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and 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 5  in the SENB, CCP models with 

strain hardening exponents (𝑛 = 3, 6, 13, ∞) and a) 

𝑎/𝑊 = 0.5, b) 𝑎/𝑊 = 0.3, c) 𝑎/𝑊 = 0.2, d) 𝑎/𝑊 = 

0.1. 

169 

Figure 4.37 Plot of normalized 𝜎𝜃𝜃 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 = 2  as a function 

of 𝐽𝑙𝑜𝑐/𝑧𝜎0  at different sections of SENB ( 𝑎/𝑊 = 

0.5, 𝑛 = 13 ). The top and bottom dashed lines 

indicate the plane strain and plane stress HRR values 

respectively. 
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Figure 4.38 Plot of normalized 𝜎𝜃𝜃 against 𝐽𝑙𝑜𝑐/𝑧𝜎0 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 =
2 for the (a-d) SENB, (e-h) CCP models with 𝑛 = 3, 
6, 13, ∞ and 𝑎/𝑊 = 0.5, 0.3, 0.2, 0.1. 
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Figure 4.39 Plot of normalized 𝜎𝜃𝜃 against 𝐽𝑙𝑜𝑐/𝑧𝜎0 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 =
5 for the (a-d) SENB, (e-h) CCP models with 𝑛 = 3, 
6, 13, ∞ and 𝑎/𝑊 = 0.5, 0.3, 0.2, 0.1. 
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Figure 4.40 Plot of normalized 𝜎𝑚 against 𝐽𝑙𝑜𝑐/𝑧𝜎0 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 =
2 for the (a-d) SENB, (e-h) CCP models with 𝑛 = 3, 
6, 13, ∞ and 𝑎/𝑊 = 0.5, 0.3, 0.2, 0.1. 
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Figure 4.41 Plot of normalized 𝜎𝑚 against 𝐽𝑙𝑜𝑐/𝑧𝜎0 at 𝑟𝜎0/𝐽𝑙𝑜𝑐 =
5 for the (a-d) SENB, (e-h) CCP models with 𝑛 = 3, 
6, 13, ∞ and 𝑎/𝑊 = 0.5, 0.3, 0.2, 0.1. 
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LIST OF ABBREVIATIONS 

BLF Boundary layer formulation 

CCP Center cracked tension panel 

CT Compact tension specimen 

EPFM Elastic-plastic fracture mechanics 

EDI Equivalent domain integral 

HPC High performance computing 

HRR Hutchinson, Rice & Rosengren 

LEFM Linear elastic fracture mechanics 

LGC Large geometry change 

LSY Large scale yielding 

MBLF Modified boundary layer formulation 

SENB Single edge notched bend bar 

SENT Single edge notched tension specimen 

SSY Small scale yielding 

VCE Virtual crack extension 
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LISTS OF SYMBOLS 

𝑎 Crack length 

𝑎𝑒𝑓𝑓 Effective crack length 

𝐵 Physical specimen thickness 

𝑐 Uncracked ligament length 

𝐶𝑖𝑗𝑘𝑙 

(𝑖, 𝑗, 𝑘, 𝑙=1,2,3) 

 

Stiffness tensor 

𝐸 Young’s Modulus/Modulus of elasticity 

𝑓𝑖𝑗(𝑖, 𝑗= 𝑟, 𝜃, 𝑧) 

 

Angular stress function in (𝑟, 𝜃, 𝑧) cylindrical coordinate system 

𝑔𝑖𝑗(𝑖, 𝑗= 𝑟, 𝜃, 𝑧) Angular stress function for corner singularity fields 

𝐺 Shear modulus 

 

𝒢 Energy released to propagate a crack 

 

𝐻 Specimen height 

𝐼 (subscript) Designation for mode I 

𝐼(𝑠) Interaction integral 

𝐼𝑛 Dimensionless function in HRR fields and 𝐽 − 𝑇𝑧 fields 

𝐽 𝐽-integral 

𝐽𝑙𝑜𝑐 Local 𝐽-integral along a crack front 

𝑘 Yield stress in shear 

𝐾 Stress Intensity Factor 

𝒦 Amplitude coefficient of stress dominant term 

𝑀 Global bending moment per unit thickness 

𝑛 Strain hardening exponent/rate 

𝑃 Applied load 
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𝑃0 Plastic limit load 

𝑟 Radial distance ahead of a crack tip 

𝑟𝑝 Plastic zone size 

𝑠 Order of stress singularity  

𝑆 Span between support of bend specimen 

𝑆𝑖 (𝑖=1,2,3) Principal deviatoric stress components 

𝑡 Physical specimen thickness 

𝑇 𝑇-stress 

𝑢𝑖 (𝑖=1,2,3) Displacement components in ( 𝑥1, 𝑥2, 𝑥3 ) Cartesian coordinate 

system 

 

𝑣 Poisson’s ratio 

𝑤 Strain energy density 

𝑊 Specimen width 

𝑊𝑠 Work required to create new crack surfaces 

𝑌 Crack calibration factor 

𝑧 Distance measured from the free surface of a specimen 

𝜎𝑎𝑝𝑝 Remotely applied stress 

𝜎𝑐𝑟 Critical stress for fracture to occur 

𝜎0 Yield strength/stress  

𝜎𝑖𝑗(𝑖, 𝑗=1,2,3)  Stress components in (𝑥1, 𝑥2, 𝑥3) Cartesian coordinate system 

𝜎𝑖𝑗(𝑖, 𝑗= 𝑟, 𝜃, 𝑧) Stress components in (𝑟, 𝜃, 𝑧) cylindrical coordinate system 

𝜎̃𝑖𝑗(𝑖, 𝑗= 𝑟, 𝜃, 𝑧) Dimensionless stress functions for HRR fields and 𝐽 − 𝑇𝑧 fields 

𝜎𝑒, 𝜎 von Mises stress 

𝜎𝑘𝑘 Volumetric stress 

𝜎𝑚 Mean stress 



 

xix 
 

𝜀𝑖𝑗 (𝑖, 𝑗=1,2,3)  Strain components in (𝑥1, 𝑥2, 𝑥3) Cartesian coordinate system 

𝜀0 Yield strain 

𝛼 Material constant 

𝛽 Stress biaxiality ratio 

𝛽𝑡ℎ𝑖𝑛 Stress biaxiality ratio for thin specimen 

𝛽𝑐 Corner stress intensity factor 

𝛾𝑠 Surface energy per unit area 

𝛾𝑝 Plastic work done per unit area of crack surface area created 

𝛾𝑇𝑧
, 𝛾𝜎 Slope constants in the 𝐽 − ∆𝜎 approach 

𝜆 Strength of corner singularity field 

𝜇 Plastic deformation level 

𝛿𝑖𝑗 (𝑖, 𝑗=1,2)  Kronecker delta 

Φ Airy stress function 

Π Potential energy 

Γ Arbitrary contour around a crack tip 
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SKEMA ANGGARAN KEHILANAGN KEKANGAN DALAM MEDAN 

HUJUNG RETAKAN TIGA DIMENSI YANG DALAM DAN CETEK 

 

ABSTRAK 

Matlamat utama kajian ini adalah untuk memahami ciri-ciri kehilangan 

kekangan tiga dimensi dan melanjutkan pencirian skema anggaran kehilangan 

kekangan tiga dimensi seperti kaedah 𝐽 − 𝑇𝑧  dan 𝐽 − ∆𝜎  dalam retakan. Skema 

anggaran kehilangan kekangan tiga dimensi dalam medan di hujung retakan elastik 

plastik telah disiasat dalam kajian ini dengan menggunakan bar retak bawah beban 

lenturan (SENB) dan plat retak tengah bawah beban tegangan (CCP). Model tersebut 

telah ditakrifkan dengan sifat bahan pengerasan terikan, 𝑛 = 3,6,13 dan sifat bahan 

tanpa pengerasan (𝑛 → ∞). Kehilangan kekangan dalam medan tegasan di hujung 

retakan didapati berubah dalam model dengan panjang retakan yang berlainan, 

𝑎/𝑊 = 0.1, 0.2, 0.3, 0.5 and ketebalan yang berbeza, 𝐵/(𝑊 − 𝑎) = 0.05, 1. 

 Kehilangan kekangan di hujung retakan telah dikaji melalui pembandingan 

antara medan tegasan asimptotik bersifat tanpa pengerasan dengan penyelesaian 

hujung retakan terikan satah medan Prandtl dan penyelesaian hujung retakan tegasan 

satah Sham & Hancock. Kehilangan kekangan dalam satah didapati bertambah dengan 

tegasan 𝑇 negatif apabila nisbah 𝑎/𝑊  dikecilkan. Penurunan ketebalan model juga 

didapati mengurangkan kehilanagan kekangan dalam satah kerana tegasan 𝑇 

meningkat dalam model yang nipis. Kehilangan kekangan luar satah diperhatikan di 

kawasan dari satah tengah ke permukaan bebas dalam semua model. Medan tegasan 

di permukaan bebas tidak dapat mencapai keadaan tegasan satah penuh kerana 

dipengaruhi oleh medan singulariti penjuru. Medan tegasan deviatorik adalah unik 

dalam semua model dan tidak bergantung pada kehilangan kekangan dalam satah dan 



 

xxi 
 

luar satah. Skema anggaran kehilangan kekangan juga dikemukakan untuk tegasan 

lingkar di depan retakan dengan menghubungkaitkan kehilanagan kekangan dengan 

magnitud tegasan 𝑇. 

 Keberkesanaan kaedah 𝐽 − 𝑇𝑧 dan kaedah 𝐽 − ∆𝜎 dalam mencirikan medan di 

hujung retakan tiga dimensi juga dibincangkan.  Pemerolehan terperinci dan 

algorithma untuk mengira kaedah 𝐽 − 𝑇𝑧  telah ditunjukkan. Kaedah 𝐽 − 𝑇𝑧  didapati 

bahawa gagal menggambarkan medan di hunjung retakan model yang menunjukkan 

kehilangan kekangan dalam satah. Kaedah 𝐽 − 𝑇𝑧 − 𝑄  juga dikesahkan dengan 

mengunakan parameter 𝑄  terikan satah.  Kaedah 𝐽 − 𝑇𝑧 − 𝑄  didapati bahawa 

membuat anggaran berlebihan tentang kehilangan kekangan dalam satah dalam model 

nipis yang menunjukkan tegasan 𝑇  negatif seperti model CCP nipis.  Manakala, 

kaedah 𝐽 − ∆𝜎  adalah lebih bermanfaat kerana dapat menyifatkan kehilanagan 

kekangan dalam dan luar satah secara bersepadu dengan memplotkan tegasan paksi 

terhadap 𝐽𝑙𝑜𝑐/𝑧𝜎0  parameter. Penggunaan kaedah 𝐽 − 𝑇𝑧  memerlukan pertaburan 𝑇𝑧 

di depan retakan. Sebaliknya, aplikasi kaedah 𝐽 − ∆𝜎  adalah lebih mudah kerana 

kehilangan kekangan sepanjang retakan dapat dianggarkan melalui satu lengkungan 

unik untuk model yang mempunyai ketebalan yang berbeza.  
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CONSTRAINT LOSS ESTIMATION SCHEMES IN DEEP AND SHALLOW 

THREE-DIMENSIONAL CRACK TIP FIELDS 

 

ABSTRACT 

The primary goal of this study is to determine the three-dimensional constraint 

loss behavior and further extend the three-dimensional constraint loss estimation 

schemes of 𝐽 − 𝑇𝑧  and 𝐽 − ∆𝜎  approaches in three-dimensional crack tip fields 

consisting of various crack configurations. The three-dimensional constraint loss 

estimation schemes in elastic-plastic crack tip fields were examined for a single edge 

notched bend bar (SENB) and a center cracked panel in tension (CCP). The finite 

element models were characterized with a strain hardening material, 𝑛 = 3, 6, 13 and 

a non-hardening material, 𝑛 → ∞. The crack tip constraint loss was found to vary in 

the models with various crack length, 𝑎/𝑊 = 0.1, 0.2, 0.3, 0.5  and different 

thicknesses, 𝐵/(𝑊 − 𝑎) = 0.05, 1.  

Crack tip constraint loss was studied by comparing the non-hardening crack tip 

asymptotic fields with the plane strain Prandtl’s crack tip fields solutions and the plane 

stress Sham & Hancock’s crack tip solutions. The in-plane constraint loss increased 

with a more negative 𝑇-stress following the reduction of 𝑎/𝑊 ratio. The thin model 

exhibited smaller the in-plane constraint loss as 𝑇-stress was less negative. The out-

of-plane constraint loss occurred in all models at the region away from the midplane 

to the free surface. The radial and angular distribution of deviatoric stress field ahead 

of the crack tip was also found to be unique in all models and independent of the in-

plane and the out-of-plane constraint loss. A constraint estimation loss scheme at 𝜃 =

0∘ was proposed for the hoop stress along a crack front by correlating the constraint 

loss to the magnitude of the 𝑇-stress. 
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A detailed derivation and an algorithm to compute the 𝐽 − 𝑇𝑧 approach were 

shown. The 𝐽 − 𝑇𝑧  approach was unable to characterize the crack tip fields in the 

models that feature in-plane constraint loss and at the free surface due to a corner 

singularity field. The 𝐽 − 𝑇𝑧 − 𝑄  approach using a plane strain 𝑄  parameter was 

evaluated. It was found that the 𝐽 − 𝑇𝑧 − 𝑄  approach overestimated the in-plane 

constraint loss in a thin model with negative 𝑇-stress as seen in the thin CCP model. 

New equations were developed to extend the 𝐽 − ∆𝜎 approach in strain hardening 

models. The extended 𝐽 − ∆𝜎 approach offered a unified characterization of the in-

plane and out-plane constraint loss along a crack front by plotting the normal stresses 

against a dimensionless 𝐽𝑙𝑜𝑐/𝑧𝜎0 parameter. Unlike the 𝐽 − 𝑇𝑧 approach that required 

an exact distribution of 𝑇𝑧  along a crack front, the 𝐽 − ∆𝜎  approach is more 

advantageous as it can be applied immediately to approximate the constraint loss along 

a crack front by using a unified curve for the models with different thicknesses.  
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INTRODUCTION 

1.1 Fracture Mechanics 

 Engineering structures can contain flaws and defects caused by manufacturing 

processes, inappropriate handling and material degradation. The flaws and defects can 

manifest into cracks. Structure with cracks will eventually become unstable and the 

cracks will propagate when the structures are loaded over a critical limit, eventually 

leading to a catastrophic failure at a load level lower than the designed limit.  

 Fracture mechanics is related to the study of failure mechanisms associated 

with cracks. Fracture toughness is proposed as the resistance of a material against the 

growth of crack. Fracture toughness is a material property which can be characterized 

by 𝐾  in liner elastic materials or 𝐽 parameter in elastic-plastic materials. To measure 

the fracture toughness, a standard procedure for the fracture toughness test is 

documented in the American Society for Testing and Materials (ASTM-E1820-11, 

2011) and the British Standard Institution (BS-EN-ISO-12737, 2011). Standard test 

specimens such as single edge notched bend bar (SENB), center cracked tension panel 

(CCP) and compact tension (CT) specimens were usually employed in the fracture 

toughness test with a strict geometry requirement. A test specimen must be thick 

enough (𝐵/𝑊 ≥ 0.5) and possess a deep crack with a crack length of 0.45 ≤ 𝑎/𝑊 ≤

0.5. The strict geometry requirements were imposed to ensure to that the crack tip is 

fully constrained so that a lower bound fracture toughness value can be obtained from 

the test specimen.  
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1.2 Problem Statement 

Problem arises in measuring the fracture toughness when the crack tip 

constraint is lost. For instance, the crack length in the interested geometry does not 

comply with the size requirements in the fracture toughness standard procedure. In 

engineering applications, the defects can be characterized as deep and shallow cracks. 

Specimens loaded in bending with crack length, 𝑎/𝑊 < 0.3 and specimens loaded in 

tension with crack length, 𝑎/𝑊 < 0.5 were categorized as shallow cracked specimens 

(Al-Ani & Hancock, 1991). Shallow cracks were commonly found in a welded joint, 

a heterogeneous region that involves two materials, and locations that are subjected to 

intense loading like cutting edges. Two dimensional analyses by (Al-Ani & Hancock, 

1991; O'Dowd & Shih, 1991) showed that a shallow cracked specimen possessed a 

lower crack tip stress due to the in-plane crack tip constraint loss which resulted in a 

higher fracture toughness for the shallow cracked specimen. If the standard fracture 

toughness test is applied indiscriminately onto a shallow cracked structure, the fracture 

toughness will be overestimated. To alleviate this problem, two-parameter fracture 

mechanics approaches such as 𝐾/𝐽 − 𝑇  (Betegón & Hancock, 1991) and 𝐽 − 𝑄 

(O'Dowd & Shih, 1991; O’Dowd & Shih, 1992) and 𝐽 − 𝐴2 (Chao et al, 1994; Yang 

et al, 1993a; b) were proposed to quantify the in-plane crack tip constraint loss.  

The two-parameter approaches were designed for the evaluation of two-

dimensional crack problems but the out-of-plane constraint effect was neglected. The 

crack tip constraint loss in a three-dimensional cracked body consists of the in-plane 

and out-of-plane constraint loss. The out-of-plane constraint loss was found to occur 

in the thickness direction from the midplane to the free surface of a specimen (Levy et 

al, 1971). New methodologies were suggested to describe the constraint loss in the 

three-dimensional crack tip fields such as the 𝐽 − 𝑇𝑧 (Guo, 1993a), the 𝐽 − ∆𝜎 (Yusof, 
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2006), the 𝐽 − 𝐴𝑐 (Mostafavi et al, 2009) and the 𝐽 − 𝐴𝑝 (Yang et al, 2013) approaches. 

The 𝐽 − 𝐴𝑐  and 𝐽 − 𝐴𝑝  approaches characterized the in-plane and out-of-plane 

constraint losses in a unified curve by evaluating the plastic zone size and the area of 

equivalent plastic strain isoline ahead of a crack tip respectively.  However, the 𝐽 − 𝐴𝑐 

and 𝐽 − 𝐴𝑝 approaches were empirical as they require experimental testing and finite 

element analysis to construct a unified curve for the evaluation of fracture toughness 

for a given material. Moreover, the 𝐽 − 𝐴𝑐  and 𝐽 − 𝐴𝑝  only estimate fracture 

toughness but provide no insight on the state of local crack tip stress fields which is 

fundamental to the fracture mechanics framework for the assessments of fracture 

toughness.  

In this study, the interest is focused on the 𝐽 − 𝑇𝑧  and 𝐽 − ∆𝜎  approaches 

because they were based on the analysis of the state of crack tip stresses similar to the 

𝐽 − 𝑄  approach. Current available literatures on the 𝐽 − 𝑇𝑧  and 𝐽 − ∆𝜎  approaches 

were limited to specific crack geometries and material properties. Thus, the present 

research is motivated to extend the application of the approaches and to study the 

effectiveness of the 𝐽 − 𝑇𝑧 and the 𝐽 − ∆𝜎 characterization for a wider range of crack 

configurations. The behavior of three-dimensional constraint loss will be firstly 

studied before extending the characterization of these three-dimensional approaches. 

 

 

 

 

 

 

 



 

4 
 

1.3 Objectives  

The objectives of the present work are given as follows: 

a) To determine the in-plane and the out-of-plane constraint losses in the non-

hardening models under a tension and bending load for the deep and shallow 

cracks. 

b) To quantify the deviation of the 𝐽 − 𝑇𝑧 and 𝐽 − 𝑇𝑧 − 𝑄 characterization from 

the crack tip fields in the strain hardening models under a tension and bending 

load for the deep and shallow cracks. 

c) To measure the constraint loss along the crack front of models consisting of 

different thicknesses, strain hardening rates and crack lengths within a 𝐽 -

dominance limit through the 𝐽 − ∆𝜎 characterization. 

 

1.4 Scope of Work 

This study will focus on the understanding of the in-plane and the out-of-plane 

constraint loss behavior in a three-dimensional cracked geometry so that a generalized 

constraint estimation scheme can be developed. Detailed finite element analysis was 

conducted based on a highly constrained SENB model and an unconstrained CCP 

model in ABAQUS v6.12.  The crack length and the thickness of the models were 

varied accordingly to demonstrate the in-plane and the out-of-plane crack tip constraint 

loss. In this context, the finite element models were designed with various crack 

lengths of 𝑎/𝑊 = 0.5, 0.3, 0.2, 0.1 and different thicknesses of 𝐵/(𝑊 − 𝑎) = 1, 0.05. 

The material properties of strain hardening exponents, 𝑛 =  3, 6, 13 and ∞  were 

defined for the models. 
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The in-plane and the out-of-plane crack tip constraint loss behavior in a three-

dimensional crack were studied by comparing the non-hardening crack tip stress fields 

to the analytical solutions such as the plane strain Prandtl field solutions (Rice, 1968b) 

and the plane stress (Sham & Hancock, 1999) solutions. Subsequently, the crack tip 

fields from the developed finite element models were validated against the 𝐽 − 𝑇𝑧 

approach (Guo, 1995) and the 𝐽 − ∆𝜎 approach (Yusof, 2006). The detailed derivation 

and the algorithm for computing the 𝐽 − 𝑇𝑧 solutions were presented along with this 

work. The use of plane strain 𝑄 parameter with the 𝐽 − 𝑇𝑧 approach to characterize the 

in-plane constraint loss was also discussed. The 𝐽 − ∆𝜎 approach (Yusof, 2006) were 

modified for the strain hardening models with deep and shallow cracks. 
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LITERATURE REVIEW 

This chapter provides an overview on the development of fracture mechanics. 

The scope of the review covers the fundamental concepts in deformation, linear elastic 

fracture mechanics, elastic-plastic fracture mechanics, two-parameter fracture 

mechanics, characterization of three-dimensional elastic-plastic crack tip fields, corner 

singularity field and characterization of three-dimensional constraint loss.  

 

2.1  Fundamentals of Deformation 

 This section covers the selected fundamental concepts used in the mechanics 

of materials, involving stress, strain, the associated material constitutive relations and 

plasticity.  

 

2.1.1 Stress 

 The definitive text on elastic deformation can be found in (Timoshenko & 

Goodier, 1970). Stress is a fundamental concept in mechanics of materials. When a 

material is subjected to external load, internal forces will be produced as reaction 

forces to achieve a state of equilibrium. As these internal forces are distributed 

uniformly over an area of an imaginary internal surface, the intensity of the internal 

force is called stress. An arbitrary force in an orthogonal Cartesian coordinate system 

𝑥𝑖  (𝑖 = 1, 2, 3) is applied onto a small cubic element as illustrated in Figure 2.1. Let 

the resultant force be a vector denoted as 𝐹𝑗 due to the action across the area of cubic 

element,  𝐴𝑖. Then, the stress on the element can be expressed as: 
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𝜎𝑖𝑗 = lim

𝐴𝑖→0

𝐹𝑗

𝐴𝑖
 

(2.1) 

 

Figure 2.1: Stress components referred to Cartesian coordinates axes. 

 

 As seen from Figure 2.1, the stress components are presented as a second order 

tensor, 𝜎𝑖𝑗 with 𝑖, 𝑗 = 1, 2, 3. This means that in each axis, each stress component, 𝜎𝑖𝑗 

has its own magnitude that depends on the direction of axes, in which its first subscript, 

𝑖 indicates the direction of the normal to the plane under considerations while subscript 

𝑗 refers to the direction of force component. When 𝑖 = 𝑗, 𝜎𝑖𝑗 is acting perpendicular to 

the surface area, thus it is called as normal stress. For 𝑖 ≠ 𝑗, the stress component is 

acting in the plane and it is referred as the shear component of stresses. By considering 

that the cubic element is under equilibrium, the stress tensor 𝜎𝑖𝑗 is essentially similar 

to 𝜎𝑗𝑖, implying that the symbols for the shear stress components can be reduced to 

three as follows: 

 𝜎12 = 𝜎21, 𝜎23 = 𝜎32, 𝜎13 = 𝜎31 (2.2) 
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For a body under static equilibrium, the stresses acting on a body must satisfy 

a set of differential equations known as the equilibrium equations, which in the absence 

of body force can be given as: 

 𝜕𝜎11

𝜕𝑥1
+

𝜕𝜎12

𝜕𝑥2
+

𝜕𝜎31

𝜕𝑥3
= 0     (𝑎) 

𝜕𝜎12

𝜕𝑥1
+

𝜕𝜎22

𝜕𝑥2
+

𝜕𝜎23

𝜕𝑥3
= 0     (𝑏) 

𝜕𝜎31

𝜕𝑥1
+

𝜕𝜎23

𝜕𝑥2
+

𝜕𝜎33

𝜕𝑥3
= 0     (𝑐) 

(2.3) 

 Within a body, there always exists three planes which are mutually 

perpendicular to each other with zero shear stress. The normal stresses acting on these 

planes are thus referred to as the principal stresses. The corresponding principal 

stresses are also known as the extremum value of normal stresses and are independent 

of the choice of the coordinate system. In a two-dimensional plane given in Mohr’s 

Circle, the principal stresses can be presented as 𝜎1 and 𝜎2 as below: 

 

𝜎1,2 =
𝜎11 + 𝜎22

2
± √(

𝜎11 − 𝜎22

2
)

2

+ 𝜎12
2 

(2.4) 

For a three-dimensional body, the principal stresses are denoted as 𝜎1, 𝜎2, 𝜎3 with a 

convention that 𝜎1 ≥ 𝜎2 ≥ 𝜎3.  

 All the prior stress components mentioned are in the form of a Cartesian 

coordinate system. Cartesian stresses can be transformed into the cylindrical state 

through stress transformation equations. The cylindrical coordinates system is usually 

preferred when dealing with a crack problem with cylindrical symmetry. The stresses 

in cylindrical coordinate system (Figure 2.2) can be expressed in terms of Cartesian 

stress components as: 
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 𝜎𝑟𝑟 = 𝜎11𝑐𝑜𝑠2𝜃 + 𝜎22𝑠𝑖𝑛2𝜃 + 2𝜎12𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃           (𝑎) 

𝜎𝜃𝜃 = 𝜎11𝑠𝑖𝑛2𝜃 + 𝜎22𝑐𝑜𝑠2𝜃 − 2𝜎12𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃           (𝑏) 

𝜎𝑟𝜃 = (𝜎22 − 𝜎11)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜎12(𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) (𝑐) 

(2.5) 

where 𝜎𝑟𝑟  is the normal stress component in radial direction, 𝜎𝜃𝜃  is defined as the 

hoop stress in the circumferential direction and 𝜎𝑟𝜃 is the shear stress acting on a 𝑟 −

𝜃 plane, where 𝜃 is the angle measured from the 𝑥1 axis (usually taken as counter 

clockwise).  

 

 

Figure 2.2: Stress components referred to cylindrical coordinates axes. 

 

Similarly, to transform stress components from the cylindrical coordinate system into 

Cartesian form, a reverse transformation is given as: 

 𝜎11 = 𝜎𝑟𝑟𝑐𝑜𝑠2𝜃 + 𝜎𝜃𝜃𝑠𝑖𝑛2𝜃 − 2𝜎𝑟𝜃𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃           (𝑎) 

𝜎22 = 𝜎𝑟𝑟𝑠𝑖𝑛2𝜃 + 𝜎𝜃𝜃𝑐𝑜𝑠2𝜃 + 2𝜎𝑟𝜃𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃           (𝑏) 

𝜎12 = (𝜎𝜃𝜃 − 𝜎𝑟𝑟)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜎𝑟𝜃(𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) (𝑐) 

(2.6) 

 The stress tensor can also be expressed as the sum of the hydrostatic stress, 𝜎𝑚 

and its deviatoric components, 𝑠𝑖𝑗. Hydrostatic stress, 𝜎𝑚 is defined as the mean of the 
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three normal stresses, that its magnitude varies with the changes in body volume. It is 

therefore written as: 

 
𝜎𝑚 =

1

3
(𝜎11 + 𝜎22 + 𝜎33) =

𝜎𝑘𝑘

3
 

(2.7) 

where 𝜎𝑘𝑘 is known as the volumetric stress which causes a body to change in volume. 

The deviatoric stress, 𝑠𝑖𝑗 is related to the shape change or distortion occurred on a body. 

The deviatoric stress is thus given as: 

 𝑠𝑖𝑗 = 𝜎𝑖𝑗 −
𝜎𝑘𝑘

3
𝛿𝑖𝑗 

(2.8) 

where 𝛿𝑖𝑗 is the Kronecker delta. If 𝑖 = 𝑗, then 𝛿𝑖𝑗 = 1. Otherwise, when 𝑖 ≠ 𝑗, then 

𝛿𝑖𝑗 = 0. 

 

2.1.2 Strain 

 Under a multi-axial loading, the relative displacement of an infinitesimal 

element in a deformed body can be resolved into three components as 𝑢, 𝑣, 𝑤 parallel 

to the 𝑥1, 𝑥2 and 𝑥3 axes respectively. The displacement components can be measured 

in terms of a unit elongation or strain. Similar to stress, the strain components can be 

expressed in tensor notations as 𝜀𝑖𝑗  which can be divided into normal strain 

components ( 𝑖 = 𝑗 ) and shear strain components ( 𝑖 ≠ 𝑗 ). For normal strain 

components, they are expressed as: 

 
𝜀11 =

𝜕𝑢

𝜕𝑥1
, 𝜀22 =

𝜕𝑣

𝜕𝑥2
, 𝜀33 =

𝜕𝑤

𝜕𝑥3
 (2.9) 

The shear strain components can be presented in the following form: 

 
𝜀12 =

1

2
(

𝜕𝑢

𝜕𝑥2
+

𝜕𝑣

𝜕𝑥1
)       (𝑎) (2.10) 
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𝜀23 =
1

2
(

𝜕𝑣

𝜕𝑥3
+

𝜕𝑤

𝜕𝑥2
)       (𝑏) 

𝜀31 =
1

2
(

𝜕𝑤

𝜕𝑥1
+

𝜕𝑢

𝜕𝑥3
)        (𝑐) 

 All the strain components are not independent, but they are related to each other 

as they are in function of displacements. In a deformed body, the relationships between 

strain components are governed by a set of equations known as the strain compatibility 

equations. Compatibility equations provide conditions that must be satisfied by strains 

in all materials. The compatibility equations to be satisfied in a three-dimensional body 

are written as: 

 𝜕2𝜀11

𝜕𝑥2
2

+
𝜕2𝜀22

𝜕𝑥1
2

= 2
𝜕2𝜀12

𝜕𝑥1𝑥2
                            (𝑎) 

𝜕2𝜀22

𝜕𝑥3
2

+
𝜕2𝜀33

𝜕𝑥2
2

= 2
𝜕2𝜀23

𝜕𝑥2𝑥3
                            (𝑏) 

𝜕2𝜀33

𝜕𝑥1
2

+
𝜕2𝜀11

𝜕𝑥3
2

= 2
𝜕2𝜀13

𝜕𝑥1𝑥3
                            (𝑐) 

𝜕2𝜀11

𝜕𝑥2𝑥3
=

𝜕

𝜕𝑥1
(−

𝜕𝜀23

𝜕𝑥1
+

𝜕𝜀13

𝜕𝑥2
+

𝜕𝜀12

𝜕𝑥3
)     (𝑑) 

𝜕2𝜀22

𝜕𝑥1𝑥3
=

𝜕

𝜕𝑥2
(

𝜕𝜀23

𝜕𝑥1
−

𝜕𝜀13

𝜕𝑥2
+

𝜕𝜀12

𝜕𝑥3
)         (𝑒) 

𝜕2𝜀33

𝜕𝑥1𝑥2
=

𝜕

𝜕𝑥3
(

𝜕𝜀23

𝜕𝑥1
+

𝜕𝜀13

𝜕𝑥2
−

𝜕𝜀12

𝜕𝑥3
)         (𝑓) 

(2.11) 

 

2.1.3 Elastic Constitutive Relation  

 Under linear elasticity, any deformation that occurs on a body is reversible as 

soon as the load is removed. In this case, the displacement of the body is proportional 

to the applied force, and this proportionality can be described in a basic relation called 

as the Hooke’s Law. If the basic relation is extended into the three-dimensional cases 
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and applied over an infinitesimal area and length, a generalized Hooke’s Law equation 

is obtained as follows: 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 
(2.12) 

 where 𝐶𝑖𝑗𝑘𝑙 is a fourth order tensor known as the stiffness tensor with 𝑖, 𝑗 and 𝑘, 𝑙 =1, 

2, 3. Since each subscript corresponds to three values, it would mean that the stiffness 

tensor has a total of 34 = 81 independent elements.  

 From symmetric consideration, components of stiffness tensor can be further 

reduced. For example, the stress symmetry and strain symmetry allow the stiffness 

tensor to be written as 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑗𝑖𝑙𝑘 . From thermodynamic 

considerations, the position for two pairs of subscripts within a stiffness tensor can be 

switched such that 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗. Under this rule, the resulting stiffness tensor has 21 

independent elastic constants. Such stiffness tensor can only be seen in a fully 

anisotropic material. For linear elastic isotropic material, the number of independent 

elastic elements in stiffness tensor can be further reduced down to 2. 

 In an elastic isotopic solid, the stress-strain relations under a multiaxial loading 

are given as: 

 
𝜀11 =

1

𝐸
[𝜎11 − 𝑣(𝜎22 + 𝜎33)]     (𝑎) 

𝜀22 =
1

𝐸
[𝜎22 − 𝑣(𝜎11 + 𝜎33)]      (𝑏) 

𝜀33 =
1

𝐸
[𝜎33 − 𝑣(𝜎11 + 𝜎22)]       (𝑐) 

(2.13) 

where E is the modulus of elasticity and 𝑣 is the Poisson’s ratio. The stress strain 

relation can also be written in terms of shear modulus, 𝐺 where 𝐸 = 2𝐺(1 + 𝑣) as: 

 𝜎𝑖𝑗 = 2𝐺 (𝜀𝑖𝑗 +
𝑣

1 − 2𝑣
𝛿𝑖𝑗𝜀𝑘𝑘)  (2.14) 
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 Alternative form of the elastic stress-strain constitutive law in terms of a stress 

deviator is also presented as follows: 

 
𝜀𝑖𝑗

𝑒 =
1

𝐸
[(1 + 𝑣)𝑠𝑖𝑗 + (

1 − 2𝑣

3
) 𝛿𝑖𝑗𝜎𝑘𝑘] (2.15) 

 

2.1.4 Plane States of Stress and Strain 

 Plane states of stress and strain are frequently used in engineering problems to 

simplify the problems without the need to consider a full three-dimensional case. With 

such feature, the two-dimensional idealisation concept ca-n be adopted in a finite 

element analysis to simplify a complex model. 

 Plane stress concept can be visualized by considering a thin plate loaded by 

force as shown in Figure 2.3. The thin plate has dimensions such that the dimensions 

in the 𝑥1, 𝑥2 direction are much greater than the dimension in the 𝑥3 direction. The 

applied force is distributed uniformly across the boundary of the plate, so that there is 

no variation of the dimensions with respect to 𝑥3 . As a result, the stresses in 𝑥3 

direction have negligible order of magnitude and thus can be assumed as zero. Such 

state is defined as a generalized plane stress. The stress components in 𝑥1  and 𝑥2 

direction can only vary slightly while the stress components in 𝑥3 direction are: 

 
𝜎33 = 𝜎13 = 𝜎23 = 0 and 

𝜕𝜎𝑖𝑗

𝜕𝑥3
= 0   (𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠) (2.16) 
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Figure 2.3: Plane stress condition in a stretched thin plate. 

 

 In a plane strain condition, a simplification approach is taken when the 

dimension of a body in the 𝑥3 direction is very large compared to those in the 𝑥1, 𝑥2 

directions. Consider a long prismatic body is loaded such that the two ends are fixed 

between two rigid smooth planes. The forces are applied uniformly across the surface 

of body and acting in perpendicular to the longitudinal axis of the body (refer to Figure 

2.4). Also, the load is constant along the length in the 𝑥3 direction. Thus, there is no 

displacement gradient that occurred along the length of the prismatic body because the 

deformation is restricted within the 𝑥1 − 𝑥2  plane. Under such conditions, a 

generalized plain strain state can be achieved with all strain components in the 𝑥3 

direction are restrained and become zero. 

 𝜀33 = 𝜀13 = 𝜀23 = 0  (𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛) (2.17) 

By substituting 𝜀33 = 0 into equation (2.13) (c), the stress in 𝑥3 direction is written as: 

 𝜎33 = 𝑣(𝜎11 + 𝜎22) (2.18) 
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Figure 2.4: Plane strain condition in a loaded long prismatic body. 

  

 In a relatively thick solid block of material, when a load is applied, the plane 

state of stress and strain can coexist simultaneously. At the middle section of the 

material, as the material is constrained by the surrounding, the magnitude of 𝜀33 is 

vanishingly small, thus a plane strain state prevails. The middle section of the block 

also possesses the highest value of 𝜎33 but 𝜎33 gradually decreases from the middle 

section to the free surface. In this context, the value of 𝜎33 eventually becomes zero, 

leading to a plane stress state at the free surface. 

 

2.1.5 Yield Criterion 

 The definitive text for plasticity is given in (Hill, 1998). Unlike linear elastic 

behaviour, plasticity is usually associated with irreversible deformation once a body is 

loaded beyond its yielding point. Yielding of an isotropic body is not affected by the 

hydrostatic pressure or applied tension, but it depends on the principal components of 

the deviatoric stress tensor (Hill, 1998). The principal components of the deviatoric 

stress, 𝑆𝑖 can be expressed as functions of the stress invariants, 𝐽2 and 𝐽3 as below: 

 
𝐽2 =

1

2
(𝑆1

2 + 𝑆2
2 + 𝑆3

2) =
1

2
𝑠𝑖𝑗𝑠𝑖𝑗         (𝑎) 

𝐽3 =
1

3
(𝑆1

3 + 𝑆2
3 + 𝑆3

3) =
1

3
𝑠𝑖𝑗𝑠𝑗𝑘𝑠𝑘𝑖    (𝑏) 

(2.19) 
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where 𝑆𝑖  (𝑖 = 1,2,3) is the principal component of deviatoric stress and 𝑠𝑖𝑗  is the 

deviatoric stress. It is useful to describe the stress state using stress invariants, 𝐽2 and 

𝐽3 because their values are independent of coordinate systems selected. 

 The onset of plastic deformation can be described via two yielding criteria: 

Tresca yield criterion and von Mises yield criterion. For ductile materials, plasticity 

usually begins to develop as the crystal plane slips along the maximum shear stress 

surface. Therefore, the Tresca yield criterion states that yielding occurs when the 

maximum shear stress, 𝜏𝑚𝑎𝑥 exceeds the yield strength in shear, 𝑘. 

 𝜏𝑚𝑎𝑥 = 𝑘 =
𝜎0

2
= Maximum of |

𝜎1 − 𝜎2

2
| , |

𝜎2 − 𝜎3

2
| , |

𝜎3 − 𝜎1

2
| (2.20) 

where 𝜎1, 𝜎2 and 𝜎3 are the principal stresses with 𝜎1 ≥ 𝜎2 ≥ 𝜎3. 𝜎0 is the yield stress. 

The Tresca criterion shows that the yield strength in shear is one half of the yield stress. 

 The von Mises criterion suggests that the yielding starts when the distortional 

energy stored in an isotropic material reaches a critical value which can be expressed 

as the equivalent stress, 𝜎. 

 

𝜎 = √
1

2
[
(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎11)2

+3𝜎12
2 + 3𝜎23

2 + 3𝜎31
2 ] 

(2.21) 

 Mathematically, von Mises criterion can also be related to 𝐽2 stress invariant as 

follows: 

 𝜎 = √3𝐽2 
(2.22) 

By substituting equation (2.19) into (2.22), we can obtain 

 

𝜎 = √
3

2
𝑠𝑖𝑗𝑠𝑖𝑗 (2.23) 

Equation (2.23) shows a more compact form of equivalent stress in terms of the 

deviatoric stress. Also, when a ductile material is yielded under the von Mises 
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criterion, the 𝐽2 stress invariant is equivalent to the square of the yield stress in shear, 

𝑘2 (Hill, 1998). Therefore, equation (2.22) will become: 

 𝜎 = 𝜎0 = √3𝑘 
(2.24) 

 

2.1.6 Elastic-Plastic Constitutive Relation 

 In an isotropic body under uniaxial tension, the stress-strain relation varies 

linearly until the yielding commences as the stress level reaches the yielding stress, 

𝜎0. This implies that the total strain, 𝜀𝑖𝑗
𝑇  during the deformation can be decomposed 

into the elastic and plastic strain tensor as shown below: 

 𝜀𝑖𝑗
𝑇 = 𝜀𝑖𝑗

𝑒 + 𝜀𝑖𝑗
𝑝

 (2.25) 

Equation (2.25) can also be rewritten in an incremental form as: 

 𝑑𝜀𝑖𝑗
𝑇 = 𝑑𝜀𝑖𝑗

𝑒 + 𝑑𝜀𝑖𝑗
𝑝

 (2.26) 

Alternatively, equation (2.26) can be written compactly in terms of the 

deviatoric stress, 𝑠𝑖𝑗: 

 
𝑑𝜀𝑖𝑗

𝑇 =
1

𝐸
[(1 + 𝑣)𝑠𝑖𝑗 − (

1 − 2𝑣

3
) 𝛿𝑖𝑗𝜎𝑘𝑘] +

3

2
𝑑𝜀̅𝑝

𝑠𝑖𝑗

𝜎
 (2.27) 

where 𝑑𝜀̅𝑝 is the equivalent plastic strain increment and 𝜎 is the equivalent stress. The 

first term represents the elastic incremental strain tensor and second term is the plastic 

strain increment. Equation (2.27) describes the incremental plasticity by relating the 

stresses to the strain increments, where the history of strain must be considered. 

 Under von Mises criterion, the equivalent plastic strain increment, 𝑑𝜀 ̅𝑝 can be 

given as: 
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𝑑𝜀̅𝑝 = √
2

9
[
(𝑑𝜀11

𝑝 − 𝑑𝜀22
𝑝 )

2
+ (𝑑𝜀22

𝑝 − 𝑑𝜀33
𝑝 )

2
+ (𝑑𝜀33

𝑝 − 𝑑𝜀11
𝑝 )

2

+
1

3
(𝛾12

2 + 𝛾23
2 + 𝛾31

2)
] 

(2.28) 

and the equivalent plastic strain, 𝜀𝑖̅𝑗
𝑝

 can be computed by integrating the equivalent 

plastic strain increment as: 

 
𝜀̅𝑝 = ∫ 𝑑𝜀̅𝑝 (2.29) 

 Contrary to the incremental plasticity, the concept of deformation plasticity is 

proposed to relate the total stress to the total strain. In this context, the deformation 

plasticity approximates the plastic behavior using the non-linear elasticity. The 

deformation plasticity will be violated if the plastic deformation history involves an 

unloading process. To describe the deformation plasticity, the elastic modulus, 𝐸 in 

equation (2.13) can be replaced by the ratio of the equivalent stress to the equivalent 

strain, 𝜎/𝜀 ̅as: 

 
𝜀11 =

𝜀̅

𝜎
[𝜎11 − 𝑣(𝜎22 + 𝜎33)]     (𝑎) 

𝜀22 =
𝜀̅

𝜎
[𝜎22 − 𝑣(𝜎11 + 𝜎33)]      (𝑏) 

𝜀33 =
𝜀̅

𝜎
[𝜎33 − 𝑣(𝜎11 + 𝜎22)]       (𝑐) 

(2.30) 

In the plastic region, the stress-strain relationship can be approximated in the form of 

a power law as: 

 𝜀𝑝

𝜀0
= 𝛼 (

𝜎

𝜎0
)

𝑛

 (2.31) 

where 𝜎0  is the reference stress normally taken as the yield stress and 𝜀0  is the 

reference strain. 𝑛 is the strain hardening exponent and 𝛼 is a proportionality constant 

that depends on the material. The strain hardening exponent ranges from 1 to ∞, in 

which 𝑛 = 1 corresponds to a linear elastic material and 𝑛 = ∞ represents a rigidly 
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plastic material. Under deformation plasticity, the overall stress-strain relationship in 

uniaxial tension can be described by the Ramberg-Osgood relation, that is written as: 

 𝜀

𝜀0
=

𝜎

𝜎0
+ 𝛼 (

𝜎

𝜎0
)

𝑛

 (2.32) 

 These elastic-plastic constitutive relations are developed based on continuum 

approach, yet they are still relevant in the field of fracture mechanics. The small voids 

in a body grows, then coalescences to form a crack. When studying crack problems, 

the research interest usually focuses on the region surrounding the cracks, which is 

part of the considered continuum. The elastic-plastic constitutive relations are thus still 

valid in a cracked body, and they are fundamental to the theories of fracture mechanics 

as discussed in the following sections.  

 

2.2 Linear Elastic Fracture Mechanics (LEFM) 

 Linear Elastic Fracture Mechanics (LEFM) refers to the field of fracture 

mechanics that applied specifically for linear elastic materials. LEFM evaluates the 

crack tip field using two methods: energy analysis and stress analysis. The energy 

analysis of LEFM centred on discussing the energy release rate, 𝒢 and its relationship 

to 𝐾. In stress analysis of LEFM, the discussions are focused on the stress intensity 

factor, 𝐾 which forms the core principle in LEFM.  

 

2.2.1 Energy Based Approach 

(Griffith, 1920) employed the first law of thermodynamics in explaining the 

crack advance based on a mica with a brittle behaviour. It was stated that the crack 

propagation will occur only if the potential energy of a solid is sufficient to meet the 

energy requirement for creating a new crack surface. The resistance to fracture in the 
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mica was assumed mainly due to the surface energy. When the potential energy 

released upon a crack growth is sufficient to overcome the surface energy developed, 

the crack extends.  (Griffith, 1920) explained that there is always an equilibrium state 

attained between the potential energy and surface energy developed during the crack 

growth. The Griffith’s energy balance per unit increment of crack extension is defined 

as: 

 𝑑𝐸

𝑑𝑎
=

𝑑Π

𝑑𝑎
+

𝑑𝑊𝑠

𝑑𝑎
= 0 (2.33) 

where 𝐸  is the total energy. Π is the potential energy and 𝑊𝑠  represents the work 

required to create new crack surface.  

 Irwin continued working on Griffith’ s energy balance by suggesting a more 

convenient form of the energetic approach for the crack advance in (Irwin, 1956). 

Based on the expression developed by (Inglis, 1913), Irwin expressed the potential 

energy, Π in terms of stress as 

 
Π =

𝜋𝜎2𝑎2𝑡

𝐸′
 (2.34) 

where 𝐸′ is the Young’ s modulus, with 𝐸′ = 𝐸  for plane stress and 𝐸′ =
𝐸

1−𝑣2 for 

plane strain with 𝑣 as Poisson’ s ratio. By substituting equation (2.34) into (2.33), the 

energy balance can be expressed as: 

 𝑑Π

𝑑𝑎
=

𝑑𝑊𝑠

𝑑𝑎
 

2𝜋𝜎2𝑎𝑡

𝐸′
= 4𝑎𝑡𝛾𝑠 

(2.35) 

where 𝛾𝑠 is the surface energy per unit area. The critical stress for fracture to occur, 

𝜎𝑐𝑟 can thus be estimated as: 



 

21 
 

 

𝜎𝑐𝑟 = √
2𝛾𝑠𝐸′

𝜋𝑎
 (2.36) 

By taking Π as the potential energy in a plate of unit thickness, 𝑡, the amount 

of energy released to propagate a crack through unit distance 𝑑𝑎 can be denoted as 𝒢: 

 
𝒢 =

𝑑Π

𝑑𝑎
=

𝜋𝜎2𝑎

𝐸′
 (2.37) 

In this context, 𝒢 is referred as the crack driving force which provides a quantitative 

measurement of force required to overcome the crack resistance for each increment of 

𝑑𝑎.  

The applicability of Griffith energy principle on engineering structure was also 

discussed in the work of (Orowan, 1954). He emphasized that Griffith energy principle 

can only be applied if the plastic deformation is either absent or confined to a very tiny 

region such that the global behaviour of structure is still considered as linear elastic. 

To account for the plastic flow, Orowan modified the expression in equation (2.36) for 

fracture stress as: 

 

𝜎𝑐𝑟 = √
2(𝛾𝑠 + 𝛾𝑝)𝐸′

𝜋𝑎
 (2.38) 

where 𝛾𝑝 is the plastic work done per unit area of crack surface created.  

In short, Griffith energy principle is a measure of global behaviour restricted 

to elastic response, but it provides little information on the local crack zone, such as 

the local crack tip stress field.  

 

2.2.2 Stress Analysis of Cracks 

An initial discourse on the crack tip stress analysis was given in (Inglis, 1913). 

In this context, Inglis developed a mathematical solution to quantify the stress field 
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around an elliptical hole in an elastic center cracked panel subjected to uniaxial 

tension. The stresses at the tip point of an elliptical hole, 𝜎𝑡𝑖𝑝  with a major axis with 

a length of 2𝑎 and a minor axis with a length of 2𝑏 as shown in Figure 2.5 is expressed 

as: 

 
𝜎𝑡𝑖𝑝 = 𝜎𝑎𝑝𝑝 (1 +

2𝑎

𝑏
) 

(2.39) 

where 𝜎𝑎𝑝𝑝  is the applied stress and can be normalized into 𝜎𝑡𝑖𝑝/𝜎𝑎𝑝𝑝  as a stress 

concentration factor. As the major axis, a grows and becomes larger relative to the 

minor axis, b, the curvature radius of the elliptical hole, 𝜌 decreases and eventually 

takes the shape of a mathematically sharp crack. For this case, equation  (2.39) 

becomes  

 

𝜎𝑡𝑖𝑝 = 𝜎 (1 + 2√
𝑎

𝜌
) 

(2.40) 

where  

 
𝜌 =

𝑏2

𝑎
 (2.41) 

 

Figure 2.5: Elliptical hole in an infinite plate. 

 

 However, a paradox exists in Inglis’ solution as his solution will predict an 

infinite stress at the tip of a mathematically sharp crack. This would mean any material 
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containing a sharp crack would fail instantly at the moment of the application of 

infinitesimal load, which is impossible in the real-life structure containing cracks. This 

limitation motivates the work of Griffith who considered to use energy approach to 

predict the crack advance instead of a local stress as discussed in the earlier section 

2.2.1.  

Later, the stress distribution analysis around the crack was further improved by 

by (Westergaard, 1939). The presented solutions described the normal stress and 

shearing stress of various two-dimensional crack problems. The Westergaard plane 

strain stress field for a center crack in an infinite plate under a biaxial loading was 

defined as: 

 
𝜎11 =

𝜎𝑎𝑝𝑝√𝜋𝑎

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
(1 − 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
) (𝑎) 

𝜎22 =
𝜎𝑎𝑝𝑝√𝜋𝑎

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
(1 + 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
)  (𝑏)  

𝜎12 =
𝜎𝑎𝑝𝑝√𝜋𝑎

√2𝜋𝑟
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
             (𝑐) 

(𝑟 ≪ 𝑎) (2.42) 

where 𝑟 represents the radial distance from crack tip, 𝜃 is the angle measured in the 

counter clockwise from the crack tip and 𝑎 is the half crack length. The higher order 

terms are omitted from equation (2.42) as they become negligible compared to the 

leading terms as shown in the equation. The corresponding elastic stress fields to 

equation (2.42) are plotted in Figure 2.6. 
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Figure 2.6: The plane strain Westergaard crack tip stress fields for a center cracked 

infinite plate under a biaxial loading. 

 

2.2.3 Stress Intensity Factor, 𝑲 

 (Irwin, 1957) had generalized the Westergaard stress fields in equation (2.42) 

to be applicable to a wider range of cracked configurations by introducing a parameter 

denoted as 𝐾: 

Equation (2.43 is derived based on the assumption that in a loaded linear elastic 

material, it must undergo proportional stressing where all the stress components 

increase in proportion to the remotely applied stress, 𝜎𝑎𝑝𝑝. In this context, the crack 

tip stress can be related to 𝜎𝑎𝑝𝑝 by the parameter 𝐾 and thus an alternative form of 

Westergaard stress fields can be written as: 

 
𝜎𝑖𝑗(𝑟, 𝜃) =

𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) (2.44) 

where 𝑓𝑖𝑗(𝜃) is the angular stress function. In this context, 𝑓𝑖𝑗(𝜃) depends on the 

loading mode (refer to Figure 2.7). Under mode I loading, 𝑓𝑖𝑗(𝜃) is given as: 

𝑓𝑟𝑟(𝜃) =
5

4
cos (

𝜃

2
) −

1

4
cos (

3𝜃

2
)     (𝑎) 

(2.45) 
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 𝐾 = 𝜎𝑎𝑝𝑝√𝜋𝑎 (2.43) 


