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ANALISA ANJAKAN SATAH YANG BESAR DAN TERIKAN BAGI GETAH 

MENGGUNAKAN KORELASI IMEJ DIGITAL BERASASKAN 

PENGIMBAS 2-D 

 

ABSTRAK 

 

 Pelbagai teknik korelasi imej digital (DIC) telah diperkenalkan pada masa 

lalu untuk menyelesaikan masalah medan penglihatan (FOV) yang terhad untuk 

ukuran defomasi yang besar. Walau bagaimanapun, kaedah-kaedah tersebut 

berkongsi satu kelemahan iaitu FOV yang rendah. Dalam penyelidikan ini, satu 

kaedah yang baru iaitu korelasi imej digital dua dimensi berasaskan pengimbas (2-D 

SB-DIC) yang memberikan FOV yang besar untuk pengukuran deformasi yang besar 

bagi specimen getah asli (uNR) yang tidak diisi telah dibangunkan. Untuk 

mendapatkan data bagi anjakan, terikan, beban dan tekanan, imej-imej telah diimbas 

dan diproses. Data anjakan diperolehi dengan menggunakan algoritma korelasi imej 

meningkat. Min untuk modulus tangen and modulus sekan bagi specimen uNR yang 

diperolehi daripada kaedah 2-D SB-DIC dari lima eksperimen berulang telah 

dibandingkan dengan hasilan yang diperolehi daripada mesin ujian sejagat (UTM). 

Satu algoritma baru untuk pemetaan deformasi yang besar bagi specimen uNR dalam 

satu langkah tanpa memerlukan siri deformasi imej juga dibangunkan. Terikan paksi 

yang diperolehi daripada cadangan algoritma langkah tunggal 2-D SB-DIC telah 

dibanding dengan hasilan yang diperolehi daripada algoritma konvensional 

meningkat korelasi imej digital. Ujian-ujian agihan terikan yang tidak homogen juga 

telah dijalankan dengan menganalisa deformasi bagi dua specimen getah bersegi 

empat yang mengandungi lubang bulat dan segi empat tepat dengan menggunakan 

algoritma yang dicadangkan. Peta-peta terikan paduan bagi spesimen getah segi 



xxiii 

empat tepat dibandingkan dengan hasilan yang diperolehi daripada model unsur 

terhingga (FEM). Modulus Young yang diperoleh dengan menggunakan algoritma 

mengingkat 2-D SB-DIC menunjukkan maksimum kesilapan mutlak sebanyak 9.5% 

pada 250% terikan paksi dan 4.2% pada 50% terikan paksi bagi modulus tangen and 

modulus sekan, masing-masing. Sementara itu sisihan maksimum nisbah Poisson 

berdasarkan terikan kejuruteraan dan terikan sebenar sehingga nilai ambang bagi 

ketakbolehmampatan untuk bahan polimer adalah hanya 1.36% dan 1.24%, masing-

masing. Maksimum sisihan mutlak sebanyak 10.7% pada terikan paksi 320% telah 

didapati dengan menggunakan cadangan algoritma langkah tunggal 2-D SB-DIC. 

Untuk ujian-ujian agihan terikan tidak homogen, perbandingan hasilan peta terikan 

menunjukkan bahawa cadangan algoritma langkah tunggal berganding dengan 

kaedah 2-D SB-DIC boleh digunakan untuk pemetaan terikan dengan tepat bagi 

bahan deformasi yang besar seperti getah. Algoritma 2-D DIC langkah tunggal 

menghapuskan ralat kumulatif yang diperkenalkan daripada algoritma 2-D DIC 

meningkat di samping mengurangkan masa pemprosesan dalam pemerolehan imej 

dan imej korelasi dengan banyak. 
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ANALYSIS OF LARGE IN-PLANE DISPLACEMENT AND STRAIN IN 

RUBBER USING 2-D SCANNER-BASED DIGITAL IMAGE 

CORRELATION 

 

ABSTRACT 

 

Various digital image correlation (DIC) techniques have been introduced in 

the past to solve the limited field-of view (FOV) problem for large deformation 

measurement. However, these methods share a common limitation which is low FOV. 

In this research, a novel two-dimensional scanner-based digital image correlation (2-

D SB-DIC) method that enables the acquisition of a large FOV of an unfilled natural 

rubber (uNR) specimen at large deformation has been developed. The images were 

scanned and processed to obtain displacement, strain, load and stress data. The 

displacement data were obtained by using the incremental image correlation 

algorithm. The mean of the tangent and secant moduli of the uNR specimen obtained 

from the 2-D SB-DIC method from five repeated experiments were compared with 

those obtained from a universal testing machine (UTM). A new algorithm for 

mapping large deformation in the uNR specimens in a single-step without the need 

for a series of deformation images has also been developed. The axial strains 

obtained by using the proposed single-step 2-D SB-DIC algorithm were compared 

with those obtained using the conventional incremental image correlation algorithm. 

Non-homogeneous strain distribution tests were also conducted by analysing the 

deformation of two rectangular rubber specimens containing circular and square 

holes using the single-step 2-D SB-DIC algorithm. The resultant strain maps for the 

rectangular specimens were compared with those from finite element modelling 

(FEM). The Young‟s moduli obtained by using the incremental 2-D SB-DIC 




