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Abstract

The aim of the present study was to standardize and to assess the predictive value of the cytogenetic analysis
by Micronucleus (MN) test in fish erythrocytes as a biomarker for marine environmental contamination. Micronucleus
frequency baseline in erythrocytes was evaluated in and genotoxic potential of a common chemical was determined
in fish experimentally exposed in aquarium under controlled conditions. Fish (Therapon jaruba) were exposed for 96
hrs to a single heavy metal (mercuric chloride). Chromosomal damage was determined as micronuclei frequency in
fish erythrocytes. Significant increase in MN frequency was observed in erythrocytes of fish exposed to mercuric
chloride. Concentration of 0.25 ppm induced the highest MN frequency (2.95 micronucleated cells/1000 cells compared
to 1 MNcell/1000 cells in control animals). The study revealed that micronucleus test, as an index of cumulative
exposure, appears to be a sensitive model to evaluate genotoxic compounds in fish under controlled conditions.
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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Abstract

	 This study aims to fully integrated and validated spatial temporal statistical model using epidemiological data as  
a predictive model for surveillance and control of DF cases. Kernel-density estimation (KDE) method was carried out by 
using spatial union analysis in order to predict and visualize the DF hotspot area by monthly basis in the Subang Jaya area. 
The generated maps were then verified using Receiver operating characteristics (ROC) was performed to validate the DF 
hotspot simulation model. Spatial analysis showed that the dengue epidemics in Subang Jaya were spatially dependent. 
This analysis demonstrated spatial clustering of dengue activity which can facilitate prediction of the magnitude, timing and 
location of future dengue epidemic. The model developed highlights the adaptation capabilities of the approach where the 
accuracy assessment result showed accuracy about 60% agreements between the hotspot map and the actual DF location 
data. It can thus be suggested that any future population increase will be associated with increased DF risk in areas which 
already accommodate this disease environmentally, climatically and socioeconomically. Future risk could be modelled  
using the same methods. This would help decision maker in choosing which areas should be under intensive treatment to 
counter mosquito breeding and reduce prevalence of DF.
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1. Introduction

	 Dengue Fever (DF) typically has a strong spatial 
and temporal pattern because mosquito density and 
longevity depend on a number of environmental and 
ecological factors such as temperature, precipitation 
and mosquito breeding habitat. There is a wealth of  
publications expanding on the Geographic Information 
System (GIS) analysis in DF research because of its 
capabilities to display and model the spatial relationship 
between cause and disease (Cressie, 1991; Clarke 
et al., 1996; Khan, 1999; Kistemann et al., 2002;  
Lozano-Fuentes et al., 2008; Eisen and Lozano- 
Fuentes, 2009; Azil et al., 2010; Dom et al., 2013).
	 Epidemic surveillance is defined as the "ongoing 
systematic collection, collation, analysis and  
interpretation of data; and the dissemination of  
information to those who need to know in order that 
action may be taken" (Fischer and Nijkamp, 1993; 
Chan and King, 2011). Surveillance provides data 
and information for action for monitoring disease 
trends, monitoring progress toward control objectives,  
estimating the size of a health problem, detecting  
outbreaks of an infectious disease, evaluating 

interventions  and  preventive  programs, and  identifying 
research needs (Matthews, 1990; Ai-leen and Song, 
2000; Gong et al., 2006; Eisen and Lozano-Fuentes, 
2009; Shirayama et al., 2009; Thai  et al., 2010; Eisen  
and Eisen, 2011; Duncombe et al., 2012; Nazri et al.,  
2012; Nguyen et al., 2016). DF control in Malaysia  
is primarily based on case surveillance by notification  
of suspected DF cases by medical practitioners, and 
vector control by space spraying of insecticides. This 
reactive mode of surveillance is very insensitive where  
the health authorities are waiting until the medical 
community recognizes the DF cases before reacting 
to implement control measures (Kumarasamy, 2006).
	 Therefore, a good system in managing disease 
outbreak is crucial especially in collecting information 
for surveillance action. The present system of  
prediction of DF outbreak is based on the use of  
various entomological indices such as the House  
(Premises) Index, the Breteau Index, etc. However, 
it has been observed that these indices may not be 
suitable for outbreak prediction because no  
epidemiological components are incorporated in the 
process. The year to year variations in the threshold 
of transmission of a particular locality may reflect 
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the actual efficiency of the vector control operation. 
Despite that, most of surveillance systems in  
managing DF outbreak are not able to simultaneously 
investigate, simulate and predict the outbreak in  
spatial environment. These attributes were essential in 
providing a better understanding of the outbreak for  
effective prevention and sustainable DF control  
strategies.
	 The effective pairing of information systems and 
epidemic surveillance is important for disease control 
and decision-making in public health. Technology has 
increasingly played an important role in the delivery of 
health data for computation and analysis (Moore and 
Carpenter, 1999; Bhandari et al., 2008; Porcasi et al., 
2012). Database and information systems are necessary 
to input, store, retrieve and analyses health data and are 
utilized at all levels of public health decision making. 
Designing and implementing effective information  
systems are the keys to developing tools to better  
predict major changes in endemic diseases and the 

occurrence of epidemics. Geographic Information  
Systems (GIS) technology currently enables  
the integration of various data layers, representing 
physical and social data, on a spatial analysis  
platform. Recently emerging modelling approaches  
have enabled the development of sophisticated data  
analytical approaches for forecasting transmission  
biology and for predicting public health outcomes  
(Allen and Shellito, 2008; Burattini et al., 2008;  
Estallo et al., 2008; Honorio et al., 2003; Azil et al., 
2010; Astutik et al., 2011).
	 Most of the previous studies concerned with 
factors that influence the transmission of DF have not  
taken into account the spatial temporal features of 
this disease in the modelling process. Thus this study 
aims to fully integrated and validated spatial temporal  
statistical model using epidemiological data as  
a predictive model for surveillance and control of DF 
cases or others vector-borne disease.

 
 
Figure 1. A geographical map of Selangor showing the location of Subang Jaya used in the study and its 
administrative boundaries namely; Zone 1: Subang; Zone 2: Puchong and Zone 3: Seri Kembangan. 
 
2.2 Study design 
 

This study was design in order to develop epidemics forecasting model for disease control 
and risk management planning. The variation on the transmission of DF was assessed by firstly, 
examining the spatial temporal distribution of DF cases and the expansion of the epidemic foci 
were examined at Subang Jaya area with the GIS, over the period 2006-2010. Then a preliminary 
epidemic forecasting model of DF and supportive tool were developed for improving surveillance 
system in Subang Jaya, Selangor, Malaysia (Fig. 2). 

Osei and Duker (2008) defined hotspot “as a condition indicating some form of clustering 
in a spatial distribution”. This study used the terms of DF hotspot by Ministry of Health Malaysia 
in indicating the epidemic area. The ministry considered the DF outbreak when the condition have 
two or more DF cases which have onset within 14 days and are located within 200m radius of each 
other (based on residential and workplace addresses as well as movement history). 
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Figure 2. Study design process for data incorporation in dengue fever outbreak modelling in Subang Jaya 
Selangor 
 
2.3 Data collection and management 
 
 Epidemiological data on daily DF cases between 2006-2010 which included the onset 
date, place of the notified DF cases, age and sex of patients and laboratory test date was obtained 
from the Vector Control Unit, MPSJ (DF is a notifiable disease, positive test results have to be 
reported by laboratories to the Vector Control Unit, MPSJ). Daily average of maximum 
temperature, minimum temperature, rainfall and relative humidity for Subang Jaya from 2006-
2010 were provided by the Malaysia Meteorological Service Department. Annual population data 
in each locality in Subang Jaya for the period 2006-2010 were obtained from the Department of 
Statistics. The data included a variety of population characteristics including educational level. The 
epidemiological data initially collected from the Vector Control Unit, MPSJ was used to study the 
DF distribution and transmission (Table 1). 
 Data were analyzed using the Geographic Information System software package, ArcGIS 
version 9.3 (ESRI, 2009) to construct Subang Jaya hotspot maps. All digital geographic dataset 
were represented as thematic layer and converted to a common geographic coordinate system, 
WGS 1984 to support uniform analysis of the data. 
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2. Materials and Methods

2.1	 Study site and study population

	 In this study, Subang Jaya area was selected as 
the main research site to study the spatial temporal 
relationship between socio-ecological variables  
(climate variability, vegetation, mosquito density and 
socio-economic status) and the transmission of DF 
infection. The selection of this area was justified by 
several factors. First is it has a high population density 
in the state of Selangor and has significant public  
health implications in relation to the control and  
prevention of DF. Besides that Subang Jaya had  
the highest number of DF cases reported yearly in  
the state of Selangor, in year 2006 to 2010. Subang 
Jaya is divided into three administrative boundaries of 
Subang, Puchong and Seri Kembangan (Fig. 1).
	 The incidence of DF cases has been high in  
Selangor during the past decades. Subang Jaya is  
a city of metropolitan area of Kuala Lumpur. It has  
a geographic area of 181 km2 at latitude 3°05’48.74” 
North and longitude 101°33’02.39 which is  
surrounded by rapid development and has a high  
population density. Based on the temperature reading 
acquired from the Malaysia Meteorological Service 
Department, the overall temperature of the Subang Jaya 
is typically warm (sometimes hot) with bright sunny 
days and relatively cools in the evening. Temperature 
typically ranges from 23oC to 33oC. Humidity level is 
generally in the range of 80% or higher and the annual 
rainfall recorded often exceeds 2600mm. Although 
some rainfall can be expected throughout the year, 

period from December to February is considered as  
the rainy or wet season. When the rainy season ends,  
day time will be much warmer and hot but not  
particularly dry as the humidity level remains high. 
This period will begin from late January and last up to  
April. From March to October, both rainfall and  
humidity are at their lowest levels and the temperature 
is pleasantly comfortable.

2.2	 Study design

	 This study was design in order to develop  
epidemics forecasting model for disease control and  
risk management planning. The variation on  
the transmission of DF was assessed by firstly,  
examining the spatial temporal distribution of DF  
cases and the expansion of the epidemic foci were  
examined at Subang Jaya area with the GIS, over  
the period 2006-2010. Then a preliminary epidemic 
forecasting model of DF and supportive tool were  
developed for improving surveillance system in  
Subang Jaya, Selangor, Malaysia (Fig. 2).
	 Osei and Duker (2008) defined hotspot  
“as a condition indicating some form of clustering in  
a spatial distribution”. This study used the terms  
of DF hotspot by Ministry of Health Malaysia in  
indicating the epidemic area. The ministry considered 
the DF outbreak when the condition have two or 
more DF cases which have onset within 14 days and 
are located within 200m radius of each other (based 
on residential and workplace addresses as well as  
movement history).
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addresses during the study period (2006-2010) in  
Subang Jaya were geo-referenced on a GIS map 
and saved in dBASE format. Kernel-density  
estimation (KDE) method was carried out for  
findings DF incidence hotspot zonation map. This 
density was estimated by counting the number of 
DF incidence cases in Subang Jaya area, centering 
the location where the estimate was to be made. DF 
incidence zonation maps were created using KDE 
methods. The mean centre of spatial mean gave  
the central location of disease points. In this study, 
the WGS 84 coordinate system was adopted. With  
that reference, the mean centre can be made by  
calculating the mean of x-coordinates (or Easting)  
and the mean of the y-coordinates (or Northing).  
These two means of the coordinates defined  
the location of the mean centre of DF incidence  
location as:

	 Where xmc and ymc are the coordinates of DF 
incidence mean centre, xi and yi are the coordinates in 
each points. Thus, the incidence dynamic time-series 
map was generated based on KDE methods by using 
spatial union analysis for monthly basis. Each level of 
risk was assigned by a different classes ranging from  
1 to 10 (low to high). Average risk level was calculated 
for each area by adding the risk level for each month. 
Each risk category was given the same weight in order 
to assign the risk level for each area.
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2.4	 Data analysis
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Bayes smoothing method in order to generate dynamic  
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Data Parameter Geographic Resolution Time Period Sources 
Population Sex and age 

groups 
Township Annually 2006-2010 Town Planning 

Department, MPSJ 
Demographic 
and Housing 
Census 

Sex, age 
distribution, 
elders, landuse 

Township Annually 2006 - 2010 MPSJ, Town Planning 
Department 

GIS Database Zoning, 
Hectare, 
Activity, 
Section 

 1:89741 
Decimal 
Degree 
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Longitude 

2010 MPSJ, Town Planning 
Department 

Disease 
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weekly 

2006 - 2010 MPSJ, Vector Control  
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Hospital 
Admission 
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Unit 

Death 
Registration 

Dengue Township Daily 2006 - 2010 MPSJ, Vector Control 
Unit 
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3. Results

	 A total of 4710 cases were reported during the 
study period (2006-2010) in Subang Jaya. According to 
the data obtained, Table 2. Summarizes the numbers of 
DF cases which were successfully geo-referenced over 
a five year period (2006-2010). An average of 90% of 
cases were geo-referenced, the remaining cases (< 10%) 
had insufficient information of the DF case record such 
as missing address or unspecified location. Thus the 
actual spreading pattern of DF cases is clearly reflected 
since the database coverage was more than 90%.
	 The hotspot model based on annual data of DF, was 
then developed by extrapolating the pattern of the DF 
activity in the previous inter epidemic period in order to 
predict and visualize the DF hotspot area in the Subang 
Jaya area. The analysis of DF hotspot was performed 
by interpolating the values over the space using Kernel 
Density Estimation as interpolation method. Fig. 3  
illustrates the spatial simulation of DF risk mapping 
and its stratification on a monthly basis by using colour 
contour. DF hotspot risk indices from 1-10 was used 
to represent the magnitude of predictive DF outbreak 
(DF hotspot risk index: 1-4 (Low), 5-6 (Alert) and 7-10 
(High) risk of the epidemic).
	 These maps showed clear spatial patterns of DF 
hotspot on a monthly basis. By plotting the hotspots 
of DF outbreak in year 2006 to 2009, it was found 
that the DF epidemic in Subang Jaya was spread  
throughout study area during the early years between 
December to June, and the wide spatial distribution was 
conserved during the peak of the epidemic in February. 
Further spatial analysis showed that the highest  
density of DF hotspot was occurred within the  
residential area where the development level and 
socio-economic status of people were very low. 
What is interesting in this data is that DF epidemic in  
Subang Jaya were spatially dependent. Besides that 
the timing of the DF epidemic cycles was less spatially  
dependent. Overall, this analysis demonstrated  
spatial clustering of DF activity which can facilitate  

prediction of the magnitude, timing and location of 
future DF epidemic.
	 Furthermore, the simulation model of DF hotspot 
was then validated with the timing (monthly) and  
location of DF incidence in 2010. The hotspot  
categories are expressed as probabilities in qualitative  
form (e.g. none, low, moderate, high). Fig. 4 shows  
the selected simulation model of hotspot map for 
March (qualitative) of the study area for 2010. Then  
the hotspot simulation map was verified using the  
actual cases to measure its performance in the study area.  
Receiver operating characteristics (ROC) was  
performed in order to validate the DF hotspot  
simulation model. This study used “true alarm” to 
evaluate the success rate of the model performance. 
True alarm is defined as a measure of how many actual 
DF cases were successfully predicted, which allowed 
us to estimate the goodness of the fit of the predictive 
model. There were two assumptions to support the 
verification of this simulation model. One is that, there 
is a general agreement about DF can attack anyone in 
area which historically had experienced with DF virus 
outbreak. Secondly, DF typically had strong spatial 
and temporal pattern because mosquito density and 
durability depended on a number of environmental  
and ecological factors.
	 Fig. 5 tabulated all values observed which were 
sorted on a monthly basis. Subsequently, all values were 
then accumulated according to the values obtained. 
To compare the result quantitatively, the ROC were 
calculated as the total area = 1 which means perfect 
prediction accuracy. Therefore the ROC curve can be 
used to assess the prediction accuracy quantitatively. 
The line graph explained the verification result of  
simulation model whereby the model developed 
was able to forecast DF outbreak 60% accurately in  
predicting its timing and their location of the  
epidemics. In terms of sensitivity and specificity the 
values obtained from the verification result were 82.1% 
and 30.2% respectively.

Year Total of confirmed
dengue fever (DF) cases

Geo-referenced confirmed
dengue fever (DF) cases

(n) (%)

2006
2007
2008
2009
2010
total

965
904
1191
1033
617
4710

900
781
1079
972
600
4333

93.26
86.39
90.60
94.09
97.15
91.99

Table 2. Summary of address geo-referenced of DF cases over the study period (2006-2010) in Subang Jaya area
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Figure 3. Monthly dengue risk indices generated from DF hotspot model (2). Dengue risk indices from 1-10 
was used to represent the ascending threat of outbreak. Note: Index 1-4 (Low risk), 5-6 (Alert) and 7-10 
(High risk). Red point represent the distribution of actual dengue hotspot.  
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4. Discussion

	 This study subsequently developed the simulation 
of DF hotspot model by extrapolating the pattern of 
the DF activity in the previous inter epidemic period. 
From the result obtained, it is possible that the level of 
risk can be describe based on the analysis of historical 

data. In order to provide reference, the prediction  
of DF outbreak was translated into a color code to  
indicate the risk level. This study used a color contour 
to show the monthly risk of DF outbreak in the locality.  
It can thus be suggested that this representation  
approach of DF risk indices can be used to establish 
rapid interpretation and alert to indicate DF  

 
A. Measurement of actual DF cases for 2010 with simulation model 

 

Months No of DF 
cases* 

Observed frequencies Cumulative rate 
True 
alarm 

False 
alarm True alarm False 

alarm 
January 118 68 50 0.18 0.21 

February 148 102 46 0.45 0.41 
Mac 117 83 34 0.68 0.55 
April 69 29 40 0.75 0.72 
Mei 37 24 13 0.82 0.77 
Jun 25 15 10 0.86 0.81 
July 38 26 12 0.93 0.86 

August 19 9 10 0.95 0.91 
September 14 6 8 0.97 0.94 

October 14 4 10 0.98 0.98 
November 6 5 1 0.99 0.99 
December 6 3 3 1.00 1.00 

Overall 611 374 237   
 

 
B. ROC curve showing the accuracy of simulation model in the study area (Subang Jaya) 

 

 

 
Figure 5. Verification process of simulation model in Subang Jaya A: Measurement of actual DF 
cases for 2010 with simulation model; B: ROC curve showing the accuracy of simulation model in the 
study area 
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epidemic in the locality. The model developed  
highlights the adaptation capabilities of the approach 
where the accuracy assessment result showed accuracy 
about 60% agreements between the hotspot map and 
the actual DF location data. It can thus be suggested 
that any future population increase will be associated 
with increased DF risk in areas which already  
accommodate this disease environmentally, climatically 
and socioeconomically. Future risk could be modelled 
using the same methods. This would help decision 
maker in choosing which areas should be under  
intensive treatment to counter mosquito breeding and 
reduce prevalence of DF.
	 However the research findings of this study 
may be influenced by several other alternative scenarios. 
Firstly, the quality of the notification data varies 
with time and space. It is well recognised that the  
increase incidence of DF is partly due to the increased  
awareness of this disease among medical practitioners 
and the general public. Nevertheless, the impact 
of such a factor on the notified incidence of DF is  
unlikely to differ substantially with spatial and  
temporal scales used in this study. Secondly, 
the ecology of DF is complex and many factors  
(including virus, vector, host and environmental  
condition) are involved in its transmission cycles. 
Some social factors also influenced the transmission 
of DF virus. Changes in land-use have created ideal 
larval habitats. Clearing land for urban development 
could increase the potential of DF transmission  
(Mackenzie et al., 2000; Tong et al., 2002.). The  
increased in human population living in intimate  
contact with increasingly high densities of mosquito 
populations created ideal conditions for increased DF. 
Despite many socio-ecological factors that may affect 
the pattern of DF outbreak, the findings of this study 
suggested that changes in environmental conditions 
are also the key determinant of re-emergence of DF 
incidence.
	 The findings from this study have the potential to 
affect the planning of public health interventions. GIS 
and spatial analytical approach developed through this 
study may be used in the surveillance of DF and other 
infectious diseases to identify and monitor high risk  
areas over different periods of time. The results  
suggested that the major determinant of the DF disease 
may differ at the local level. Therefore, different public 
health strategies may need to be developed in the  
disease control and risk management program. Apart 
from that, human population density was also found to be  
a significant determinant of DF incidence in high risk 
areas. Thus, health education and vector control 
programs should focus on communities with a high 
population density in order to control seasonal disease 
outbreak.

5. Conclusions

	 In addition, systematic and integrated training  
may be necessary for medical practitioners and public 
health professionals to achieve adequate and current 
knowledge of DF disease outbreak. Computer model 
needs to be developed on the basis of these findings 
to predict epidemic activity under different socio-
environmental change. The development of epidemic 
forecasting system is important for the control and 
prevention of infectious disease outbreak in the future. 
Early warning system based on forecast from the 
model can assist in improving vector control and  
personal protection. For example, increasing insecticide  
spraying during high risk period and decreasing it  
during low risk period will improve cost effectiveness of  
operations. The disease surveillance data obtained 
can be integrated with social, biological and  
environmental database. These data may provide  
additional input into the development of epidemic 
forecasting models. These attempts, if successful,  
may have significant implications in environmental 
health decision making and practices by helping  
health authorities in identifying public health  
priorities and use resources sustainably.
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