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ANALISIS KUANTITATIF JIRIM PUTIH OTAK  
MENGGUNAKAN PENGIMEJAN TENSOR DIFUSI  

 

ABSTRAK 

 

Penyelidikan ini mengenai aplikasi pengimejan tensor difusi (DTI) dalam kajian 

tentang leukoaraiosis dan jirim putih normal. Empat objektif utama yang telah 

digariskan dalam kajian ini telah tercapai. Sebuah fantom kepala telah digunakan dan 

sejumlah 15 subjek normal dan 51 subjek leukoaraiosis telah mengambil bahagian 

dalam kajian ini. Sejumlah 5128 hirisan telah dianalisis dalam kerja ini. Pengimejan 

otak telah dijalankan menggunakan sistem pengimejan resonan magnet (MRI) 1.5 

Tesla. 

 Keupayaan mendapatkan data DTI dan membina trektografi gentian untuk 

kajian leukoaraiosis telah dikaji. Hasil yang didapati menunjukkan kebolehan DTI 

untuk membezakan leukoaraiosis daripada jirim putih normal. Trektografi gentian 

telah menunjukkan perbezaan struktur yang jelas bagi gentian saraf dalam kawasan 

jirim putih. Dapat disimpulkan data DTI dan pembinaan trektografi gentian untuk 

penilaian leukoaraiosis didapati boleh dilaksanakan. 

Gabungan optimum peleraian saiz voksel dan nilai b untuk pengimejan 

seluruh otak juga telah dapat ditentukan. Enam protokol yang terdiri daripada 

gabungan pelbagai saiz voksel dan nilai b telah dinilai. Pengukuran nisbah isyarat-

hingar (SNR) dan indeks parameter DTI telah dijalankan bagi kedua-dua kajian 

fantom dan in vivo. Protokol dengan saiz voksel 2.5 × 2.5 × 2.5 mm3 telah didapati 

memberikan nilai SNR yang diperlukan, iaitu sekurang-kurangnya 20. Gabungan 

parameter yang optimum ialah saiz voxel 2.5 × 2.5 × 2.5 mm3 dengan nilai b 700 

s/mm2. 
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Penilaian leukoaraiosis (LA) di dalam kawasan yang berbeza menggunakan 

nilai-nilai difusi min (MD) dan anisotropi pecahan (FA) telah dijalankan. Nilai MD 

dan FA telah dibandingkan dengan tisu otak yang kelihatan normal (NABT) yang 

diukur daripada subjek leukoaraiosis dan tisu otak normal (CONTROL) yang diukur 

daripada subjek kawalan yang sihat. LA didapati menunjukkan nilai-nilai MD lebih 

tinggi dan FA lebih rendah secara signifikan berbanding NABT pada kawasan jirim 

putih frontal dan oksipital. Tiada perbezaan ditemui bagi MD dan FA antara NABT 

dan CONTROL pada semua kawasan jirim putih dan kelabu. Daripada kajian 

trektografi gentian, didapati bahawa terdapat pengurangan yang besar jumlah gentian 

saraf subjek leukoaraiosis berbanding subjek normal. 

Pencirian leukoaraiosis telah dijalankan menggunakan nisbah lesi-jirim putih 

yang kelihatan normal (LNR). Kaedah ini dicadangkan buat kali pertama. Satu 

pendekatan baru yang lain ialah pengukuran isipadu lesi pada setiap tompokan lesi 

secara khusus. Perkaitan antara LNR dan isipadu lesi didapati tiada kaitan antara 

keduanya. Di sini dicadangkan bahawa tahap kerosakan tisu tidak berkait dengan 

saiz lesi.  
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QUANTITATIVE ANALYSIS OF BRAIN WHITE MATTER  
USING DIFFUSION TENSOR IMAGING 

 

ABSTRACT 

 

This research is concerned with the application of diffusion tensor imaging (DTI) in 

the study of leukoaraiosis and normal white matter. Four main objectives outlined in 

the study have been achieved. A head phantom was used and a total of 15 normal 

subjects and 51 leukoaraiosis subjects participated in the study. A total of 5128 slices 

were analysed in this work. Brain imaging was performed using 1.5 Tesla MRI 

system. 

Feasibility of acquiring DTI data and constructing fiber tracts for 

leukoaraiosis study was investigated. Results obtained showed capability of DTI to 

distinguish leukoaraiosis from normal white matter. Fiber tractography exhibited a 

good structural differentiation of nerve fibers in the white matter region. Acquiring 

DTI data and constructing fiber tractography for assessment of leukoaraiosis was 

found to be feasible. 

Optimum combination of voxel size resolution and b-value for the whole 

brain imaging has also been determined. Six protocols which consist of the 

combination of various voxel size and b-value were evaluated. Measurement of 

signal-to-noise ratio (SNR) and DTI parameter indices was carried out for both 

phantom and in-vivo studies. It was found that protocols with voxel 2.5 × 2.5 × 2.5 

mm3 give the desired SNR of at least 20. The optimal combination of parameters are 

the voxel size of 2.5 × 2.5 × 2.5 mm3 with b-value of 700 s/mm2. 

Assessment of leukoaraosis (LA) at different region in the brain using mean 

diffusivity (MD) and fractional anisotropy (FA) values were carried out. The MD 
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and FA values were compared with that of measured at normal appearing brain tissue 

(NABT) from leukoaraiosis subjects and normal brain tissue (CONTROL) from 

healthy subjects. It was found that LA demonstrated a significantly higher MD and 

lower FA as compared to NABT in frontal and occipital white matter areas. No 

differences were noted in MD and FA with regard to all white and grey matter 

regions between NABT and CONTROL categories. From fibre tractography it was 

also found that there is major reduction in the number of neural fibres in 

leukoaraiosis subject as compared to normal subject. 

Characterization of leukoaraiosis was performed using lesion-to-normal 

appearing white matter ratio (LNR). This method is proposed for the first time. 

Another new approach is measurement of lesion volume at each specific lesion spot. 

Correlation between LNR and lesion volume indicated that LNR is not associated 

with the lesion volume. Therefore, it is suggested that the degree of tissue destruction 

is not associated with size of the lesion. 
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CHAPTER 1 

INTRODUCTION 

 

1.1   Motivation 

The advent of advanced magnetic resonance imaging (MRI) techniques, particularly 

diffusion imaging has opened up new vista for more research to be done in order to 

understand how human brain works. Diffusion weighted imaging (DWI), 

subsequently diffusion tensor imaging (DTI) is an MRI technique that detects and 

measures mobility of water molecules in biological cells. DWI is the conventional 

technique in diffusion imaging in which it measures the mobility of water molecules 

in only one direction. While DTI is the advanced technique that measures the 

mobility of water molecules in many directions and at least in the three orthogonal 

planes i.e. x, y, and z. The physical basis underlying diffusion imaging techniques is 

described in detail in Chapter 2. 

The advantage of DTI over the other conventional MRI techniques is that it 

offers useful quantitative information via its specific parameter indices. Such 

parameter includes mean diffusivity (MD) which gives information on the degree of 

movement of water molecules at a region of interest, and fractional anisotropy (FA) 

which quantifies the degree of directionality of water movement at that particular 

region. Also, a unique advantage of DTI is that it allows reconstruction of cerebral 

nerve fibre tracts through a method called fibre tractography. Via fibre tractography 

method, visualization of the cerebral nerve fibres is available noninvasively. The 

emergence of this specific technique permits better understanding of brain neural 



2 
 

architecture thus aids in investigation of various brain and especially neurological 

diseases.  

At Advanced Medical and Dental Institute University Sains Malaysia (AMDI 

– USM), a pharmacological study on white matter lesion, specifically leukoaraiosis 

has been carried out. Researchers assessed the neuroprotective effects of tocotrienol 

vitamin E intake on leukoaraiosis. Evaluation of lesions progression was carried out 

using standard MRI protocols (Magosso, 2012). In the current study, DTI is used for 

the assessment of leukoaraiosis. The assessment includes characterization of 

leukoaraiosis at specific region using information derived from DTI maps.  Fibre 

tractography was also performed to investigate the structure of several nerve fibres at 

leukoaraiosis region. It is hoped that all information obtained in this study will be 

able to provide new insights into the condition of normal white matter and 

leukoaraiosis tissue in human brain. 

 

1.2   Research problems 

Since DTI is rather new in Malaysia, feasibility of acquiring DTI data using 1.5 T 

MRI system and constructing the parametric maps and fibre tractography need to be 

investigated. Furthermore, the capability of the MRI system to produce results that 

could distinguish leukoaraiosis from healthy white matter also needs to be evaluated.  

Subsequently, since there are no standard DTI protocols, optimization of 

imaging protocols is necessary to ensure the acceptibility of results. Optimal imaging 

parameters need to be determined where the particular parameters will then be used 

for new DTI scans and assessments of leukoaraiosis quantitatively. 
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As a matter of fact, MD values are quite similar between different regions in 

the normal human brain. However, FA varies across different regions due to different 

nerve fibre architecture in the brain. Therefore, assessment of leukoaraiosis must take 

into account the region where the leukoaraiosis is located. In the next part of this 

study, DTI parameter values are measured at leukoaraiosis areas as well as normal 

appearing white matter (NAWM) at various regions in the brain. 

Since the growth of leukoaraiosis is influenced by various risk factors and 

mechanisms, it is assumed that severity of tissue damage at different region is not 

similar, therefore giving various DTI values for different lesions across the brain.  

Severity of leukoaraiosis is normally assessed using visual rating scale based 

on the degree and distribution of the lesions (Fazekas et al., 1987; Scheltens et al., 

1993; Manolio et al., 1994; Scheltens et al., 1998; Wahlund et al., 2001; Pantoni et 

al., 2002). Some studies defined severity based on volumetric assessment (Silbert et 

al., 2008; Wright et al., 2008; Rossi et al., 2010). However, a question rose 

concerning whether total volume really represents the real condition of tissue 

destruction (Ropele et al., 2009). In the final part of the study, characterization of 

leukoaraiosis is done using lesion-to-normal appearing white matter ratio (LNR) 

index in which level of tissue destruction is assessed by comparing the MD values at 

leukoaraiosis region with the normal tissues within the same brain. This study will 

analyse the correlation between LNR and size of lesion and to investigate white 

matter integrity in brain with many small lesions and those with few big lesions. 

 

 

 



4 
 

1.3   Objectives 

The specific objectives of the study are: 

i. To evaluate the feasibility of acquiring DTI data using 1.5 T MRI and 

constructing the parametric maps and fiber tractography. It is also to determine 

the optimal DTI image acquisition parameters for the whole brain imaging. 

ii. To assess leukoaraosis at different region in the brain using MD and FA values 

as well as to compare those values with that of measured in normal appearing 

brain tissue from leukoaraiosis subjects and normal brain tissue from healthy 

control subjects. 

iii. To characterize leukoaraiosis at specific lesion spot using LNR and to correlate 

the findings with lesion volume. It is also to compare LNR of each lesion spot 

in subjects with many small lesions with that of few big lesions. 

 

In general, many aspects of DTI technique need to be explored extensively in 

imaging of brain white matter. The outcome of this study is expected to provide 

better comprehension on human white matter, particularly leukoaraiosis, which is 

believed to be precursor to a disease (Kuller et al., 2004; Smith et al., 2010), and 

hence will help in better diagnosis and prognosis of the abnormality. 

 

1.4   Scope of research 

This study focused mainly on the technical aspects of DTI. Exploration of this new 

tool encompassed evaluation of the capability of the MRI scanner itself as well as the 

acquisition parameters that may influence the image quality. Second major focus of 

this study is on quantitative analysis of brain white matter and leukoaraiosis. The 
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main interest of this research is to assess the condition of the white matter using DTI 

parameter indices, i.e. MD and FA and comparing it with normal brain tissue. This 

study tried to assess specifically each lesion spot in every individual subject and the 

quantitative values measured from them. In order to evaluate the degree of tissue 

destruction, LNR is used. Correlation between LNR with leukoaraiosis volume was 

also examined. However, correlating the parameter indices with the visual rating 

scale, which is normally done on fluid attenuated inversion recovery (FLAIR) image 

or any cognitive performance assessment scale is not included in this study.  

 

1.5   Outline of the thesis 

This thesis is organized according to its four specific objectives, as explained below: 

Chapter 2 describes the physical and biological basis underlying diffusion 

imaging. In this chapter, the physical principles of diffusion imaging are explained in 

details. Brief information on the brain white matter, specifically the axons is also 

covered. 

The first part of the thesis, which encompasses the work on technical aspects 

are presented in Chapters 3 and 4. These two chapters represent the first objective of 

the thesis. Chapter 3 elaborates the work on feasibility study while Chapter 4 

presents the work on optimization of the image acquisition parameters. In this 

chapter, the influence of either MRI or DTI-specific acquisition parameters on DTI 

image quality and its parametric maps is described in depth.  

The second part of this thesis, which comprises the work on quantitative 

analyses are included in Chapters 5 and 6. In Chapter 5, DTI measurement of 
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leukoaraiosis and normal white matter at various brain regions are explained rather 

comprehensively. Chapter 5 corresponds to the third objective of the thesis whereas 

Chapter 6 covers the final objective. Chapter 6 describes the work on assessment of 

degree of tissue destruction using LNR and their association with the lesion volume. 

White matter integrity in subjects with many small lesions as compared to those with 

few big lesions are evaluated and described thoroughly in this particular chapter. 

Finally, Chapter 7 presents the significance of this study, conclusion, and 

recommendation for future work.  
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CHAPTER 2 

DIFFUSION TENSOR IMAGING AND TRACTOGRAPHY OF THE BRAIN 

 

2.1   Brain white matter 

2.1.1   Axons in brain white matter 

Human brain is one of the most important structures in the central nervous system 

(CNS). It comprises of mainly a thick layer of neural tissues called cerebrum or 

cerebral cortex. Two main structures that form the cerebral cortex are grey matter 

and white matter. Besides, there are about 100 billion neurons in the cerebral cortex.  

A neuron consists of its cell body, axon, as well as axon terminals and 

dendrites as neurotransmitter and receiver, respectively as depicted in Fig. 2.1 (a). 

The neuron’s cell body lies in the grey matter area whereas its axon and the glial 

cells are in the white matter area. Axons are in size of as short as one millimetre to as 

long as more than one metre long, enabling them to play an important role in 

connecting different areas of the brain and various parts in the whole CNS (“Nervous 

system”, 2014).  

Furthermore, axons also remain in parallel arrangement and close to each 

other forming nerve fibre bundles. These fibre bundles are mostly organized in one 

direction connecting various parts of the white matter areas e.g. corpus callosum 

fibre bundles connecting right and left cerebral hemispheres (Wakana et al., 2004), or 

cingulum fibre bundle that connects the frontal lobe with the precuneus, posterior 

cingulate cortex, hippocampus, and parahippocampus (van den Heuvel et al., 2008). 

The organized formation of the nerve fibre bundles is the main factor that determines 
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diffusion anisotropy i.e. the directional movement of molecular diffusion in the white 

matter.  

 

Fig. 2.1 Structure of (a) a neural cell (Brookshire, 2006) and (b) the cytoskeleton 
within the axon that hinders diffusion perpendicular to the axonal membrane and 
facilitates parallel diffusion i.e. along the axon (Beaulieu, 2009, p. 107). 
 

2.1.2   Sources of diffusion anisotropy 

It has been reported elsewhere that in the grey matter diffusion is mainly “isotropic” 

i.e. water molecules moves randomly, while in the white matter, on the other hand, it 

was found mostly “anisotropic” i.e. water tend to move in a particular direction 

(Winston, 2012; Moseley et al., 1990). Sources of diffusion anisotropy were believed 

to be due to several factors particularly axonal membranes and its diameter, Myelin 

sheath, and cytoskeleton (Beaulieu, 2009).  

Diameter of axons is typically in range of 0.2 to 20 μm and varies between 

myelinated and unmyelinated axons. It was also described that anisotropy also occurs 

in unmyelinated axons suggesting that the axonal membranes itself contribute to 
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anisotropic diffusion. Furthermore, the diameter and proportion of myelinated axons 

also influence the axonal packing densities (Winston, 2012; Beaulieu, 2009; Edgar 

and Griffiths, 2009).  

Within the axons are submicroscopic structures called cytoskeleton (Fig. 2.1 

b). Cytoskeleton comprises of microtubules, microfilaments, and neurofilaments, 

each of which are in diameter sizes of nanometer (nm). These structures contribute to 

anisotropy by means of hindering perpendicular diffusion and facilitating parallel 

diffusion (Winston, 2012; Beaulieu, 2009; Edgar and Griffiths, 2009).  

Besides that, axons in the CNS are enveloped by Myelin sheath, a cover made 

up of multiple layers of alternating lipid and protein structures. Myelin goes through 

some significant changes over the long-term of age (Edgar and Griffiths, 2009; 

Wozniak and Lim, 2006; Barkovich, 2000). Additionally, Myelin sheath also 

influences diffusion via its varying thickness and density contributing to different 

degree of hindrance to perpendicular diffusion (Winston, 2012; Beaulieu, 2009; 

Gulani et al., 2001).   

 

2.2   Principles of diffusion imaging 

Diffusion images are usually acquired using Stejskal-Tanner sequence or also known 

as pulsed gradient spin echo method. The sequence is added to spin echo EPI 

sequence in which data images are acquired from single echo train, hence permits 

very fast data acquisition (Fig. 2.2). In single-shot EPI for example, series of images 

could be obtained after sending in only a single radio frequency (RF) pulse 

(Poustchi-Amin et al., 2001; McRobbie et al., 2006a).  
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Using Stejskal-Tanner sequence, 90° and 180° RF pulses are applied and a 

symmetric pair of equal diffusion sensitizing gradient pulses is sent in on both sides 

of the 180° refocusing pulse (Fig. 2.2). If there is no water movement during and 

between the two gradients, the proton spins rephase completely. Conversely, if water 

molecules move, an incomplete rephasing of proton spins causes the echo amplitude 

to be attenuated exponentially, thus signal loss occurs. Then, the diffusion constant is 

measured from the amount of signal loss (Roberts and Schwartz, 2007; Mukherjee et 

al. 2008a; Mohd Taib, 2010).  

Signal intensity at each pixel is weighted by proton density, longitudinal 

relaxation time (T1), transversal relaxation time (T2), and diffusion properties of 

water molecules in the pixel (Mori, 2007a). Suppose a very long repetition time (TR) 

is used, thus T1 weighting is negligible therefore the signal intensity of the image is 

described by Eq. 2.1: 

 (2.1) 

where  is the signal intensity of the image,  is the proton density,  is echo 

time, and  is transversal relaxation time. By simplifying the term  as o, 

the signal attenuation could be described as: 

 (2.2) 

where  and o are the signal intensities with and without diffusion-weighting, 

respectively. Signal intensities without diffusion-weighting, i.e. b ≈ 0 s/mm2 is also 

called T2-weighted images or nondiffusion-weighted images or bo images.  is the 

diffusion coefficient (in mm2/s) and  is the b-value (in s/mm2) (Mori, 2007a). b-

value is a scalar characterizing the diffusion sensitizing gradient applied during the 

scan and is depicted via Eq. 2.3.   
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 (2.3) 

where  is the gyromagnetic ratio (42.57 MHz/T for Hidrogen protons),  is the 

amplitude of the diffusion gradient (in mT/m),  is the duration of the gradient and  

is the period between the start of the diffusion gradient before and that after the 180° 

pulse.  and  are measured in millisecond (ms). Typically, gradient in z-direction, 

Gz (superior-inferior) is the slice selection gradient whereas that in y-direction, Gy 

(anterior-posterior) is the phase-encoding gradient, and that in x-direction, Gx (left-

right) is the readout gradient. The diffusion gradient, G can be applied along any 

directions or combination of directions x, y, and z (Fig. 2.2). 

 

Fig. 2.2 Schematic diagram of the Stejskal-Tanner sequence added to spin echo EPI 
sequence. The dotted lines denote continuation of the sequence for subsequent 
repetition time, TR (Modified from Alexander et al., 2007, p. 318). 
 

 In Eq. 2.1, the diffusion coefficient,  characterizes the average area that 

protons diffuse per unit time, for example self-diffusion of pure water at room 

temperature is 2.299 × 10-3 mm2/s (Holz et al., 2000). However, the diffusion 

coefficient is termed as Apparent Diffusion Coefficient (ADC) which takes into 

account the complexity of diffusion process in biological tissues (Moseley et al, 
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1990; Luypaert et al., 2001). The ADC values could be measured by acquiring two 

sets of images, specifically one with low b-value while another set with high b-value, 

i.e. the diffusion-weighted images. By fitting the respective b-value into Eq. 2.2 

yields: 

 (2.4) 

 (2.5) 

Ratio of Eq. 2.5 over Eq. 2.4 produces: 

 
(2.6) 

Then, solving for  gives: 

 
(2.7) 

 

2.3   Principles of diffusion tensor imaging 

2.3.1   Isotropic and anisotropic diffusion 

The coefficient  shown in Eq. 2.7 represents “isotropic diffusion” in which water 

molecules moves evenly (in random and incoherent motion) in any directions. In this 

case, diffusion gradient could be applied in any direction as the ADC of molecules is 

similar at all directions. Conversely, in a highly organized structure like neural fibre 

bundles in the brain white matter, diffusion of water molecules to direction 

perpendicular to the fibres pathway is hindered by cellular membranes. This type of 

diffusion is called “anisotropic diffusion” which represents restricted mobility of 

water molecules in a preferential direction that is along the fibres.  In this occasion, 



13 
 

diffusion gradient has to be applied in more than one direction in order to describe 

the anisotropic diffusion. 

One way to characterize the anisotropic diffusion is by using tensor operation 

(Basser et al., 1994). In this mathematical model, ADC in three-dimensional space is 

defined as: 

 (2.8) 

where  is the diffusion tensor while , , and  are the three orthogonal axes. 

Diagonalization of Eq. 2.8 yields: 

 (2.9) 

where ʹ is a new tensor while , , and  are the eigenvalues and , , and  

are the eigenvectors that correspond to each , , and , respectively.  

The eigenvalues defines the degree of diffusion whereas the eigenvectors 

illustrates the direction of diffusion in the sense that the largest eigenvector ( ) 

signifies the principle diffusion direction. In case of isotropic diffusion, the 

eigenvalues are almost equivalent, i.e.  ≈  ≈ . On the other hand, in condition 

where the diffusion is anisotropic, the eigenvalues are significantly different, e.g.   

>  >  (Alexander et al., 2007; Winston, 2012). The diffusion tensor model of 

isotropic and anisotropic diffusion could be visualized by a sphere and ellipsoid, 

respectively. In free water, movement of water molecules is unrestricted therefore the 

diffusion is equal in all directions and characterized by sphere model. In contrast, in 
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the presence of barrier, mobility of water molecules is restricted thus the diffusion is 

anisotropic and described by an ellipsoid (Fig. 2.3). 

 

 

Fig. 2.3 Illustration of isotropic and anisotropic diffusion (Winston, 2012, p. 258).    
 

 As ADC of isotropic diffusion (i.e.  in Eq. 2.7) can be estimated through 

simple linear regression, e.g. least-square fitting (Mori, 2007a), however, estimation 

of ADC for anisotropic diffusion (i.e. ' in Eq. 2.9) is performed using multivariate 

linear regression (Mori, 2007b). This could be achieved by acquiring seven sets of 

data images i.e. diffusion-weighted images along at least six different directions 

(measurement in three orthogonal axes) and one bo images (Mori, 2007c; Mukerjee 

et al., 2008a; Basser and Pierpaoli, 1998).  

2.3.2   DTI indices 

Main advantage of DTI compared to other MR techniques is it provides multiple 

scalar indices which have the ability to give structural informations at macro- and 

microscopic scale. Amongst scalar indices derived from DTI include Trace ( ), 

which is the sum of the three eigenvalues , , and . While mean diffusivity 

(MD) is computed as average of the three eigenvalues , , and  or equals to ⅓ of 

Trace ( ). Both indices describe the average diffusivity of water molecules within a 

voxel. Trace ( ) and MD are characterized by Eq. 2.10 and 2.11: 
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 (2.10) 

 (2.11) 

 

Whereas the indices that quantify the directionality of water molecules in a 

particular voxel are fractional anisotropy (FA) and relative anisotropy (RA), which 

are represented by Eq. 2.12 and 2.13:  

 (2.12) 

 (2.13) 

The indices vary from isotropic diffusion to greatest anisotropy in scale 0 to 1 and 0 

to √2 for FA and RA, respectively. FA maps are commonly depicted in red, green, 

and blue (RGB) colour-coded form which represents the main directions of water 

mobility (thus fibre directions) in a particular voxel. Red, green, and blue indicates 

diffusion in right-left (R-L), anterior-posterior (A-P), and superior-inferior (S-I) 

directions, respectively.  

Another index is volume ratio (VR) which measures the ratio between 

ellipsoid volume to sphere volume. Its values vary between 1 (isotropic diffusion) to 

0 (largest anisotropy). VR is described by Eq. 2.14: 

 (2.14) 

Quantification of DTI also takes into account of the axial and radial diffusivity which 

corresponds to  itself as well as mean of , and , respectively. The axial 

diffusivity,  and radial diffusivity,  (Eq. 2.15) stands for ADC in the direction 
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parallel and perpendicular to the fibres in each voxel, respectively. Both indices are 

specific markers for characterizing the condition of axon and myelin of the neuronal 

fibres (Pierpaoli and Basser, 1996; Song et al., 2002). However, measurement and 

interpretation of these indices should be complemented by detailed analysis on the 

mathematical and geometrical properties of the tensor ellipsoids (Wheeler-Kingshott 

and Cercignani, 2009). 

 (2.15) 

Among all scalar indices, the most frequently used for general assessment of 

white matter integrity are MD and FA (Xiang-qing et al., 2010; Gons et al., 2011; 

Lochner et al., 2012) while the rest are used for other detailed analysis (Kraus et al., 

2007; Chen et al., 2012). An example of DTI parametric maps are shown in Fig. 2.4. 

 

Fig. 2.4 An example of bo, principle diffusivities (λ1, λ2, λ3), Trace ( ), radial 
diffusivity ( , MD, and colour coded FA maps as obtained from this work. 
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2.4   Fibre tractography 

Besides offering various quantitative informations, DTI also permits visualization of 

neuronal fibers in three dimensional forms through methods called fiber tractography 

as obtained from this work and is shown in Fig. 2.5. In Fig. 2.5 fibre tractography is 

presented according to the standard RGB colour coding scheme of the FA map, as 

described in Section 2.4.2. Specifically, red, green, and blue denotes neuron fibres in 

R-L, A-P, and S-I directions, respectively.  

Recently, there are two methods used to construct the fiber tracts specifically 

deterministic (Conturo et al., 1999; Mori et al., 1999) and probabilistic (Parker et al., 

2003; Lazar and Alexander, 2003; Jones and Pierpaoli, 2005). The former method is 

based on line propagation technique in which principle diffusion direction is used to 

propagate direction for each voxel. The latter method is based on global energy 

minimization technique. This technique involves a process that find the most 

probable pathway between two predetermined voxels until it reach a threshold i.e. the 

minimum allowable tensor anisotropy (Mori and Zijl, 2002; Masutani et al., 2003).  

Fiber tractography has opened up new vistas for better understanding of the 

underlying neural circuitry and interrelationship between various areas in both 

normal (Dougherty et al., 2007; Nucifora et al., 2007; Johansen-Berg and Rushworth, 

2009; Yasmin et al., 2009; Charlton et al., 2010;) and diseased brain (Singh et al., 

2010; Shu et al., 2011; Bai et al., 2012; Reijmer et al., 2013). 
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Fig. 2.5 An example of fibre tractography overlaid on colour-coded FA map. The 
images depict two main fibre bundles in the white matter such as (a) corpus callosum 
and (b) cerebrospinal tract from left sagittal view.  
 

2.5   Technical considerations 

Since the emergence of DWI in 1980s and followed by DTI in 1990s, it has been 

used extensively in brain imaging, particularly for white matter studies. However, to 

date, there is no consensus on the standard imaging protocol employed. Success of 

performing DTI scan and acquiring quantitative informations from it depends on 

several important technical aspects: 

2.5.1   Trade-offs between resolution, SNR, and scan time 

Accuracy of DTI outcome is governed by accurate estimation of diffusion tensor 

orientation of every voxel. As in general MRI technique, in order to obtain an 

acceptable image quality, data images must be acquired with the smallest voxel size 

as possible (i.e. highest spatial resolution) at the same time maintaining acceptable 

SNR. Such procedure requires extensive time allocations. Moreover, amount of 

diffusion weighting, which is restricted by echo time (TE) needs to be sufficient as 

well. Apart from the influence of various image acquisition parameters (Mori, 2007d; 

Mukherjee et al., 2008b; McRobbie, 2006b), the subjects themselves also had a 

major influence on the image quality e.g. physiologic motion. Therefore, it is 



19 
 

important to determine the tolerable total scan time for subjects in designing the 

scanning protocol for each study (Mori, 2007d; Jones et al., 2002).  

2.5.2   Diffusion encoding directions 

Particular concern should also be given to the number of diffusion gradient directions 

applied during the scan (Giannelli et al., 2010). At least 20 unique directions was 

reported necessary for a robust estimation of anisotropy, whereas at least 30 

directions are required for a robust estimation of tensor orientation and mean 

diffusivity (Jones, 2004). It is also recommended from previous work that decision 

on the number of directions applied should be made based on the objective of each 

study (Ni et al., 2006). This study thus uses 30 directions in order to obtain the 

required and sufficient quantitative analysis of DTI maps. 

2.5.3   Ratio of DWI: bo images 

For the best estimates of diffusion orientation, it is also suggested that some sets of 

bo images to be acquired in addition to the DWI, specifically single set of bo images 

for every 5 to 10 sets of DWI and 3 to 6 sets of bo images for 30 sets of DWI 

(Mukherjee et al., 2008b; Alexander and Barker, 2005; Jones et al., 1999a).  

2.5.4   Parallel imaging 

Besides EPI, other efforts have been made to shorten the scan time i.e. by employing 

parallel imaging technique. This technique uses spatial information collected by 

multi-channel receiver coil in which the number of phase encoding steps in the k-

space is reduced. This will form “aliasing” artefact in the images due to reduced 

FOV. Subsequently, “unaliasing” procedure is performed to construct a complete 

data images (Fig 2.6) (Glockner et al., 2005; Heidemann et al., 2003). 
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Fig. 2.6 Parallel reconstruction of data in which images with aliasing artefacts are 
obtained simultaneously. The data are then combined to obtain a complete image 
(centre) (Clarke, 2007). 
 

2.5.5   Artefacts  

It is important to identify some of the artefacts that are commonly associated with 

DTI. This is because in DTI technique diffusion tensor is calculated for each image 

voxel. Any defects in the image will give a vast impact on the interpretation of the 

data and the findings of a study. Below are the some of the most common artefacts 

found in DTI. 

2.5.5 (a)   Eddy currents artefact 

Rapid switching of strong magnetic field gradient by the gradient coils during data 

acquisition causes eddy currents induction in the electrical conductor of the MRI 

scanner. This produces undesirable, rapid and slow decay of magnetic field, thus 

effect the results in two ways i.e. cause alterations of the field gradients as well as 

slow decay of the field during data images readout, which then leads to geometrical 

distortion of the images. Furthermore, DTI scan are most commonly performed using 
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EPI sequence. Despite of its advantages in reducing scan time, however, EPI is very 

vulnerable to eddy currents induction which causes significant distortion and 

misregistration in the DWI (Basser and Jones, 2002).   

 Besides parallel imaging technique and segmented k-space sampling, post-

processing techniques are also most commonly used approach to eliminate or reduce 

eddy currents artefact (Tournier et al., 2011; Kim et al., 2006; Mangin et al., 2002). 

2.5.5 (b)   Susceptibility artefact 

Large discontinuities in bulk magnetic susceptibility generate local magnetic field 

gradients that may also cause significant distortion in the DWI. This artefact 

normally occurs at tissue-air interfaces e.g. region near the sinuses. Single-shot EPI 

is sensitive to this artefact and it is usually more severe along the phase encoding 

direction. Furthermore, severity of artefact also correlated linearly with magnetic 

field strength (Basser and Jones, 2002). 

 General methods to reduce this artefact include use of multi-shot EPI to 

reduce the time for image readout and use of parallel imaging technique (Hiwatashi 

and Zhong, 2005). In addition, other approaches are used as well (Andersson et al., 

2003; Merhof et al., 2007). 

2.5.5 (c)   Motion artefact 

Subject motion, either in the form of gross head movement or physiologic motion 

e.g. eye movement, respiratory motion, and CSF pulsation may also contribute to 

production of artefact. This is mainly due to spins experiencing considerable phase 

shifts which will then cause ghosting and high signal variation in an image.  
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 Amongst the possible methods to correct this artefact are by applying phase 

correction on the data images as well as use of fast imaging technique such as 

parallel imaging. Besides, use of navigator echo and cardiac gating are also 

suggested (Basser and Jones, 2002; Hiwatashi and Zhong, 2005; Le Bihan et al., 

2006).  

 

2.6   Application of DTI in brain imaging 

Until now, DTI is the only imaging technique that allows examination of brain 

microstructure noninvasively. The parameter indices derived provided various 

information that permits users to infer the physiological process that take place in 

human brain, specifically white matter at both macro- and micro-structural level.  

Since its introduction, application of DTI in basic clinical research has been 

vast (Horsfield and Jones, 2002; Zarei et al., 2003; Le Bihan and Johansen-Berg, 

2012). This technique has been employed in studying various diseases, such as stroke 

(Sotak, 2002; Sea Lee et al., 2005; van der Aa et al., 2011), multiple sclerosis 

(Werring et al., 1999; Hesseltine et al., 2006; Sbardella et al., 2013), brain tumor (Lu 

et al., 2003; Chen et al., 2012; Abd-El-Barr et al., 2013), as well as Alzheimer’s 

disease (Rose et al., 2000; Zhang et al., 2007; Rowley et al., 2013). Utilization of 

DTI in the study of psychiatric diseases includes depression (Nobuhara et al., 2006; 

Li et al., 2007; Liao et al., 2013) and schizophrenia (Burns et al., 2003; Ellison-

Wright and Bullmore, 2009). 

Besides, DTI technique is also employed in research on assessment of white 

matter abnormalities particularly leukoaraiosis (O’Sullivan et al., 2004; Jones et al., 
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1999b; Qu et al., 2010), which is one of the major items to be discussed in this thesis. 

A brief explanation on leukoariosis is described in the following subsection.  

2.6.1   Leukoaraiosis  

“Leukoaraiosis” is a general terminology describing white matter lesion seen on 

brain scan. The term which comes from Greek, leuko (white) and araiosis 

(rarefaction), was introduced by Hachinski et al. to express a type of pathological 

condition in brain white matter (Hachinski et al. 1987). Areas of leukoaraiosis 

usually appear hypointense in T1-weighted image and hyperintese in T2-weighted 

and fluid attenuated inversion recovery (FLAIR) image of the white matter area. 

Leukoaraiosis is commonly found in the elderly and predominantly increases with 

age (Grueter and Schulz, 2011). It also could be observed in patients with diseases 

such as cerebral ischemia, dementia, and many other diseases. It was reported that 

leukoaraiosis could also be a predictor of stroke (Kuller et al., 2004; Smith, 2010). 

Leukoaraiosis is associated with age and multiple vascular risk factors such 

as hypertension, cerebral infarction, diabetes mellitus, as well as ischemic heart 

disease, as proven by some pathological studies (Zhang and Kang, 2013). Most of 

the studies on leukoaraiosis are in the field of histopathology, psychiatry, and 

psychology (Lamar et al., 2007; Simpson et al., 2007; Teodorczuk et al., 2007; 

Viana-Baptista et al., 2008). Histological findings suggested that leukoaraiosis is 

associated to axonal loss and progressive glial activation (Pantoni et al., 1997). 

Neuroimaging studies employing DTI showed higher MD and reduced FA in the 

leukoaraiosis areas (Jones et al., 1999b; Cercignani et al., 2001; Qu et al., 2010).  
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CHAPTER 3 

FEASIBILITY OF ACQUIRING DTI DATA AND CONSTRUCTING 
PARAMETRIC MAPS AND FIBRE TRACTOGRAPHY 

 

3.1   Introduction 

Besides the ability to provide quantitative information, DTI also differs from the 

conventional MRI in the aspect of image acquisition. In DTI image acquisition, a set 

of MR images is acquired with diffusion-weighting applied along many different 

directions. Application of diffusion-weighting in various directions enables for 

complete characterization of diffusion in anisotropic systems in the brain (Basser and 

Jones, 2002).  

As DTI imaging was performed for the first time, the feasibility of acquiring 

DTI data using 1.5 T MRI system was evaluated first before the study on 

leukoaraiosis was carried out. In this study, the capability of the MRI system to 

produce results that could distinguish leukoaraiosis from healthy white matter was 

also evaluated.  

 

3.2   Materials and Methods 

3.2.1   Subjects 

As a pilot study to look for the feasibility of acquiring DTI data, two healthy male 

volunteers were recruited. Subject 1 and 2 were 24.2 and 29.7 years old, respectively 

when the scanning was performed. Then, for comparison between leukoariosis and 

healthy brain, two healthy male volunteers with either occipital leukoaraiosis or 


