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REKABENTUK DAN ANALISIS PRESTASI ENJIN DIESEL DUA 

LEJANG KECIL DENGAN PEMANCITAN LANGSUNG 

ABSTRAK 

Memandangkan sumber minyak mentah mengalami kesusutan dengan kadar 

yang cepat, kecekapan penggunaan bahan api menjadi semakin penting bagi 

pengguna. Banyak negara membangun mempunyai bilangan motosikal yang banyak, 

jadi perbaikan penggunaan bahan api pada motosikal akan mengurangkan 

permintaan bahan api dengan kadar yang banyak di negara tersebut. Enjin diesel 

memberi kebaikan seperti perbaikan kecekapan terma, kehilangan dalam 

pengepaman yang lebih rendah, operasi dengan kandungan bahan api yang kurang 

dan geseran rendah yang disebabkan oleh operasi kelajuan rendah, tetapi mempunyai 

kelemahan besar iaitu berat tertentu yang tinggi dan ketumpatan kuasa yang rendah. 

Enjin dua-lejang mempunyai kelebihan seperti kuasa tinggi, ringan dan geseran 

rendah tetapi enjin dua-lejang pracampur mempunyai kelemahan utama seperti 

penggunaan bahan api dan bahan cemar yang tinggi yang disebabkan oleh kepintasan 

bahan api. Apabila menggabungkan kitar diesel dan kitar dua-lejang, kepintasan 

bahan api yang bermasalah akan dihapuskan melalui pemancitan bahan api secara 

langsung sementaranya ketumpatan kuasa diesel yang rendah telah ditingkatkan. 

Dalam penyelidikan ini, prestasi dari segi pengeluaran kuasa dan penggunaan bahan 

api sebuah enjin diesel dua-lejang yang kecil berkapasiti 118cc  dengan pemancitan 

langsung telah dinilaikan. Pengujian dinamometer dan simulasi prototaip enjin telah 

dijalankan untuk tujuan ini. Prototaip enjin itu dibina dengan pengubahsuaian 

daripada sebuah enjin gasolin dua-lejang sedia-ada sementara simulasi telah 

dijalankan dengan menggunakan perisian pemodelan enjin satu dimensi. Pengaruh 

masa pemancitan, penalaan sistem ekzos, nisbah mampatan dan geometri kebuk 
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letupan ke atas prestasi enjin telah disiasat. Keputusan uji kaji menunjukkan enjin itu 

berkeupayaan untuk menggerakkan sebuah motosikal kecil kepada halaju 60km 

sejam dengan perbatuan 65km seliter sementara prestasi enjin sempurna yang 

disimulasikan oleh model enjin memberi halaju tertinggi sebanyak 70km sejam 

dengan perbatuan 77km seliter. 
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DESIGN AND PERFORMANCE ANALYSIS OF A SMALL TWO-

STROKE DIRECT INJECTION DIESEL ENGINE 

ABSTRACT 

As oil resources are rapidly being depleted, vehicle fuel efficiency is 

becoming more important for consumers. Due to the large number of motorcycles, 

improving fuel consumption of motorcycles would greatly reduce fuel demand in 

many developing countries. Diesel engines offer the advantages of improved thermal 

efficiency, lower pumping losses, lean operation and potentially low friction from 

low speed operation with the major disadvantages being a high specific weight and 

low power density. Two-stroke engines have the advantage of high power, 

lightweight and low friction while premixed two-strokes have the major 

disadvantages of high fuel consumption and emissions from fuel short-circuiting. 

When combining the diesel cycle with two-stroke cycle, the problematic fuel short-

circuiting is eliminated through direct fuel injection while the low power density of 

diesel cycle is improved. In this research, the performance in terms of power output 

and fuel consumption of a 118cc two-stroke direct injection diesel engine was 

evaluated. Dynamometer testing and simulation of a prototype engine were 

conducted for that purpose. The prototype engine was built by converting an existing 

two-stroke gasoline engine while simulation was done using a one dimensional 

engine modeling software. The influence of injection timing, exhaust system tuning, 

compression ratio and combustion chamber geometry on engine performance was 

investigated. Experimental results show that the engine is capable of propelling a 

small motorcycle to a cruising speed of 60km/h with fuel consumption of 65km/l, 

while the ideal performance of the engine which was simulated by the engine model 

gives maximum cruising speed of 70km/h with mileage of 77km/l. 
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CHAPTER 1 INTRODUCTION 

1.0 Research background 

It’s very true that, nowadays the world is powered by carbon-based energy, 

especially crude oil. Despite recent high prices and supply sources which are plagued 

by political issues from time to time, the reliance on crude oil is still inevitable. 

Looking at the transportation sector specifically, the middle-term solution would be 

the hybrid vehicles and the long-term solution looking for the full electrical vehicles. 

However, the process of development and popularization of those technologies can 

take longer than desired. This challenge is even tougher for developing countries. 

Therefore, vehicles powered by internal combustion engines will stay around for the 

foreseeable future. Improving internal combustion engine vehicle fuel efficiency has 

become increasingly important to ease the demand of crude oil and reduce 

environmental impact.  

Improving fuel economy can be achieved through a number of approach, 

which include reducing traffic congestion, alteration of driver’s behavior toward eco-

driving and advancement of public transportation. Refining the efficiency of the 

vehicle itself will have a more straight-forward effect and the efforts aforementioned 

will benefit from it as well. For developing countries, motorcycles occupy a major 

fraction of the personal transportation mix because they are less expensive on 

ownership and maintenance. As shown in Figure 1.1, the majority of vehicle in those 

Association of South East Asian (ASEAN) countries are motorcycle. The number of 

motorcycle in ASEAN countries is predicted to grow through the year of 2035. Any 

amount of fuel consumption reduction from that category will translate into a very 
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large reduction in fuel demand. Therefore, this category of vehicle should be paid on 

serious attention.  

 

Figure 1.1: Growth of Motor Vehicles per Mode for 6 ASEAN countries: Indonesia, 
Malaysia, Philippines, Singapore, Thailand, Vietnam (Clean Air Initiative for Asian 

Cities 2010)  

Malaysia is one of the countries that relies heavily on the usage of 

motorcycles. As shown in Figure 1.2, there is a lot of traffic infrastructure built 

specifically for motorcycles, which underlines the importance of the two-wheelers in 

both rural and urban areas. The majority of those motorcycles use four-stroke 

carbureted gasoline engines, with an engine capacity in the range of 100cc-125cc. 

Apart from that, there are still a significant number of two-stroke carbureted gasoline 

engine on the road, although they are slowly being phased out (J. H. Lee, Chong, et 

al. 2010).  
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Figure 1.2: Traffic infrastructure in Malaysia built specifically for motorcycles 

The nature of a motorcycle limits the fuel economy improvement options 

compared to a car or heavy-duty vehicle. First, motorcycle’s weight is usually 

already minimum, i.e. no significant weight reduction can be made. Second, its air 

drag coefficient can not be improved significantly, unless dramatic changes such as 

adding shell covering the whole motorcycle and riders, which doesn’t seem 

acceptable in the short run. The most obvious option would be improving the 

motorcycle engine. There are many possibilities for this approach. For four-stroke 

engines, enforcement of more stringent emission standard has been pushing the 

adoption of electronic fuel injection systems to replace the carbureted fueling 

systems. While for two-stroke engine, usually engine conversion needs to be done in 

order to eliminate short circuiting of fuel. The two-stroke engine can be converted 

into gasoline direct-injection or gaseous fuel direct-injection. Those techniques do 

improve the engine efficiency substantially (Teoh 2010).  

In this research, a completely different and bold move has been planned and 

investigated, i.e. adopting a small two-stroke diesel engine for motorcycles. For 

internal combustion engines, the compression ratio is one of the key parameter that 
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influences its efficiency. Potentially the diesel engine, running at higher compression 

ratios than gasoline engines, can achieve a better cycle efficiency than the gasoline 

engine. The combustion efficiency of diesel engines are also higher than the gasoline 

engine. Being direct fuel injection engine, diesel engine has no unburned air-fuel 

mixture that trapped inside crevice volume of combustion chamber (the same applied 

to gasoline or gaseous direct injection engine), which could not be burned during 

combustion (Kim et al. 1999). In addition, the lean operation of diesel engine gives 

excess air in fuel-air mixture, thus increases the probability of complete fuel burn. 

Apart from that, the diesel engine also operates without intake air throttle, which 

significantly reduces the pumping loss at part load condition compared to carbureted 

or port fuel injection gasoline engine. Another key difference between diesel and 

gasoline engine is their operating speeds. Being an engine that runs with 

homogenous combustion, gasoline engine speed is only constrained by the flame 

speed or the engine parts’ physical limitation at high speed, such as piston stresses, 

valve size that choke airflow or performance of valve train. That means gasoline 

engine can be operated at very high engine speeds, at which the mechanical friction 

gets higher. For a diesel engine, its engine speed is limited by the fuel-air mixing rate, 

which causes the maximum operating speed to be much lower than gasoline engines. 

This can also be a disadvantage, as this will lower the power output from a diesel 

engine. From the point of view of fuel economy, the lower operating engine speed of 

diesel engine means lower mechanical friction, thus better engine efficiency. 

Although the diesel engine has some distinct advantages in term of fuel 

efficiency, it barely exists in the motorcycle arena, especially in the commuter 

motorcycle category. One of the major drawbacks preventing the adoption of diesel 

engine in motorcycle is its power density. Taking comparison of a Yanmar L40AE 
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four-stroke diesel engine with 199cc engine displacement and a Honda Wave 100 

with 97.1cc engine displacement, the maximum power for those engines are 3.2kW 

and 6.6kW respectively. That means the diesel engine power density is a mere 

quarter of the gasoline engine. In addition, the diesel engine is also generally heavier 

than its gasoline counterpart because of its tougher parts required and larger flywheel. 

For large machinery or transport, the low power density of diesel engine is 

compensated by using larger engine and engine boosting technology (turbocharging 

or supercharging). The engine weight is a relatively smaller portion of the overall 

weight of those heavy machines, thus the added weight of larger engine doesn’t 

become a deal breaker. The same doesn’t apply to a small motorcycle. 

Therefore, the power capacity is the first barrier to overcome for adoption of 

small displacement diesel engine in a motorcycle. When thinking of fundamentally 

increasing power output from an engine, the two-stroke engine is an obvious 

contender. A Honda Icon 108cc four-stroke engine produces its maximum power of 

6.1kW at 8000rpm. For comparison, a Modenas Dinamik 118cc two-stroke engine 

produces 11.8kW at the same speed. Even though the Dinamik has slightly larger 

engine displacement, the higher power output is mostly contributed from its one 

power stroke in every crank revolution, as opposed to the Icon’s one power stroke 

every two revolutions. In addition, the lack of valve train in the Dinamik also reduces 

the mechanical friction. In order to estimate the power output from a small 

displacement two-stroke diesel engine, an unpublished parametric study of power 

output of different type of engine was used (Ismail 2010). Specific power of 50 four-

stroke gasoline engines, 21 four-stroke diesel engines and 21 two-stroke gasoline 

engines was gathered. The data is summarized in Table 1.1.  
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Table 1.1: Specific power of different type of engine (Ismail 2010) 

 Gasoline  Diesel 

Two-stroke 94.6kW/l x0.29 ≈27kW/l 

 x0.58  
 

      ÷0.58 

Four-stroke 55.2kW/l 
 

÷0.29 
15.8kW/l 

Conversion factor of specific power between 
different types of engines 

 

Clearly, a small naturally aspirated diesel engine will have much lower 

power output compared to its gasoline counterpart. By using the estimated specific 

power of 27kW/l for two-stroke diesel engine, a 118cc engine displacement will give 

power output around 3.2kW. In practice, typical usage of a middle range commuter 

motorcycle excluding high speed and aggressive operation, a large engine power 

overhead might not be needed. With fuel efficiency in mind, the diesel engine can be 

a feasible solution with worthy compromise in power performance. Therefore, this 

research has been initiated in order to evaluate the potential and performance of a 

small two-stroke direct injection diesel engine for motorcycles.  

1.1 Problems statement 

Power density of a diesel engine is generally lower than a gasoline engine if 

both engines are naturally aspirated. This factor causes the power output of a small 

displacement diesel engines to be rather limited. Therefore, its potential to be 

adopted as a motorcycle engine is a challenge and needs further investigation. As a 

newly developed engine, most of the design and operating parameters have to be 



 
7 

optimized through simulations or experiments in order to achieve good engine 

performance. 

1.2 Objectives 

The objectives of this research are as follow: 

i. To design and convert a small two-stroke carbureted gasoline engine 

into two-stroke direct injection diesel engine. 

ii. To study the performance of a small two-stroke direct injection diesel 

engine at different operating parameters. 

iii. To develop an engine model to predict and improve the performance of 

a small two-stroke direct injection diesel engine. 

1.3 Scope of research 

The scope of this research is as follow: 

i. Engine test cell design, fabrication and setup. This includes the engine 

dynamometer and load bank, data acquisition system and data post 

processing. 

ii. Engine model development for gasoline engine and diesel engine that 

were used in this research using Ricardo WAVE one dimensional 

engine and gas dynamics modeling software. Parts of the necessary 

parameters were measured experimentally, while some of the 

parameters such as flow coefficient, temperature and combustion 

parameters were estimated or using default values provided by the 

software. 
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iii. Convert a two-stroke carbureted gasoline engine into two-stroke direct 

injection diesel engine. The conversion includes design and fabricate 

the flexible fuel system, engine head for direct injection, high 

compression pistons with different piston bowl shapes and an additional 

flywheel for engine operation smoothing. 

iv. Engine performance testing for both gasoline and diesel engine. The 

performance criteria were limited to engine power and fuel consumption. 

Emissions were excluded from the evaluation at this early stage of 

development, but it is definitely worth in-depth study for the next stage 

of development.  

v. Engine model results validation by comparison to initial engine testing 

result. Without actual measurement of every engine detail as 

aforementioned, the minimum correlation of 10% was targeted.  

vi. Diesel engine performance improvement and characterization at various 

operating parameters. The engine performance was evaluated with the 

original and a tuned exhaust system, advanced and retarded fuel 

injection timing with constant amount of fuel injected per stroke, higher 

and lower compression ratio and with different piston bowl shape. 

vii. Assessment of small two-stroke direct injection diesel engine as a 

motorcycle engine, specifically in terms of brake power and fuel 

consumption. While others criteria such as emission, drivability, noise 

and cost are necessary considerations, ensuring that the engine power 

capacity is sufficient for driving a motorcycle would be the first priority. 

As for fuel consumption, it is the sole motivation to initiate this research.  
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CHAPTER 2 LITERATURE REVIEW 

2.0 Overview 

The internal combustion engine works upon very simple principles. 

However, there are a lot of aspects that require sophisticated controls and 

implementation in order to achieve the highest engine efficiency. Those aspects will 

be reviewed from the point of view of a compression ignited diesel engine and a two-

stroke engine, as well as a small two-stroke diesel engine.  

2.1 Internal combustion engine 

The internal combustion engine is an energy conversion device, which 

extracts mechanical power from the heat energy of fuel oxidation. Generally, the 

working principle of an internal combustion engine is relatively simple. Air will be 

drawn into the engine combustion chamber and used as the working fluid of the 

system. Then the air inlet of the combustion chamber will be closed to form an 

enclosed volume inside the engine. Fuel will be combusted inside that enclosed 

combustion chamber for heat addition to the air. With the added heat energy, 

pressure of the air in the combustion chamber will be elevated, thus exerting force 

directly on the moving component of the engine to produce mechanical work. Finally, 

the burned products will be expelled from the combustion chamber to leave room for 

induction of fresh air and ready for the next cycle. In reality, those processes of 

course are more complicated and implemented in many different ways, but they hold 

true for every internal combustion engine. In this report, the term internal 

combustion engine will be specifically referring to a reciprocating piston engine. 

Non-conventional internal combustion engine such as rotary engine and jet engine 
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are excluded from any discussion and review, even though they are technically in the 

same category in a more general scope.  

Fundamentally, internal combustion engines can be categorized based on 

the method of fuel ignition, namely the spark ignition (SI) and compression ignition 

(CI) engine. The spark ignition engine was developed by Otto in 1876 and the 

compression ignition engine was invented by Diesel in 1892. The engine can be 

further categorized based on the operating cycle, which are commonly the two-stroke 

or four-stroke cycle engine. 

2.2 Compression ignition engine 

Aside from the differences in engine structure, the way of controlling engine 

load, engine operating speed or the type of fuel being used, the most substantial 

factor that separate spark ignition engines and compression ignition engines is the 

combustion process. While the energy is stored in the fuel as chemical energy, the 

engine is extracting energy from the heat energy that is released from the fuel. This 

clearly shows the importance of the combustion process for a heat engine. 

Compression ignition engines heat addition process is achieved through auto-ignition 

of fuel that is injected into the hot compressed air inside combustion chamber. In 

order to attain effective heat release process, the fuel must be mixed well with the air 

and provided suitable condition to form combustible fuel-air mixture, before it can 

be oxidized. Four major factors are involved in that process: 

i. In-cylinder air condition 

ii. Fuel injection 

iii. Combustion chamber design 

iv. In-cylinder air motion 
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2.2.1 In-cylinder air condition 

The first in-cylinder air condition that is needed to initiate compression 

ignition is the high air temperature. This usually is not a problem after the engine has 

been started and running since the air temperature will be easily exceed the fuel auto-

ignition temperature. However, starting a compression ignition engine could become 

a problem. Therefore, the compression ratio of the engine must be high enough to 

attain auto-ignition temperature of the fuel. The auto-ignition temperature of 

petroleum diesel is about 235ºC (Xingcai 2004). In low temperatures, a cold starting 

assist system such as glow plug is required to heat the air and raise the final 

compression temperature. Recent development has enable fast heating of the air, 

improving the preheat time from about 20 seconds to below 5 seconds, as shown in 

Figure 2.1 (Mollenhauer & Tschoeke 2010).  

 

Figure 2.1: Improved performance of modern glow plug (Mollenhauer & Tschoeke 
2010) 

The in-cylinder air also has to be in high pressure, which is important for 

the fuel dispersing. The air density inside the combustion chamber of a diesel engine 

during compression when the fuel is being injected is typically in the range of 20–60 

lines in the inline six cylinder and V8 engines pictured in
Fig. 17-11.
The pressure range now employed in car diesel engines

extends from 250 bar in the near idle range to up to
1,800 bar in the rated power range. The number of indivi-
dual injections employed per combustion cycle ranges from
one block injection to up to five injections. While pilot
injections upstream from the main injection normally

serve to lower combustion noise, post-injections are
utilized to support any exhaust gas aftertreatment system
employed.

17.1.4.4 Supercharging and Gas Exchange

Along with high pressure injection, supercharging has been
instrumental in the currently strong market position of car
diesel engines (see Chap. 2). Limited high speed capability
and the necessity of lean burn operation make a sufficient
fresh air supply the basic prerequisite for a suitable power
output. In addition, the diesel engine principle is predes-
tined for supercharging. Internal mixture formation and
auto-ignition also make high supercharging rates produci-
ble without any problem. This has led to the virtual disap-
pearance of naturally aspirated diesel engines from the
market.
Variable turbine geometry turbochargers dominate the

market. Figure 17-12 presents a cutaway model of an engine
with an electric adjuster for the turbine guide blades. Such
turbochargers make it possible to produce the large speed
range with excellent turbine and compressor efficiencies,
which is necessary for car engines. In addition, the guide
blades are closed in part load and the thusly increased exhaust
back pressure significantly increases the scavenging gradient
between the exhaust manifold and fresh air, thus boosting the
exhaust gas recirculation rate. Since exhaust gas recirculation
is one of the most effective measures to reduce NOx in diesel
engines, this technology also contributes considerably to a
diesel engine’s environmental compatibility.
Hence, the use of fixed geometry turbines with wastegate

control is steadily decreasing and has become limited to the
entry-level engine segment.

Glow plug temperature
over time

Fast preheating system

Fast preheating system

1200

1000

800

600

400

200

0 0

2

4

6

8

10

0 5 10
Time [s]

T
im

e 
[s

]

15 –25 –15 –5 5

Old technology
Old technology

Preheating time over
coolant tempeature

Te
m

pe
ra

tu
re

 [°
C

]

Temperature [°C] Fig. 17-9
Spontaneous preglow technology

Injector

Intake
ports
Glow plug

Outlet
ports

Piston

Fig. 17-10 Four valve engine combustion chamber configuration

514 F. Steinparzer et al.



 
12 

kg/m3 (Benajes et al. 2005). Higher air density from higher air pressure will give 

larger fuel spray cone angle but shorter spray penetration (Shao et al. 2003; C. Bae & 

Kang 2000; Desantes et al. 2006; Shao et al. 2008). As shown in Figure 2.2, the 

higher air density produce larger fuel spray cone angle, which disperses the fuel into 

large volume of air and improves the air utilization (Taylor 1985a).  

 

Figure 2.2: Fuel sprays at various air densities, from left to right 0.0013atm, 1.0atm, 
4.4atm, 7.8atm and 14.5atm (Taylor 1985a) 

The compression ratio is the ratio of maximum cylinder volume to 

minimum cylinder volume, where maximum cylinder volume is total of the engine 

clearance volume and swept volume while the minimum volume is the engine 

clearance volume. The following equation defines the relationship (Heywood 1988): 
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   (2.1) 

where rc is the compression ratio, Vd is engine displacement volume and Vc is engine 

clearance volume. 

For two-stroke engines, sometimes the term trapped compression ratio is 

used (Blair 1996). For trapped compression ratio, the trapped volume, i.e. engine 

displacement volume after exhaust port is closed, is used in the equation 2.1 instead 

of the engine displacement. 

A high compression ratio is not only needed for fuel auto-ignition, but it 

also contributes to the higher thermal efficiency of compression ignition engine over 

spark ignition engine. The spark ignition engine is usually described as an ideal gas 

constant-volume combustion while the Diesel cycle is described as a limited-pressure 

combustion. The cycle efficiency of constant-volume cycle and limited-pressure 

cycle are shown in equation 2.2 and equation 2.3 respectively (Taylor 1985b).  

    
(2.2) 

 (2.3) 

where η is the cycle efficiency, k is the heat capacity ratio, rc is the compression ratio, 

β is the cutoff ratio and α is the pressure ratio during constant-volume heat addition.  

The theoretical cycle efficiency for both cycles are plotted in Figure 2.3. 

Even though the Otto cycle is more efficient than the Diesel cycle for a given 

compression ratio, in practice the compression ignition engines are running at much 

rc =
Vd +Vc
Vc

η =1− 1
rc
k−1

η =1− 1
rc
k−1

αβ k −1
(α −1)+ kα (β −1)
⎡

⎣
⎢

⎤

⎦
⎥
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higher compression ratios. Since there is only air during the compression stroke of 

compression ignition engines, there is no knock limit as in a spark ignition engine. 

Assuming the compression ignition engine has compression ratio 18 and the spark 

ignition engine compression ratio is 9, the theoretical cycle efficiency would be 62% 

and 54% respectively as shown in Figure 2.3. Therefore, the diesel cycle can 

achieved higher efficiency than gasoline engines.  

 

Figure 2.3: Theoretical cycle efficiency of Otto cycle and Diesel cycle as a function 
of compression ratio, assuming k=1.35 for both case and β=1.5, α=1.5 for diesel 

cycle 

In addition, with higher compression ratio, which gives higher compression 

pressure, the ignition delay can be decreased significantly (Heywood 1988). 

However, the compression ignition engine still has its limit on increasing 

compression ratio. By increasing compression ratio, the peak cylinder pressure will 

increase as well. Therefore, the physical strength of engine components is one of the 

major constraints for higher compression ratio. Besides that, compression work, 
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blow-by and heat loss will increase as well. All of that will compensate the benefit of 

increased compression ratio.  

2.2.2 Fuel injection 

The fuel injection system is the most significant factor influencing 

combustion characteristics of a high speed direct injection diesel engine, apart from 

the engine structural design and combustion chamber properties (Raffelsberger et al. 

1995). The in-line fuel injection pump is the most widely used diesel fuel injection 

technology (Robert Bosch 2005). The fuel injection system is commonly known as 

pump-line-nozzle (PLN) injection systems, which the name itself describes the most 

basic components of the system. There is more recent and advanced development of 

others technologies, such as unit injector, which has shown the ability to reach higher 

injection pressures (Ichihashi et al. 1992). That study also showed that the newer 

technologies requires smaller drive system and are more efficient in comparison with 

pump-line-nozzle systems. However, the fully mechanical system is simpler, having 

rugged durability and easy of maintenance keeping it relevant nowadays, especially 

for small utility engine (Robert Bosch 2005).  

For a pump-line-nozzle injection system, the fuel is pressurized by a fuel 

injection pump consisting of a barrel and plunger assembly. The plunger is driven by 

a cam, which the profile has to be designed to pressurize the fuel synchronous with 

the crankshaft rotation. The plunger can be rotated so that the time the helical groove 

on outer surface of the plunger, which uncovers the inlet, can be altered either earlier 

or later (see Figure 2.4). With that, the effective stroke (from start of fuel 

pressurization to the inlet uncovering) can be manipulated, so that the amount of fuel 

injected can be directly controlled according to engine load. With this system, the 

start of injection will be the same regardless of the engine load. Only the end of 
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injection is affected, therefore a longer effective stroke will give longer injection 

duration.  

 

Figure 2.4: Fuel-delivery control of PLN injection system: a) zero delivery, b) partial 
delivery and c) maximum delivery (Robert Bosch 2005) 

The pressurized fuel is then delivered to the fuel injector via high-pressure 

fuel line. The fuel line must be rigid and kept as short as possible, so that the fuel 

pressure loss is minimized. With the same fuel pressure from the injection pump, the 

start of injection depends on the injector needle opening force. As the pump stops 

pressurizing the fuel and fuel pressure drops below the injector needle closing force, 

the fuel injection will end. This of course is an idealized description of the fuel 

injection. In reality, hazardous phenomena such as cavitation, unintentional 

secondary injection and fuel dribble occur which will affect the combustion process 

(Benavides et al. 2000). 

The fuel injection system has a direct influence on the fuel spray 

characteristics, which will subsequently affect the combustion process. Some 

important characteristics of the fuel spray include spray tip penetration, spray cone 

angle and overall spray Sauter Mean Diameter (SMD) (C. Chang & Farrell 1997). 

Another spray parameter that is also considered significant is the fuel momentum 
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flux (F. Payri et al. 2004; Desantes et al. 2003). The momentum flux describes the 

fuel velocity at the injector nozzle’s outlet and is related to fuel density and effective 

diameter of the injector nozzle. Study has shown that when using an alternative fuel 

such as biodiesel or blend of biodiesel with petroleum diesel, the difference in engine 

performance is mainly caused by the deviation in fuel injection characteristic, which 

is a result of different physical fuel properties such as bulk modulus and viscosity (C. 

S. Lee et al. 2005). Therefore, the fuel injection parameters have to be altered 

accordingly to optimize the engine performance. 

The fuel injection system is responsible to provide the required fuel pressure, 

timing control and injection rate metering. Higher injection pressure gives finer fuel 

atomization, which will yield better fuel vaporization and mixing with air 

subsequently. In addition, the high fuel pressure is also needed for fuel penetration 

into the highly compressed air in order to penetrate the fuel across the combustion 

chamber to make the fuel air mixture as homogeneous as possible. However, the fuel 

penetration should be optimized for the specific combustion chamber and swirl level, 

since over penetration of fuel will cause wall wetting that reduces the fuel 

vaporization, while too little fuel penetration will cause the fuel concentrated around 

the injector giving poor fuel distribution and low air utilization. The injection timing 

control is essentially determining the start of combustion, thus the phasing of the 

combustion pressure. Therefore, the start of injection timing must be accurately 

controlled to within 1º of crankshaft rotation (Robert Bosch 2005). While the fuel 

injection continues, the injection rate and end of injection, thus the amount of fuel 

injected, will influence the subsequent combustion process. 

With the fuel momentum and entrainment of high turbulence inside the 

combustion chamber the fuel droplets will atomize into finer sizes, then vaporize by 



 
18 

the heated air. The vaporized fuel is easier to mix with air and consequently forms 

combustible fuel-air mixture. After the ignition delay, the combustible fuel-air 

mixture will ignite and further elevate the air pressure and temperature. As the fuel 

continues to be injected and mixed with the remaining fresh air, combustion persists 

until the end of fuel injection or lack of fresh air for further fuel burning. In practice, 

the injection duration at full load operation is best in the range of 20º to 40º crank 

angle (Taylor 1985a). 

Aside from granting better combustion which is beneficial to engine 

efficiency, the fuel injection, especially the fuel spray characteristic also have a 

strong relation to pollutant formation as shown in Figure 2.5. The major pollutants 

from a diesel engine are nitrogen oxide (NOx), soot and unburned hydrocarbon (HC). 

Nitrogen (with 75% of mass composition of air) will be oxidized at very high 

temperatures (about 2200K) and lean fuel-air mixtures (Akihama et al. 2001; 

Poonawala 2007). Therefore, its formation area is around the boundary of fuel-air 

mixing, where the combustion is happening at the highest local temperature. For soot, 

it is produced in the region with high temperature but lacking oxygen for oxidation, 

i.e. at the liquid phase of the fuel spray core. The emission of hydrocarbon originates 

in regions with low temperature where the combustion does not commence. Those 

regions usually located far from the fuel spray or being some crevice volumes, which 

have been cooled by the nearby engine components such as piston, cylinder or 

engine head.  



 
19 

  

Figure 2.5: Regions of pollutant production in a combustion chamber with a 
heterogeneous mixture (Mollenhauer & Tschoeke 2010) 

In addition, the fuel injection timing is also well known to have strong 

influence on the formation of soot and nitrogen oxide. The typical emission trend of 

soot and nitrogen oxide as a function of injection timing is shown in Figure 2.6. 

Advanced injection timing will give higher maximum in-cylinder temperature, which 

will cause higher nitrogen oxidation rate. But higher temperature is beneficial to fuel 

vaporization, which will decrease the emission of soot. The opposite will happen 

when the injection timing is retarded. The understanding of this phenomena led to 

the development of better fuel injection strategy such as split injection which can 

reduce both emission of nitrogen oxide and soot simultaneously (Yehliu et al. 2010; 

Su et al. 1995). In addition, the split injection is also capable of reduce the 

combustion noise of a diesel engine by reducing the maximum rate of pressure rise 

(Mollenhauer & Tschoeke 2010).  

The injection rate and the speed of mixture formation influ-
ence energy conversion in diesel engines. Since mixture forma-
tion is heterogeneous, the flame propagation typical in gasoline
engines is absent and any danger of ‘‘knocking combustion’’ is
eliminated. Therefore, high compression ratios and boost pres-
sures can be produced in diesel engines. Both benefit efficiency
as well as an engine’s torque characteristic. The limit of com-
pression and boost pressure is not predetermined by ‘‘knocking
combustion’’ – as in gasoline engines – but rather by the max-
imum allowable cylinder pressure, which is why modern diesel
car engines operate in ranges of approximately 160–180 bar and
commercial vehicle engines in ranges of approximately
210–230 bar. The low compression ratio range specified here
applies to highly supercharged large diesel engines.
Since the mixture formation is internal, the time required

for fuel evaporation and mixture formation limits a diesel
engine’s speed. Therefore, even high speed diesel engines
seldom operate at speeds above 4,800 rpm. Resultant disad-
vantages in power density are compensated by their particular
suitability for supercharging.
The injection of the fuel into a secondary chamber of the

main chamber, a ‘‘swirl chamber’’ or ‘‘prechamber’’, is
referred to as ‘‘indirect fuel injection’’. It was formerly used
to better form the mixture and utilize air in the main chamber
as well as to control combustion noise. Advanced diesel
combustion systems, i.e. direct injection engines, inject the
fuel directly into the main combustion chamber.
Internal mixture formation and the attendant retarded

injection of fuel into the combustion chamber produce dis-
tinct air/fuel gradients (l gradients) in the combustion cham-
ber.While virtually no oxygen is present in the core of the fuel
spray (l ! 0), there are zones in the combustion chamber
with pure air (l = 1) too. Every range between 1 > l > 0
exists more or less pronouncedly in a diesel engine’s combus-
tion chamber during injection. Complete air utilization is
virtually impossible in heterogeneous mixture formation. The
time is far too short to produce and completely burn a
homogeneous mixture. Therefore, diesel engines also operate
at full load with excess air of 5–15%. Large low speed diesel
engines must be operated with even far greater excess air
because of the thermal loading of components.
This affects any potentially required exhaust gas aftertreat-

ment systems. Three way catalysts (TWC), operated homoge-
neously in gasoline engines at l= 1.0, cannot be employed since
an ‘‘oxidizing’’ atmosphere is always present in the exhaust.
The air/fuel gradient is not only responsible for differences

in mixture quality but also local differences in temperature in
a combustion chamber. The highest temperatures appear
outside the fuel spray in ranges of 1 > l, the lowest in the
spray core in ranges of l ! 0. As Fig. 3-1 illustrates, nitrogen
oxides form in the zones with excess air and high tempera-
tures. Combustion temperatures in the lean outer flame zone
are so low that the fuel cannot completely oxidize. This is the
source of unburned hydrocarbons. Soot particulates and their
precursor carbon monoxide form in air deficient zones in the

spray core. Since the rich mixture region makes it impossible
to prevent soot formation in a heterogeneous mixture, mod-
ern diesel systems aim to oxidize particulates in the engine.
This can be improved substantially by maintaining or gener-
ating greater turbulence during the expansion stroke. Conse-
quently, modern diesel systems burn up to 95% of the parti-
culates formed in the engine.
Internal mixture formation involving high compression

and a method of load control (quality control) is the basis of
excellent overall diesel engine efficiency.

3.1.2 Mixture Formation

3.1.2.1 Main Influencing Variables

Apart from the air movement in the combustion chamber
(squish or squish flow and air swirl), which can be shaped by
the design of the combustion chamber and the intake port,
internal mixture formation is essentially dominated by the
injection. An injection system must perform the following
tasks: Generate the required injection pressure, meter the fuel
[3-2], ensure spray propagates, guarantee rapid spray
breakup, form droplets and mix the fuel with the combustion
air (see also Chap. 5).

3.1.2.2 Air Swirl

Air swirl is essentially a ‘‘rotary flow of solids’’ around the axis
of the cylinder, the rotational speed of which can be shaped by
the design of the intake port and increases with the engine
speed because the piston velocity increases. A basic function
of the air swirl is to break up the compact fuel spray and to

Injection nozzle

SootHC

HC
NOx

NOx

Fig. 3-1 Regions of pollutant production in a combustion chamber with a
heterogeneous mixture
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Figure 2.6: Influence of the start of injection on particle matter and nitrogen oxide 
emissions of a commercial vehicle engine at 1425 rpm and mean load (Mollenhauer 

& Tschoeke 2010) 

2.2.3 In-cylinder air motion 

Complex air motion occurs along the engine’s air path during the induction 

of fresh air into engine cylinder and ejection of burned product from the cylinder. 

The in-cylinder air motion is strongly related to the induced air motion by the intake 

system or the combustion chamber design. There are two major bulk air motions 

inside the engine cylinder, which are swirl and squish as shown in Figure 2.7 

(Pulkrabek 2004).  

 

Figure 2.7: Schematic diagram of swirl (a) and squish air motion inside engine 
cylinder (b) (Pulkrabek 2004) 

initially mechanically and later by an electrically actuated
solenoid valve.
Figure 15-33 visualizes the importance of the start of injec-

tion for engine emissions. The NOX and PM emissions are
plotted for different starts of injection, the crank angle of 08
(08CA) denoting top dead center. The steady rise of particu-
late emissions and the continuous drop of NOX emissions are
clearly discernible. The measurements are based on a com-
mercial vehicle engine at mean load and 1,425 rpm.
Figure 15-34 presents the cylinder pressure curves mea-

sured during engine operation for four starts of injection
selected from Fig. 15-33. The rise in pressure after top dead
center (TDC) indicates the start of combustion. The pressure
rises more steeply when the start of injection is advanced
than when injection and combustion are long after TDC.

The flatter rise in pressure in retarded combustion can be
attributed to the continuing expansion. On the one hand, it
directly limits the rise in pressure. On the other hand, the
expansion causes combustion chamber temperatures to drop
and thus combustion to proceed more slowly. The pressure
curves also allow the inference that the peak temperatures
occurring in the cylinders will also be lower when the start of
injection is retarded since the heat generated by slower
combustion has more time to disperse from the zone of
direct combustion. As explained in Sect. 15.3.1, not only
the oxygen supply but also the local peak temperature is a
crucial parameter for the formation of NOX. Thus, the
decreasing NOX emissions (Fig. 15-33) when the start of
injection is retarded can be explained by the cylinder pres-
sure curves in Fig. 15-34.

Table 15-15 Various measures for the optimization of diesel engine combustion and their influence on different parameters

Measure NOx HC/CO Soot bsfc Noise

Retarded start of injection
Exhaust gas recirculation
Cooled EGR
Supercharging
Intercooling
Pilot injection
Added post-injection
Injection pressure increase
Lower compression ratio

+
+
+
–
+
0
+
0
+

–
–
–
+
–
+
0
+
–

–
–
+
+
+
–
+
+
+

–
–
+
+
+
0
–
+
0

+
+
0
0
0
+
0
0
–

Symbols: þ: reduction; ": increase; 0: no change
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Influence of the start of injection on PM- and
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The swirl can be generated through several methods, such as guiding the 

intake air to enter the engine cylinder from tangential direction or contoured intake 

valve (Figure 2.8), resulting in rotation of the air while the piston is moving 

downward during intake stroke. While the intensity of the swirl motion will decay as 

the piston moving upward, the angular velocity of swirl usually will be increased 

when approaching top dead center, on the order of up to five times (Pulkrabek 2004). 

This is achieved with bowl-in-piston combustion chamber, which reduces the 

rotating radius of the flow, from the size of engine bore to the diameter of piston 

bowl (Heywood 1988). Due to conservation of angular momentum, the angular 

velocity of the swirl will be greatly increased. On the other hand, the squish is 

generated when the piston is approaching top dead center during compression stroke, 

forcing the air at the squish area rushing into the piston bowl. 

 

Figure 2.8: (a) Generating swirl using contoured valve or (b) intake path that guiding 
air entering cylinder tangentially  

The swirl motion has great influence on the combustion process, which will 

affect engine performance significantly, including the engine emissions and fuel 

consumption. The effect of swirl on the diesel engine fuel distribution, mixing, as 

well as the combustion flame propagation is shown in Figure 2.9. It can be noticed 

(a) (b) 
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that the fuel spray and the flame propagation have been deflected and spreading 

around the piston bowl by the counterclockwise swirl. 

 

Figure 2.9: (a) Combustion of single spray burning under large direct injection 
engine; (b) combustion of four sprays in direct injection engine with 

counterclockwise swirl; (c) combustion of single spray in M.A.N. “M” direct 
injection diesel (Heywood 1988) 

As shown in Figure 2.10 (Pulkrabek 2004), the increase in swirl ratio has 

reduced the smoke level of the engine, which is due to more homogenous fuel-air 

mixing. Swirl motion of air can distribute the fuel spray across the engine cylinder, 

thus improving the air utilization. From the better fuel-air mixing, faster combustion 

is expected, which gives a higher combustion temperature. This increase of 

combustion temperature causes higher emission level of nitrogen oxide. However, 

the formation of nitrogen oxide can be reduced using higher exhaust gas recirculation 

(EGR) together with higher fuel injection pressure to reduce the added soot emission 

(a) (b) (c) 
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caused by high EGR (Henein et al. 2001). For the specific fuel consumption, there is 

an optimum swirl ratio that gives the best result. This condition is caused by higher 

swirl ratio will increase the heat loss during the combustion and also exerts pumping 

loss when generating the swirl (Bergstrand & Denbratt 2002). Therefore, while 

having beneficial effect on the combustion process through improving the fuel-air 

mixing and combustion rate, a higher swirl level doesn’t always give better engine 

performance. The swirl level has to be optimized in conjunction with other engine 

parameters such as combustion chamber design and fuel injection. 

 

Figure 2.10: Brake specific fuel consumption and emissions level as a function of 
swirl ratio and injection timing of a single cylinder compression ignition engine 

(Pulkrabek 2004)  
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The aid of swirl in the combustion process can be reflected in the 

combustion pressure trace. As shown in Figure 2.11, the rate of pressure rise is 

increasing with the swirl ratio, which consequently gives higher maximum 

combustion pressure. The higher pressure rise is the results of faster combustion. By 

having heat release shorter and nearer to top dead center, the cycle efficiency will be 

improved, i.e. greater effective expansion and more work extraction from the heat. 

 

Figure 2.11: Influence of swirl on combustion pressure, N=air swirl, n=engine speed 
(Taylor 1985a) 

Just as with swirl, squish motion is also found to contribute in improving the 

combustion process. In the effort to reduce the emission of nitrogen oxide and soot 

simultaneously, two-stage combustion was investigated (Kidoguchi et al. 1999). In 

that combustion concept, the first stage of combustion is a fuel rich combustion to 

reduce the emission of nitrogen oxide, while the later stage of combustion requires 

high turbulence combustion to reduce soot emission. The high turbulence 

combustion, which results from a high squish combustion chamber, enables flame 

entrainment into the rich region of the fuel-air mixture, therefore the fuel air mixing 

of that soot formation area can be improved and subsequently achieves low emission 

1000 

800 

600 

400 

200 

Pr
es

su
re

, p
si

 


