers (Distance from caves) 

 

 
Figure 16. GIS thematic layers (Distance from dams) 

 
 

 
Figure 17. GIS thematic layers (Distance from geological faults) 
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Figure 18. GIS thematic layers (Slope) 

 
 

 
Figure 19. GIS thematic layers (Elevation) 

 

 
Figure 20. GIS thematic layers (Land use) 

 
 

 
Figure 21. GIS thematic layers (Distance from Secondary roads) 
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Figure 22. GIS thematic layers (Distance from Highway) 

 
 

 
Figure 23. GIS thematic layers (Distance from federal road) 

 
 

 
Figure 24. GIS thematic layers (Distance from local boundaries) 

 
 

 
Figure 25. GIS thematic layers (Distance from Airports) 
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Figure 26. GIS thematic layers (Distance from hospitals) 

 

 
Figure 27. Solid waste landfill sites suitability map produced by 

NN toolbox 

 

3. RESULT AND DISCUSSION 

The outcomes of modeling the landfill sites are illustrated in 
Figure 27. The best location is found in the four states. The 
result displays great similarity with the existing landfill sites. 
The result of the confution matrix value is 98.1%. As a result, 
57.84% of the study area (18,622 km2) lie in the very low 
suitability class. With the suitability index, 26.56% (8,551.88 
km2) are located in the low suitability class, 2.89% (932.27 
km2) are considered in the moderate suitability class, and 1.86% 
(601.41 km2) are located in the high suitability class.  
 
A total of 10.82% (3484.04 km2) of the study area is located in 
the very high suitability class. The limited areas located in the 
very high suitability class satisfy the considerable network 
accuracy because they commonly appear in previous suitability 
mapping studies. The landfill suitability map anticipates 
providing substantial assistance to the planning department of 
solid waste. Landfill suitability map supports decision makers 
during the planing for future expansions. Moreover, the 
suitability map of landfill sites in this case study can save the 
environment from additional hazards. 
 

 
4. CONCLUSION 

The objective of this paper is to develop an ArcGIS spatial data 
mining toolbox for mapping the suitability of landfill sites using 
neural networks. The target level of this work is regional scale. 
The toolbox applied on the dataset was extracted from the 
northern states of Malaysia. MLP neural networks architecture 
with a backpropagation learning function was engaged. A roster 
of 14 criteria was used to construct the training dataset. The 
toolbox employed six tasks, including manipulation, processing 
the spatial data, processing training, and prediction datasets up 
to the point of producing the final suitability map.  
 
The implemantation of the toolbox was straightforward and had 
several benefits because all data were processed by the toolbox 
itself and these data only required to be migrated to a statistical 
software and eventually fed into the toolbox. In addition, the 
toolbox provided a platform for decision making in GIS, 
environment, and planning communities. The toolbox 
simplified the application of NN suitability mapping for landfill 
sites without the need to comprehend the fundamental methods 
and criteria in the selection of the location of new landfill sites. 
The result of this study revealed the capability of the toolbox to 
produce suitability maps for landfill sites.  
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