CHARACTERIZATION AND FLAMMABILITY OF ETHYLENE VINYL ACETATE

(EVA)/ZEOLITE COMPOSITES

by

NUR DIYANA MOHD ZAHARRI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

October 2011

ACKNOWLEDGEMENT

First and foremost, thanks to the almighty God for showing me inner peace and for all the blessings.

Then, I would like to express my sincere gratitude to Dr. Nadras Othman, who has been my supervisor since the beginning of my master study. Her immense knowledge and motivation have been of great value to me. This thesis would not have been possible without her many helpful suggestions, constructive advices and constant encouragement which indeed helped improve on this dissertation.

I also wish to express my appreciation to my co-supervisor, Prof. Zainal Ariffin Mohd Ishak, who is also has been my inspiration as I hurdle all the obstacles in the completion of this research work. Not forgotten to all Polymer Engineering lecturers for providing valuable knowledge and guidance during my study in Universiti Sains Malaysia.

The lab assistances and all my fellow friends are gratefully acknowledged for their enthusiasm in helping and sharing their precious experiences which enabled me to complete this project in time.

Finally, a special word of gratitude and dedication must go to my great parents who always inspired me to work hard and to be positive at all times, also to my brother and sisters who all showed belief in me when times were difficult.

TABLE OF CONTENTS

Acknowledgement

Table	e of Contents	iii
List c	of Tables	viii
List c	of Figures	Х
List c	of Abbreviations	xvii
List c	of Symbols	xviii
Abstr	rak	xix
Abstr	ract	xxi
CHA	PTER 1- INTRODUCTION	
1.0	Introduction	1
1.1	Background of the Present Research	2
1.2	Problem Statements	4
1.3	Objectives of Study	6
1.4	Organization of the Thesis	6
CHA	PTER 2- LITERATURE REVIEW	
2.0	Literature review	8
2.1	Composites	8
2.2	Particulate filled composites	9
2.3	Matrix	11
	2.3.1 Ethylene vinyl acetate (EVA)	12
2.4	Interphase or interface	14
	2.4.1 Silane coupling agents	17
	2.4.2 Organic amines	19
		23

2.4.3 Polymer modifications	2.4.3	Polymer	modifications
-----------------------------	-------	---------	---------------

2.5	Filler	26
	2.5.1 Zeolite	27
	2.5.2 Zeolite filled polymer composites	30
2.6	Factors affecting the properties of particulate filled composites	32
	2.6.1 Geometry of fillers	32
	2.6.2 Nature of polymer matrix	33
	2.6.3 Filler-matrix interfacial adhesion	34
2.7	Applications of particulate filled composites	35
2.8	Characterization and properties of particulate filled composites	37
	2.8.1 Mechanical properties	37
	2.8.2 Thermal properties	38
	2.8.3 Flammability	40
CHAP	TER 3- MATERIALS AND METHODOLOGY	
3.1	Raw materials	45
	3.1.1 Ethylene vinyl acetate (EVA)	45
	3.1.2 Zeolite	46
	3.1.3 Dicumyl peroxide (DCP)	47
	3.1.4 Octadecylamine	48
	3.1.5 3-aminopropyltriethoxysilane (AMPTES)	48
	3.1.6 Ammonium polyphosphate (APP)	49
	3.1.7 Pentaerythritol (PER)	50

3.2	Size reduction of zeolite	50
3.3	Surface modifications	52
	3.3.1 Crosslinking of EVA	52
	3.3.2 Cation exchange method	52
	3.3.3 Silane surface treatment	
3.4	Preparation of composite sample	53 54
	3.4.1 Compounding	54
	3.4.2 Moulding and Preparation of Test Sample	56
3.5	Characterization	57
	3.5.1 Gel content measurement	57
	3.5.2 Tensile test	58
	3.5.3 Dynamic mechanical analysis (DMA)	59
	3.5.4 Thermogravimetric analysis (TGA)	59
	3.5.5 Differential scanning calorimetry (DSC)	60
	3.5.6 UL-94 test	61
	3.5.7 Limiting oxygen index (LOI) test	62
	3.5.8 Morphology study using Scanning Electron Microscope (SEM)	62
	3.5.9 Fourier Transform Infrared Radiation (FTIR)	63

CHAPTER 4- RESULTS AND DISCUSSION

4.1	Effect of zeolite loading on properties of EVA/zeolite composites	64
	4.1.1 Tensile properties	64
	4.1.2 Dynamic mechanical analysis (DMA)	69

	4.1.3 Thermogravimetric analysis (TGA)	74
	4.1.4 Differential scanning calorimetry (DSC) analysis	76
4.2	Effect of crosslinking on properties of EVA/zeolite composite	78
	4.2.1 Tensile properties	78
	4.2.2 Dynamic mechanical analysis (DMA)	83
	4.2.3 Thermogravimetric analysis (TGA)	87
	4.2.4 Differential scanning calorimetry (DSC) analysis	89
	4.2.5 Fourier Transform Infrared Radiation (FTIR) analysis	91
	4.2.6 Determination of gel content	93
4.3	Effect of cation exchange method on properties of EVA/zeolite	
	composites	95
	4.3.1 Tensile properties	95
	4.3.2 Dynamic mechanical analysis (DMA)	99
	4.3.3 Thermogravimetric analysis (TGA)	102
	4.3.4 Differential scanning calorimetry (DSC) analysis	104
	4.3.5 Fourier Transform Infrared Radiation (FTIR) analysis	106
4.4	Effect of silane modification on properties of EVA/zeolite composites	107
	4.4.1 Tensile properties	107
	4.4.2 Dynamic mechanical analysis (DMA)	112
	4.4.3 Thermogravimetric analysis (TGA)	115
	4.4.4 Differential scanning calorimetry (DSC) analysis	117
	4.4.5 Fourier Transform Infrared Radiation (FTIR) analysis	119

4.5	Effect of intumescent flame retardant (IFR) on properties of	
	EVA/zeolite composites	120
	4.5.1 Tensile properties	120
	4.5.2 Thermogravimetric analysis (TGA)	120
	4.5.3 Differential scanning calorimetry (DSC) analysis	
	4.5.4 UL-94 analysis	125
	4.5.5 Limiting oxygen index (LOI) analysis	127
	4.5.6 Fourier Transform Infrared Radiation (FTIR) analysis	129
4.6	Scanning electron microscopy (SEM) analysis	132 133
	4.6.1 Tensile fractured surface of composites	133
	4.6.2 Char residues of composites	142
4.7	Study of different surface modification methods on mechanical	144
	properties of composites	
СНАР	TER 5- CONCLUSIONS	148
CHAP	TER 6- REFERENCES	150

LIST OF TABLES

		Page
Table 3.1	Mechanical properties of EVA	45
Table 3.2	Properties of Mordenite	46
Table 3.3	Physical properties of DCP	47
Table 3.4	Physical properties of octadecylamine	48
Table 3.5	Physical properties of AMPTES	49
Table 3.6	Properties of APP	49
Table 3.7	Properties of PER	50
Table 3.8	The weight of DCP used in crosslinking of EVA	52
Table 3.9	The weight of AMPTES, ethanol and water used in surface	53
	treatment for different volume percentages of zeolite	
Table 3.10	The amount of EVA and zeolite used in compounding process	55
	according to different zeolite volume percentages	
Table 3.11	UL-94 flammability ratings summary	61
Table 4.1	TGA results of EVA matrix and its composites	76
Table 4.2	DSC results of EVA matrix and its composites	78
Table 4.3	TGA results of EVA/ zeolite/ DCP composites	89
Table 4.4	DSC results of EVA/zeolite/DCP composites	90
Table 4.5	TGA results of EVA/ Organozeolite composites	104
Table 4.6	DSC results of EVA/Organozeolite composites	105
Table 4.7	TGA results of EVA/zeolite/AMPTES composites	117

Table 4.8	DSC results of EVA/zeolite/AMPTES composites	119
Table 4.9	TGA results of EVA/zeolite/APP/PER composites	125
Table 4.10	DSC results of EVA/zeolite/APP/PER composites	127
Table 4.11	UL-94 testing results for EVA and its composites	129

LIST OF FIGURES

Figure 2.1	Schematic view of the expansion of zeolite galleries	21
	resulting from ion exchange with a long chain organic	
	amine	
Figure 2.2	Structure of zeolites	27
Figure 2.3	Schematic representation of the pore structure of	30
	mordenite. Numbers 1 and 2 represent the two types of	
	channels in the zeolite	
Figure 2.4	Schematic representation of the pore structure of	30
	mordenite. Numbers 1 and 2 represent the two types of	
	channels in the zeolite	
Figure 3.1	Chemical structure of EVA	46
Figure 3.2	Ring mill machine	51
Figure 3.3(a)	Zeolite prior to grinding	51
Figure 3.3(b)	Zeolite after grinding	51
Figure 3.4	Thermo Haake Polydrive internal mixer machine	56
Figure 3.5	Gotech compression moulding machine	57
Figure 3.6	Instron tensile machine	58
Figure 4.1	Effect of zeolite loadings on the tensile strength of	64
	EVA/zeolite composites	
Figure 4.2	The effect of zeolite volume percentages on the	67
	elongation at break of EVA/zeolite composites	
Figure 4.3	The effect of zeolite volume percentages on the tensile	68

modulus of composites

Figure 4.4	Storage modulus of pure EVA and its composites at	70
	different zeolite loading versus temperature	
Figure 4.5	Loss modulus of pure EVA and its composites at	72
	different zeolite loading versus temperature	
Figure 4.6	Tan delta of pure EVA and its composites at different	73
	zeolite loading versus temperature	
Figure 4.7	TGA curves of zeolite, EVA and its composites at	75
	various zeolite content	
Figure 4.8	DTG thermograms of zeolite, EVA and its composites at	76
	various zeolite contents	
Figure 4.9	The heating melt DSC curves of zeolite filled EVA	77
	composites with different zeolite contents	
Figure 4.10	The effect of crosslinking by DCP on tensile strength of	79
	EVA/zeolite composites	
Figure 4.11	The effect of crosslinking by DCP on elongation at	81
	break of EVA/zeolite composites	
Figure 4.12	The effect of crosslinking by DCP on tensile modulus of	82
	EVA/zeolite composites.	
Figure 4.13	The effect of crosslinking on storage modulus of EVA	84
	and EVA/zeolite composites as a function of	
	temperature	

Figure 4.14	The effect of crosslinking on loss modulus of EVA and	85
	EVA/zeolite composites as a function of temperature	
Figure 4.15	The effect of crosslinking on tan delta of EVA and	86
	EVA/zeolite composites as a function of temperature	
Figure 4.16	TGA curves of uncrosslinked and DCP crosslinked	88
	EVA/zeolite composites at various zeolite contents	
Figure 4.17	DTG thermograms of uncrosslinked and DCP	88
	crosslinked EVA/zeolite composites at various zeolite	
	contents	
Figure 4.18	The heating melt DSC curves of DCP crosslinked	90
	EVA/zeolite composites with different zeolite contents	
Figure 4.19	FTIR diagram of (a) pure EVA, (b) EVA/zeolite	92
	composites and (c) EVA/zeolite/DCP composites	
Figure 4.20	FTIR diagram of (a) EVA/zeolite composites, (b)	93
	EVA/zeolite/DCP composites before Soxhlet extraction	
	and (c) EVA/zeolite/DCP composites after Soxhlet	
	extraction	
Figure 4.21	Insoluble gel content of EVA/zeolite/DCP composites at	95
	different zeolite loading	
Figure 4.22	The effect of cation exchange method on tensile strength	96
	of EVA/zeolite composites	
Figure 4.23	The effect of cation exchange method on elongation at	98

break of EVA/zeolite composites

- Figure 4.24
 The effect of cation exchange method on tensile
 99

 modulus of EVA/zeolite composites.
 99
- Figure 4.25
 The effect of cation exchange method on storage
 100

 modulus of EVA/zeolite composites as a function of
 temperature
- Figure 4.26
 The effect of cation exchange method on loss modulus
 101

 of EVA/zeolite composites as a function of temperature
- Figure 4.27The effect of cation exchange method on tan delta of102EVA/zeolite composites as a function of temperature
- Figure 4.28TGA curves of unmodified and organo-modified zeolite103filled EVA composites at various zeolite contents
- Figure 4.29DTG thermograms of unmodified and organo-modified104zeolite filled EVA composites at various zeolite contents
- Figure 4.30
 The heating melt DSC curves of organo-modified
 105

 zeolite filled EVA composites with different zeolite
 contents
- Figure 4.31FTIR diagram of (a) zeolite (b) organo-modified zeolite107(c) EVA/zeolite composites and (d) EVA/organo-
modified zeolite composites
- Figure 4.32
 The effect of silane surface treatment on tensile strength
 109

 of EVA/zeolite composites
 109
- Figure 4.33The effect of silane surface treatment on elongation at110

break of EVA/zeolite composites

- Figure 4.34
 The effect of silane surface treatment on tensile modulus
 111

 of EVA/zeolite composites
 111
- Figure 4.35The effect of silane treatment on storage modulus of113EVA/zeolite composites as a function of temperature
- Figure 4.36The effect of silane treatment on loss modulus of114EVA/zeolite composites as a function of temperature
- Figure 4.37The effect of silane treatment on tan delta of115EVA/zeolite composites as a function of temperature
- Figure 4.38TGA curves of untreated and AMPTES treated zeolite116filled EVA composites at various zeolite contents
- Figure 4.39DTG thermograms of untreated and AMPTES treated117zeolite filled EVA composites at various zeolite contents
- Figure 4.40
 The heating melt DSC curves of AMPTES treated
 118

 zeolite filled EVA composites with different zeolite
 content
- Figure 4.41 FTIR diagram of (a) zeolite (b) AMPTES-treated zeolite 120 (c) EVA/zeolite composites and (d) EVA/ AMPTEStreated zeolite composites
- Figure 4.42
 Tensile strength of EVA composites at 25 vol. % of
 121

 zeolite content
 121
- Figure 4.43Elongation at break of EVA composites at 25 vol. % of122zeolite content

Figure 4.44	Tensile modulus of EVA composites at 25 vol. % of	122
	zeolite content	
Figure 4.45	TGA thermograms of EVA and its composites having	124
	25 vol. % of zeolite loading	
Figure 4.46	DTG curves of EVA and its composites having 25 vol.	125
	% of zeolite loading	
Figure 4.47	The heating melt DSC curves of studied composites	127
	having 25 vol. % of zeolite loading	
Figure 4.48	LOI values of EVA and its composites	131
Figure 4.49	FTIR diagram of (a) EVA/zeolite composites (b)	133
	EVA/zeolite/APP1/PER composites (c)	
	EVA/zeolite/APP2/PER composites	
Figure 4.50	SEM micrograph of tensile fractured surface of 5%	137
	EVA/zeolite composites	
Figure 4.51	SEM micrograph of tensile fractured surface of 25%	137
	EVA/zeolite composites	
Figure 4.52	SEM micrograph of tensile fractured surface of 5%	138
	EVA/zeolite/DCP composites	
Figure 4.53	SEM micrograph of tensile fractured surface of 25%	138
	EVA/zeolite/DCP composites	
Figure 4.54	SEM micrograph of tensile fractured surface of 5%	139
	EVA/organo-zeolite composites	

Figure 4.55	SEM micrograph of tensile fractured surface of 25%	139
	EVA/organo-zeolite composites	
Figure 4.56	SEM micrograph of tensile fractured surface of 5%	140
	EVA/zeolite/AMPTES composites	
Figure 4.57	SEM micrograph of tensile fractured surface of 25%	140
	EVA/zeolite/AMPTES composites	
Figure 4.58	SEM micrograph of tensile fractured surface of 25%	141
	EVA/zeolite/APP1/PER composites	
Figure 4.59	SEM micrograph of tensile fractured surface of 25%	141
	EVA/zeolite/APP2/PER composites	
Figure 4.60	SEM micrograph of surface char residue of EVA/zeolite	143
	composites	
Figure 4.61	SEM micrograph of surface char residue of	143
	EVA/zeolite/APP1/PER composites	
Figure 4.62	SEM micrograph of surface char residue of	144
	EVA/zeolite/APP2/PER composites	
Figure 4.63	Effect of different surface modification methods on	146
	tensile strength of EVA/zeolite composites	
Figure 4.64	Effect of different surface modification methods on	146
	elongation at break of EVA/zeolite composites	
Figure 4.65	Effect of different surface modification methods on	147
	tensile modulus of EVA/zeolite composites	

LIST OF ABBREVIATIONS

EVA	Ethylene vinyl acetate
DMA	Dynamic mechanical analysis
SEM	Scanning electron microscopy
DCP	Dicumyl peroxide
AMPTES	3-aminopropyltriethoxysilane
FTIR	Fourier transform infra red
TGA	Thermogravimetric analysis
DSC	Differential scanning calorimetry
APP	Ammonium polyphosphate
PER	Pentaerythritol
LOI	Limiting oxygen index
UL-94-V	Vertical burning testing
IFR	Intumescent flame retardant
GC	Gel content
MPa	Mega pascal

Kg	Kilo gram
T _g	Glass transition temperature
DTG	Differential thermogravimetry

LIST OF SYMBOLS

%	Percentage
°C	Degree celsius
ΔΗ	Heat of fusion
C _F	Final value of oxygen concentration
k	Step size between oxygen concentration levels
d	Index factor
%T	Transmittance

PENGUJIANAN DAN KEBOLEHBAKARAN KOMPOSIT ETHYLENE VINYL ACETATE (EVA)/ZEOLITE

ABSTRAK

Tesis ini menerangkan penghasilan, pengujianan dan sifat-sifat zeolite sebagai pengisi dalam komposit ethylene vinyl acetate (EVA). Salah satu objektif utama dalam kajian ini ialah untuk menentukan kesan pembebanan zeolite terhadap sifat-sifat matriks EVA komposit. Komposit EVA yang terdiri daripada berlainan pembebanan zeolite (5-25 vol. %) disediakan menggunakan pencampur dalaman Thermo Haake Polydrive dan kemudian diacu mampatan mengikut piawaian. Ujian tegangan dan dinamik mekanikal analisis telah dijalankan bagi menguji sifat mekanikal komposit EVA/zeolite. Penurunan kekuatan tegangan dan pemanjangan boleh diterangkan melalui mikrograf permukaan patah disebabkan tegangan menggunakan analisis pengimbas elektron mikroskopi. Disamping itu, kesan pengubahsuaian permukaan ke atas sifat-sifat komposit EVA/zeolite telah disiasat. Interaksi antaramuka di antara EVA dan zeolite diubahsuai melalui silang-hubung EVA dengan dicumyl peroxide (DCP); kaedah kation pertukaran dengan surfaktan organic (octadecylamine) dan juga rawatan silane menggunakan 3aminopropyltriethoxysilane (AMPTES). Tambahan pula, analisis spektra Fourier Transform Infra Merah (FTIR) telah dijalankan untuk mengkaji interaksi di antara komposit dan kumpulan berfungsi pengubah permukaan. Aplikasi pengubahsuaian permukaan telah dibuktikan dapat meningkatkan sifat-sifat mekanikal dan morfologikal komposit EVA/zeolite. Sifat haba komposit juga diuji dengan analisis thermogravimetric (TGA) dan kebezaan pengimbasan kalorimeter (DSC). Sistem perencat api intumescent yang mengandungi ammonium polyphosphate (APP)/ pentaerythritol (PER) telah digunakan bagi meningkatkan sifat haba dan perencatan kebakaran komposit EVA/zeolite. Sifat mekanikal yang diuji melalui ujian regangan menunjukkan penambahan kedua-dua perencat api menyebabkan penurunan sifat regangan dan pemanjangan komposit EVA/zeolite. Walaubagaimanapun, modulus regangan komposit meningkat dengan ketara kerana ketegaran partikel APP. Keputusan DSC dan TGA menunjukkan kedua-dua perencat api telah meningkatkan kestabilan haba komposit. Keputusan ujian pembakaran menegak (UL-94-V) dan indeks oksigen had (LOI) menunjukkan perencat api dapat menurunkan kebolehbakaran komposit dengan mencapai tahap V-0 UL94-v dan meningkatkan nilai LOI.

CHARACTERIZATION AND FLAMMABILITY OF ETHYLENE VINYL ACETATE (EVA)/ZEOLITE COMPOSITES

ABSTRACT

This thesis describes the fabrication, characterization and properties of natural zeolite as filler in ethylene vinyl acetate (EVA) composites. One of the main objectives of this research is to determine the effect of zeolite loading on properties of EVA matrix composites. EVA composites at different loading of zeolite (5-25 vol. %) were prepared using Thermo Haake Polydrive internal mixer and were then compression molded according to standard test specimen. Tensile test and dynamic mechanical analysis (DMA) were performed to characterize the mechanical properties of EVA/zeolite composites. The tensile test can also be explained from the analysis of Scanning Electron Microscopy (SEM) micrograph of the tensile fractured surfaces. Besides, the influences of surface modifications on the properties of EVA/zeolite composites were also investigated. The interfacial interactions between EVA and zeolite were modified by crosslinking of EVA with dicumyl peroxide (DCP); cation exchange method using organic surfactant (octadecylamine) and also silane treatment using 3-aminopropyltriethoxysilane (AMPTES). In addition, Fourier Transform Infra red (FTIR) spectra analyses were performed in order to study the interaction between the composites and functional group of the surface modifiers. The application of surface modifications was proved to enhance the mechanical and morphological properties of EVA/zeolite composites. Thermal properties of the composites were also characterized by means of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Intumescent flame retardant system consisting of ammonium polyphosphate (APP)/ pentaerythritol (PER) was used to enhance the thermal properties and fire retardancy of EVA/zeolite composites. The mechanical properties examined by tensile test indicated that the introduction of both flame retardants lead to deterioration of tensile strength and elongation at break of EVA/zeolite composites. However, the tensile modulus of the composites was significantly enhanced attributed to the rigidity of APP particles. The results of DSC and TGA

showed that both types of flame retardants have the ability to enhance the thermal stability of EVA/zeolite composites. Meanwhile the results of vertical burning testing (UL-94-V) and limiting oxygen index (LOI) measurement revealed that the flame retardants could also reduce the flammability of the composites by achieving V-0 UL94-v rating and increased LOI value, respectively.

APPENDIX LIST OF PUBLICATIONS

Journal:

- 1. Zaharri, N. D, Othman, N., Mohd Ishak, Z.A., (2011) Influence of surface modifications on interfacial interaction of zeolite filled polymer composites, *Key Engineering Materials*, Vol 471-472: 320-324. Transtech Publications Switzerland.
- 2. Zaharri, N. D, Othman, N., Mohd Ishak, Z.A., (2011) Effect of Peroxide Crosslinking on Mechanical and Morphological Properties of Ethylene Vinyl Acetate/Zeolite Composites, *Journal of Vinyl and Additive Technology*, Accepted, Wiley.
- 3. Zaharri, N. D, Othman, N., Mohd Ishak, Z.A., (2011) Effect of chemical crosslinking on thermal properties and viscoelastic behaviors of ethylene vinyl acetate (EVA)/zeolite composites, *Polymer International*, Under Review.
- 4. Zaharri, N. D, Othman, N., Mohd Ishak, Z.A., (2011) Effect of zeolite modification on dynamic mechanical properties of ethylene vinyl acetate (EVA)/zeolite composites, *Journal of Adhesion Science and Technology*, Under Review.
- 5. Zaharri, N. D, Othman, N., Mohd Ishak, Z.A., (2011) Thermal and mechanical properties of zeolite filled ethylene vinyl acetate (EVA) composites, *Procedia Chemistry*, Accepted, Elsevier.

Proceeding:

- 1. Zaharri, N.D., Othman, N., (2010) Effect of zeolite modification on mechanical and morphological properties of ethylene vinyl acetate (EVA)/zeolite composites, 10th National Symposium On Polymeric Materials (NSPM 2010), 8-10 Nov 2010, Langkawi, Malaysia.
- 2. Othman, N., Zaharri, N.D., (2010) Mechanical properties of zeolite filled ethylene vinyl acetate composites crosslinked by peroxide, *The 7th Asian-Australasian Conference on Composite Materials (ACCM7 2010), Nov 15 -18, 2010, Taipei, Taiwan.*
- 3. Zaharri, N. D, Othman, N., Mohd Ishak, Z.A., (2011) Influence of surface modifications on interfacial interaction of zeolite filled polymer composites, 8th International

Conference on Composite Science and Technology (ICCST 2011), March 22-24, Kuala Lumpur, Malaysia.

4. Zaharri, N. D, Othman, N., Mohd Ishak, Z.A., (2011) Effect Of Zeolite Modification On Properties Of Ethylene Vinyl Acetate (Eva)/Zeolite Composites, *The 5th Asia-Europe Symposium on Processing & Properties of Reinforced Polymers (AESPP 2011)*, *Mei 29-June 1 2011, Dresden, Germany.*