
IIUM Engineering Journal, Vol. 18, No. 1, 2017 Ahmad et al. 

 

AIR POLLUTION INDEX PREDICTION USING 

MULTIPLE NEURAL NETWORKS 

ZAINAL AHMAD
1*, NAZIRA ANIZA RAHIM

2, ALIREZA BAHADORI
3
  

AND JIE ZHANG
4 

1School of Chemical Engineering, Engineering Campus,  

Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia. 
2River Basin Research Centre, National Hydraulic Research Institute of Malaysia,  

Lot 5377, Jalan Putra Permai, 43300 Seri Kembangan, Selangor, Malaysia. 
3School of Environment, Science and Engineering, Southern Cross University,  

Lismore, New South Wales, Australia. 
4School of Chemical Engineering and Advanced Materials, Newcastle University, 

Newcastle upon Tyne NE1 7RU, United Kingdom. 

*Corresponding author: chzahmad@usm.my 

 (Received: 25th May 2016; Accepted: 27th Sept. 2016; Published online: 30th May 2017)  

ABSTRACT: Air quality monitoring and forecasting tools are necessary for the purpose 

of taking precautionary measures against air pollution, such as reducing the effect of a 

predicted air pollution peak on the surrounding population and ecosystem. In this study a 

single Feed-forward Artificial Neural Network (FANN) is shown to be able to predict the 
Air Pollution Index (API) with a Mean Squared Error (MSE) and coefficient 

determination, R2, of 0.1856 and 0.7950 respectively. However, due to the non-robust 

nature of single FANN, a selective combination of Multiple Neural Networks (MNN) is 
introduced using backward elimination and a forward selection method. The results show 

that both selective combination methods can improve the robustness and performance of 

the API prediction with the MSE and R2 of 0.1614 and 0.8210 respectively. This clearly 

shows that it is possible to reduce the number of networks combined in MNN for API 
prediction, without losses of any information in terms of the performance of the final 

API prediction model.  

ABSTRAK: Pemantauan dan ramalan kualiti udara adalah perlu bagi mengambil langkah 
berjaga-jaga terhadap pencemaran udara, seperti untuk meramalkan mengurangkan kesan 

puncak pencemaran udara terhadap penduduk sekitar dan ekosistem.  Dalam kajian ini 

rangkaian tiruan tunggal neural suap depan (FANN) ditunjukkan masing-masing dapat 
meramalkan indek pencemaran udara (IPU) dengan purata ralat kuasa dua (MSE) dan 

pekali penentuan, R2, daripada 0.1856 dan 0.7950. Namun disebabkan oleh sifat tidak  

mantap FANN tunggal, gabungan terpilih pelbagai rangkaian neural (MNN) 

diperkenalkan dengan menggunakan penghapusan ke belakang dan kaedah pemilihan ke 
hadapan. Keputusan kajian menunjukkan bahawa kedua-dua kaedah gabungan terpilih 

boleh meningkatkan keteguhan dan prestasi ramalan API masing-masing dengan MSE 

dan R2 daripada 0.1614 dan 0.8210. Ini jelas menunjukkan bahawa ia adalah mungkin 
untuk mengurangkan bilangan rangkaian digabungkan dalam MNN untuk ramalan API, 

tanpa menjejaskan keupayaan mana-mana maklumat dari segi prestasi model ramalan 

akhir API. 

KEYWORDS: air pollution index;artificial neural networks; multiple neural networks; 
forward selection; backward elimination 
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1. INTRODUCTION  

Air quality is monitored continuously and manually to detect any changes in the 

ambient air quality status that may cause harm to human health or the environment. The 

Malaysian Department of Environment (DOE) monitors the ambient air quality via a 

network of 51 monitoring stations across Malaysia [1]. These monitoring stations are 

strategically located in residential, traffic, and industrial areas to detect any significant 

changes in the air quality which could be harmful to human health and the environment. 

The ambient air quality measurement in Malaysia is described in terms of the Air Pollutant 

Index (API), which is a simple way to describe and report the air quality instead of using 

the actual concentration of air pollutants. This API also reflects effects on human health, 

ranging from good to hazardous, and can be categorized according to its action criteria as 

specified in the National Haze Action Plan Malaysia. 

Efficient methods for the assessment of air quality are needed in order to establish 

mechanisms for managing pollutant concentration and preventing illness in health-

sensitive people. The criterion for good air quality varies with the kind of ecosystem and is 

established at different levels. Several methodologies for the assessment and monitoring of 

air pollutants have been implemented by organizations such as the Department of 

Environment (DOE) of Malaysia which has developed indexes for air quality. In response 

to this concern, several studies on air quality prediction using artificial neural networks 

have been done [2, 3]. Unlike other modelling techniques, artificial neural networks 

(ANN) make no prior assumptions concerning the data distribution and require no 

mechanistic knowledge. ANN is capable of modelling highly nonlinear relationships and 

can be trained to accurately generalize when presented with a new data set. An air quality 

prediction model based on neural networks had also been applied on a short-term and 

long-term basis. Viotti et al [4] has applied this prediction model to predict the vehicular 

air pollutant levels in the city of Perugia, Italy, while Sabri and Tarek [5] have applied it in 

the region of Annaba, Algeria. However, the latter have combined a radial basis function 

(RBF) network and multiple layer perceptron (MLP) in their model to predict the air 

pollutant concentrations. In addition to the emission sources, meteorological factors (wind 

speed and direction, temperature, precipitation and boundary layer heights), can govern 

the variability of atmospheric PM10 [6, 7] as well. In fact, urban and industrialized areas 

tend to record their highest PM10 concentrations under stable meteorological conditions 

coupled with thermal inversions or during long range transport events [8, 9] while the 

lowest readings tend to occur during windy and rainy periods [10]. Many researchers have 

studied the prediction of particulate matter concentration in the environment. Perez et al. 

[11] and Yan and Jian [12] have focused their study on the prediction of the PM2.5 

(particulate matter with a diameter smaller than 2.5 micrometers) concentration using an 

ANN model.  

Some of the researchers have developed an air quality prediction model based on 

neural networks with a multilayer perceptron structure. Gardner and Dorling [13] and 

Perez and Trier [14] have adopted this model to predict the NO and NO2 concentration 

based on meteorological data in Central London and traffic junctions in Santiago City in 

Chile respectively. They have also concluded that the MLP has better performance 

compared to their previously developed regression models. Feed-forward artificial neural 

networks (FANN) have also been applied by Sousa et al. [15] to predict hourly ozone 

concentration based on meteorological data while Ul-Saufie et al. [16] has applied it by 

combining with PCA to predict PM10 concentration in Negeri Sembilan, Malaysia. 

Cigizoglu and Kisi [17] have also applied FANN. Chelani et al. [18] have predicted SO2 

values at three sites in Delhi, India, using neural networks and compared the results with 
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those of multivariate regression models. Wind speed, wind direction index, relative 

humidity and temperature variables have been used as inputs for their developed recurrent 

neural network.  

Even though there were successes in many applications of ANN and considerably less 

restrictions on the environmental input data, large training data sets are usually required to 

improve the accuracy and minimize uncertainty in the output data, which up to now has 

been a significant disadvantage of these models. Gardner and Dorling [19] have reviewed 

the limitations and problems associated with the training of ANNs and emphasized that 

fundamental understanding of the basic theory is the key in developing ANNs. It is well 

known that a neural network can approximate any smooth nonlinear function between 

model inputs and outputs by selecting a suitable set of connecting weights and transfer 

functions [19]. Therefore in this paper, selective combination of multiple neural networks 

(MNN) is introduced to improve the single feed-forward neural artificial network (FANN) 

prediction for the API model as shown in Fig. 1 [20]. This paper is organized as follows: 

Section 2 presents the case study concerning the API sampling area and location in 

Malaysia. The concept of single FANN and MNN combination using FS and BE method 

are presented in Section 3. The results and discussions of the proposed MNN with 

selective combination are presented in Section 4. Finally, the last section concludes this 

paper. 

 
Fig. 1: Combining multiple neural networks. 

2.   CASE STUDY: PERAK AIR PULLUTION INDEX MONITORING 

STATIONS, MALAYSIA 

Most air quality data are obtained from air quality monitoring stations directly or 

through remote sensing instruments. Here, the air quality data from 4 monitoring stations 

around Perak State were collected by the Department of Environment (DOE), Malaysia, 

which is stationed at CA0020, CA0041, CA0045 and CA0046, as illustrated in Fig. 2. 

These Continuous Air Quality Monitoring (CAQM)-type monitoring stations, are 

strategically located in residential, traffic, and industrial areas to detect any significant 

changes in the air quality that may be harmful to human health and the environment [1]. 

The air quality data was recorded for 4 years, from 2006 to 2009 for eight variables. For 

the API modelling, variables involved are the concentrations of the air pollutants and 

meteorological variables, and are divided into groups of input and output variables for the 

FANN model. However for this study, 6 air pollutant inputs are selected for model 
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development as shown in Table 1. A total of 1388 samples were used for the modelling 

and analysis in this study and the raw data for the modelling of year 2006 is shown in Fig. 

3. 

 

Fig. 2: Perak air monitoring stations [1]. 

Table 1: Air quality variables for API modelling  

Input variables 

(average hourly) 

 Output variables 

 Ozone, O3 (mg/l) 

 Particulate matter with size less 

than 10 microns, PM10 (mg/l) 
 Carbon monoxide, CO (mg/l) 

 Wind speed (km/hr) 

 Air temperature (oC) 

 Relative humidity (%) 

 

API 

 

3.    FEED-FORWARD ARTIFICIAL NEURAL NETWORK MODEL 

DEVELOPMENT 

In this case study, an hourly average of 1388 data samples were taken from 

Malaysia’s Department of Environment database from year 2006 to year 2009. All the 

data was normalized to zero mean and unit standard deviation to cope with the different 

magnitudes in the input and output data. Then, the input data were divided randomly using 

the MatlabTM divideint command into three sets of data, namely 70% (972 samples) as 

training data, 15% (208 sample) as testing data, and 15% (208 samples) as unseen 

validation data. Then the individual networks were trained using the Levenberg-Marquardt 

optimization algorithm with regularization and “early stopping”. The networks are single 

hidden layer feed-forward neural networks (FANN). Hidden layer neurons use the 

logarithmic sigmoid activation function whereas output layer neurons use the linear 

activation  function.   In  this  study,   20  networks  with  fixed   identical   structure  were  
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Fig. 3: Raw data for input and output for FANN model prediction for year 2006. 

(a) Average wind speed, (b) Average ambient temperature, (c) Average relative humidity, 

(d) Average CO, (e) average PM10, (f) average O3, (g) API. 

developed from bootstrap re-samples of the original training and testing data. If the 

number of networks for combination is too small we might not get the optimum reduction 

of the MSE in the combination. In re-sampling the training and testing data, a bootstrap re-

sampling technique was applied where the training and testing data were first transformed 

into the discrete time functions, therefore re-sampling the discrete time data does not 

affect the input-output mapping of the models. The FANN is developed based on the 

discrete time of the process as the prediction output at time (t), y(t), is predicted based on 

the process inputs at time t, u(t), as follows: 
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where u(t) is the process input at time (t), y(t)is the predicted process output at time t, 

which is the API, and m is the number of the process inputs and for this case study is 6 as 

shown in Table 1. Then the forward selection (FS) and backward elimination (BE) 

approach combined with simple averaging method was developed. The FS and BE method 

was developed in our previous paper with the different application of the prediction [21].  

Generally, in FS, the individual networks are added one at a time to the aggregated 

network where when the network is combined or included in the aggregated network it 

will produces the greatest decrease in model prediction MSE. This process starts with an 

empty aggregated model and the first network to be chosen in the aggregated network is 

the single network that has the least MSE in training and testing data or what we call the 

best individual network. The second network added is the one, when combined with the 

first added network, produces the largest reduction in MSE on the original training and 

testing data. This procedure is repeated until the MSE on the training and testing data 

cannot be further reduced by adding more networks. 

On the other hand, in the BE, the aggregated network begins with combining all the 

individual networks in the pool of networks and removes one network at a time until the 

MSE on the training and testing data cannot be further reduced. The network deleted at 

each step is selected such that its deletion results in the largest reduction in the aggregated 

network MSE on the training and testing data. The detailed procedures for the FS and BE 

method can be found in [21]. The simple average method is used in combining the 

selected networks in both approaches as shown in Eqn. (2) where, if all n networks are 

combined, the aggregated network output is: 





n

i

iY
n

Y
1

ˆ1ˆ   (2) 

The performances of the actual and predicted models are based on the MSE and 

coefficient determination, R2. The advantages of using the MSE include its easy 

calculation and that it penalizes large errors in each observation. Therefore the average 

sum square error in each sample observation is able to determine the quality of the 

prediction of the model. On the other hand, the R2 provides the inconsistency measure of 

the data reproduced or predicted and the fitness of the model to capture the actual process. 

The higher the values of R2, or closest to 1, and the smallest of the MSE, or closest to zero, 

the better the model. 

4.   RESULTS AND DISCUSSION 

The inputs of these network models are the hourly average of carbon monoxide, wind 

speed, air temperature, relative humidity, PM10 and O3 and their output is the API values 

as shown in Eqn. (1). The single FANN network with a single hidden layer was applied 

with the Levenberg-Marquardt training algorithm with a sigmoid activation function in the 

hidden layer and a linear activation function in the output layer. The structure of the single 

FANN is represented by the number of nodes in each layer. The number of nodes in the 

input layer is 6, which represents the input variables, while the outer layer has only one 

node representing one model output variable. However, the fitted model was assured by 

the number of nodes in the hidden layer. 

Therefore, the determination of the number of nodes in the hidden layer was carried 

out by calculating the MSE for the combination of training and testing data. The number 

of nodes in the hidden layer was varied between 1 and 20 in order to find the “best” 

number of nodes for the model. Figure 4 shows the performance of the model prediction 
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with different numbers of nodes in the hidden layer. The lowest MSE value on the 

combination of the training and testing data was 0.1652, recorded by the model with 9 

hidden nodes in the hidden layer. Thus, the network with 9 hidden nodes was selected as 

the final model structure or network architecture, i.e. the topology of the network is 6-9-1. 

     

 

Fig. 4: MSE on the training and testing data with different numbers of hidden nodes. 

Figure 5 shows the neural network model prediction performances on the training and 

testing data. In Figure 4, the solid lines represent the scaled true values of API and the 

dotted lines represent the model predictions. It can be seen that the predicted values are 

very close to the actual values for both sets of data. The MSE and the R2 for training and 

testing data are 0.1988, 0.1613 and 0.7962, 0.8257 respectively. Figure 6 shows the model 

prediction performance on the unseen validation data from the single FANN. In Fig. 6, the 

scaled true values of API are represented by the solid line while the model predictions are 

represented by the dotted line. The single FANN model clearly emulates the patterns of 

process accurately on the unseen validation data. The MSE and the R2 values on the 

unseen validation data are 0.1856 and 0.7950 respectively. Figure 6 clearly shows that the 

predicted and the actual values are close to each other. Thus, it showed in the intricate 

model that the API process can be modelled and generalized quite well using single 

FANN.  

However, even though single FANN is shown to be able to predict the API quite 

accurately, single FANN models sometimes lack robustness as shown in Fig. 7a and 7b. 

Single FANNs sometimes suffer badly when applied to unseen data where some neural 

network might fail to deliver the correct result due to the network training converged to 

undesired local minima or over-fitting of noise in the actual data. In Fig. 7a, one of the 

best  single   FANNs   in  training   and   testing  data  was   network   number  14   but  its  
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Fig. 5: Actual and predicted values for training and testing data. 

 
Fig. 6: Actual and predicted values on the unseen validation data from single FANN. 

performance on the unseen data was not among the best. Figure 7b shows that the best 

network on unseen validation data is network number 7, but its performance on the 

training and testing data is not among the best at all. There is no guarantee that the best 

model on the training and testing data will be the best on the unseen data. Therefore the 

combination of multiple neural networks is proposed in this study with the aim of 

enhancing the neural network robustness on unseen data. 
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Fig. 7: MSE for single FANN. 

(a) MSE for Training and Testing data, (b) MSE for Validation data. 

 
Fig. 8: MSE for aggregated multiple neural networks on the unseen validation data  

for BE and FS approaches. 

Figure 8 shows the multiple neural network performance using selective combinations 

with BE and FS methods. The performance of aggregated networks on training and testing 

data is consistent with the performance on the unseen validation data for both select ive 
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combination methods. The reduction of MSE in training and testing data for BE and FS 

combinations are consistent with the reduction of MSE in the unseen/validation data. It 

shows the robustness of the proposed modelling techniques as compared to the single 

FANN where the best network performance in training and testing data will not guarantee 

the best performance in the unseen validation data. The numbers of networks for the final 

combination are reduced to 3 networks for both methods which show the minimum MSE 

in Training and testing data that also correspond to MSE in validation data. The final 

result analysis is shown in Table 2. In this particular case, the FS and BE approaches led to 

the same individual networks being combined. Even though the number of networks 

combined was quite small for both selective methods, the most important thing is that both 

combination approaches perform better than the single FANN.  

Table 2: Statistical Analysis of MNN performance on the unseen validation data  

 Number of networks 
combined 

MSE R2 

Single FANN 1 0.1856 0.7950 

Combined all MNN 20 0.1649 0.8170 

FS Aggregated MNN 3 (12,15,20) 0.1635 0.8200 

BE Aggregated MNN 3 (12,15,20) 0.1635 0.8200 

As for comparison, Azid et al. [22, 23] did carry out API modelling for the Southern 

region of Malaysia with 2 different sets of data containing 202,050 and 232,505 

observations respectively. In [22] the input was reduced to 10 from 12 possible inputs with 

the R2 and RMSE of 0.724 and 7.562 for unseen validation data respectively. On the other 

hand, in [23], the input was reduced to 5 from a possible 8 with the R2 and RMSE of 0.618 

and 10.017 for unseen data respectively. Therefore, the MNN did perform better than the 

[22] and [23] API modelling for Malaysia as shown in Table 2 with the R2 and RMSE of 

0.8200 and 0.160 for unseen validation data respectively. This performance was obtained 

with fewer sample data (1388 observations) as compared in [22] and [23].  

5.   CONCLUSION 

This study proposes single FANN and multiple neural networks to model API based 

on the environmental monitoring data to get reliable and fast API predictions in order to 

mitigate the problems related to API. The single FANN does model the API quite well 

with relatively small MSE and high R2 values on the unseen data. However, in order to 

overcome the non-robust nature of single FANN, multiple neural networks are proposed 

with two selective combination methods. Both selective combination methods further 

improve the model prediction as compared to single FANN and combining all networks. 

This clearly shows that it is possible to reduce the number of networks combined for the 

API prediction without losses in performance. 
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NOMENCLATURE  

ANN Artificial Neural Network     - 

API Air Pollution Index      - 

BE Backward Elimination    - 

CO carbon monoxide     mg/l 

FANN Feed-forward Artificial Neural Network  - 

FS  Forward Selection     - 

MLP Multi-Layer Perceptron    - 

MNN Multiple Neural Networks    - 

MSE Mean sum square error     - 

n  Number of networks combined   - 

NO Nitrogen monoxide     mg/l 

NO2 Nitrogen Oxide     mg/l 

O3  Ozone       mg/l 

PCA Principle Component Analysis   - 

PM10 Concentration of particulate matter with a  

size less than 10 microns    mg/l 

PM2.5 Concentration of particulate matter with a 

size less than 2.5 microns    mg/l 

R2  Coefficient determination    g/mol 

X  Input data      - 

X̂  Input data after resampling    - 

Y  Output data       -  

Ŷ  Network Prediction Output     - 

 

Subscript 

i  Number of network 
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