ANALYSIS OF LARGE IN-PLANE DISPLACEMENT AND STRAIN IN RUBBER USING 2-D SCANNER-BASED DIGITAL IMAGE CORRELATION

by

GOH CHING PANG

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

March 2017

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest appreciation to my supervisor, Prof. Dr. Mani Maran Ratnam. His continuous supervision had led me in the right direction throughout my research. His unconditional motivation had widen my perspectives but kept me focused on the objectives of my research. With his positive and optimistic support, advice and encouragement, I have rekindled my confidence when I was lost. This dissertation would not have been possible without his guidance and persistent supervision. Apart from that, special thanks to my co-supervisor Prof. Dr. Hanafi bin Ismail for his valuable opinions and guidance to further improve my research.

Secondly, I would like to thank Universiti Sains Malaysia for offering the Research University research grant for my work. Also, thank you to Kementerian Pendidikan Tinggi Malaysia for offering MyBrain15 scholarship so that I can fully focus on my research without financial worries.

Last but not least, my gratitude is extended to my beloved family: my parents, Goh Her Yam and Lee Ah Chin, my family members, Goh Jue Ling, Fong Chee Min, Goh Ching Ann, Ng Pui Yee, Goh Jue Yie, Liong Boon Yoong and my beloved Isabelle Chan Shieu Juinn for giving me unconditional love and support throughout the period of my research.

TABLE OF CONTENTS

		Page
ACI	KNOWLEDGEMENT	ii
TAI	BLE OF CONTENTS	iii
LIS	T OF TABLES	viii
LIS	T OF FIGURES	ix
LIS	T OF ABBREVIATIONS	XV
LIS	T OF SYMBOLS	xvii
ABS	STRAK	xxii
ABS	STRACT	xxiv
CH	APTER ONE: INTRODUCTION	
1.0	Research background	1
1.1	Problem statement	5
1.2	Research objectives	7
1.3	Research approach and scope of research	7
1.4	Thesis outline	8
CH	APTER TWO: LITERATURE REVIEW	
2.0	Overview	10
2.1	Principle of DIC method	10
2.2	Applications of the 2-D DIC method	13
	2.2.1 Application of the 2-D DIC method for small displacement and strain mapping	14
	2.2.2 Application of the 2-D DIC method for large displacement and strain mapping	19
2.3	DIC algorithm for large deformation measurement	28

2.4	Evolu	tion of DIC method	31
2.5	Loadii	ng mechanism and motor used for uniaxial tensile loading	36
2.6	Chapte	er summary	38
CHA	APTER	THREE: METHODOLOGY	
3.0	Overv	iew	41
3.1	Prepar tensile	ation of NR specimens and variables used in standard test	43
3.2	Desig	n criteria for the motorized loading rig	47
	3.2.1	Effectiveness of the clamping system	47
	3.2.2	Loading mechnism of motorized loading rig	50
	3.2.3	Absence of contact between clamping-loading system and scanner platen	52
	3.2.4	Determination of spring extension using image processing	53
	3.2.5	In-plane displacement during loading	54
	3.2.6	Absence of backlash in the loading system	56
3.3	3 Preliminary tests on the motorized loading rig		59
	3.3.1	Slip test of the clamping system	59
	3.3.2	Force transmission efficiency test of loading system	60
	3.3.3	Holding torque determination of the stepper motor	62
3.4	Prelim	inary tests on flatbed scanner	63
	3.4.1	Uniformity test of light intensity of flatbed scanner	64
	3.4.2	Corrected scanning resolution test of flatbed scanner	65
3.5	Princij 2-D S	ple, variables, algorithm and experimental procedure of B-DIC method	67
	3.5.1	2-D SB-DIC principle	67
	3.5.2	Strain calculation and PR variables	69

	3.5.3	Validation of PR	70
	3.5.4	Experimental procedure for 2-D SB-DIC method	71
	3.5.5	Algorithm of incremental 2-D SB-DIC method	75
	3.5.6	Comparison between incremental 2-D SB-DIC and StrainMaster 2-D DIC methods	78
	3.5.7	Principle of single-step 2-D SB-DIC method	79
	3.5.8	Single-step 2-D SB-DIC algorithm	83
	3.5.9	Reliability of the 2-D SB-DIC algorithm	86
	3.5.10	Subset size selection in 2-D SB-DIC method	88
	3.5.11	Uniqueness test of the speckle patterns in reference subset	88
3.6	FEM o	f rubber specimens	89
3.7	Chapte	r summay	93
СЦ	DTED	FOLID. DESLITE AND DISCUSSIONS	
CIII		TOOR. RESULTS AND DISCUSSIONS	
4.0	Overvi	ew	94
4.1	Prelimi	inary tests for the 2-D SB-DIC method	95
	4.1.1	Reliability test of clamping system	95
	4.1.2	Determination of force transmission ratio of loading system	97
	4.1.3	Holding torque determination of the stepper motor	98
	4.1.4	Uniformity test of scanner light intensity	99
	4.1.5	Corrected scanning resolution for nominal scanning resolution at 600 dpi	100
	4.1.6	Reliability test of the DIC coding in simulation	102
	4.1.7	Subset size selection in 2-D SB-DIC method	104
	4.1.8	Uniqueness test of the speckle patterns in reference subset	108
4.2	Results	s of the incremental 2-D SB-DIC method	109

	4.2.1	Comparison between grayscale- and binary-image based incremental 2-D SB-DIC methods	110
	4.2.2	Displacement vector field of incremental 2-D SB-DIC method	113
	4.2.3	Comparison of stress-axial strain curve and Young's modulus between the incremental 2-D SB-DIC method and standard tensile test machine	117
	4.2.4	Comparison between incremental 2-D SB-DIC and standard 2-D DIC methods	123
	4.2.5	Comparison of PR between incremental 2-D SB-DIC method and theoretical function	127
4.3	Results	of the single-step 2-D SB-DIC method	129
4.3	Results	of the single-step 2-D SB-DIC method Displacement vector field of the single-step 2-D SB-DIC method	129 130
4.3	Results 4.3.1 4.3.2	of the single-step 2-D SB-DIC method Displacement vector field of the single-step 2-D SB-DIC method Comparison between single-step 2-D SB-DIC and incremental 2-D SB-DIC methods	129 130 133
4.3	Results 4.3.1 4.3.2 4.3.3	of the single-step 2-D SB-DIC method Displacement vector field of the single-step 2-D SB-DIC method Comparison between single-step 2-D SB-DIC and incremental 2-D SB-DIC methods Time comparison between the single-step 2-D SB-DIC and the incremental 2-D SB-DIC methods	129130133136
4.3	Results 4.3.1 4.3.2 4.3.3 4.3.4	of the single-step 2-D SB-DIC method Displacement vector field of the single-step 2-D SB-DIC method Comparison between single-step 2-D SB-DIC and incremental 2-D SB-DIC methods Time comparison between the single-step 2-D SB-DIC and the incremental 2-D SB-DIC methods FEM analysis on non-homogeneous strain distribution	129130133136138

CHAPTER FIVE: CONCLUSION AND FUTURE WORK

5.0	Overview	144
5.1	Concluding remarks	144
5.2	Contribution and novelty	146
5.3	Directions for future research	146

148

REFERENCES

APPENDICES

Appendix A [In-plane displacement vector fields for incremental 2-D SB-DIC method]

- Appendix B [Engineering drawing of the parts for motorized loading rig]
- Appendix C [Graph of torque vs. speed characteristics of the MO-STEP-17PM-J342U-Minebea hybrid unipolar stepper motor]
- Appendix D [Program of controlling stepper motor in MPLAB IDE v8.60]

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	Summary of the maximum FOV or maximum gauge length and maximum strain achieved	40
Table 3.1	Compositions of the unfilled NR specimen	44
Table 4.1	Average force transmission ratio	98
Table 4.2	Comparison of the centroid locations between the white circular blob before and after correlation	104
Table 4.3	Comparison of average tangent modulus between incremental 2-D SB-DIC and UTM tensile test methods	120
Table 4.4	Comparison of average secant modulus between incremental 2-D SB-DIC and UTM tensile test methods	120
Table 4.5	Comparison of the stress value at different strain levels between the the incremental 2-D SB-DIC and the StrainMaster 2-D DIC methods	127
Table 4.6	Comparison of PR based on engineering strain in terms of axial stretch ratio between incremental 2-D SB-DIC method and theoretical result	128
Table 4.7	Comparison of mean axial strain between single-step 2-D SB-DIC and incremental 2-D SB-DIC methods	135

LIST OF FIGURES

Page

Figure 2.1	(a) Side view of experimental setup for 2-D DIC method and (b) top view of experimental setup for 3-D DIC method	12
Figure 2.2	Routine of the DIC method to obtain the full-field displacement	13
Figure 2.3	Lower part of the specimen moves out of the FOV of CCD camera	20
Figure 2.4	Large displacements measured with CORRELI ^{GD} in a uniaxial tensile test on Smactane TM (Chevalier et al., 2001)	21
Figure 2.5	Photograph and shape predicted by simulation of the plate with holes subjected to 20 N for the model: (a) Mooney, (b) Gent, (c) Haines and Wilson and (d) Ogden (Meunier et al., 2008)	22
Figure 2.6	Two cameras take pictures of two orthogonal free faces of the sample subjected to uniaxial tension (de Crevoisier et al., 2012)	26
Figure 2.7	Image correlations using incremental DIC algorithm	29
Figure 2.8	Qualitative comparison of image tracking abilities. (a) fixed referencing, and (b) dynamic referencing. The engineering strains were measured under dynamic referencing (Han et al., 2012)	30
Figure 2.9	3-D deformation measurements by using right-angle prism (Parsons et al., 2005)	32
Figure 3.1	Flowchart of research methodology	42

Figure 3.2	Dumbbell-shaped rubber specimen	45
Figure 3.3	Circular hole-containing and square hole-containing rubber specimens	45
Figure 3.4	Isometric view of the motorized loading rig developed	48
Figure 3.5	Clamping system of the motorized loading rig	49
Figure 3.6	Zig-zag pattern on the clamper	50
Figure 3.7	Schematic design of the loading mechanism for the motorized loading rig	51
Figure 3.8	Top view of the motorized loading rig	53
Figure 3.9	Scanned image showing white markers used to provide the spring extension	54
Figure 3.10	5.0 mm gap separating the lower surface of "female" clampers relative to the scanner platen	55
Figure 3.11	Flowchart for controlling the stepper motor	58
Figure 3.12	Scanned image showing white markers used to obtain spring extension in image processing	61
Figure 3.13	Analogy of the principle for screw jack and motorized loading rig	63
Figure 3.14	Four line segments in multi-frequency grid distortion target used to obtain the light intensity profile in x - and y -directions	64
Figure 3.15	Three independent dot sizes used to obtain the corrected scanning resolution	66

Figure 3.16	Principle of the 2-D SB-DIC method	68
Figure 3.17	Variables used in local strain measurement for 2-D DIC method	69
Figure 3.18	Experimental setup of the 2-D SB-DIC method	72
Figure 3.19	Flowchart of the 2-D SB-DIC experiment	73
Figure 3.20	Rubber specimen with speckle patterns	74
Figure 3.21	Flowchart of the incremental 2-D SB-DIC method	76
Figure 3.22	Flowchart of the auto-cropping process	77
Figure 3.23	Auto-cropping of the ROI	77
Figure 3.24	Schematic diagram of working principle for the single-step 2-D SB-DIC method	80
Figure 3.25	Vectors of (a) reference subset and (b) deformed reference subset	81
Figure 3.26	Stress-axial stretch ratio curve obtained from standard tensile machine	82
Figure 3.27	Flowchart of single-step 2-D SB-DIC method	84
Figure 3.28	Comparison of (a) conventional incremental 2-D SB-DIC method and (b) proposed single-step 2-D SB-DIC method	86
Figure 3.29	Reference image with a white circular blob and five "deformed" images with randomly translated white circular blobs	87

Figure 3.30	Single-ended dumbbell-shaped model used in finite element modelling	90
Figure 3.31	(a) Circular hole-containing rubber model and (b) square hole-containing rubber model used in finite element modelling	92
Figure 4.1	Average slippage displacements of subset centroid for rubber specimen at static in 90 minutes	96
Figure 4.2	Figure 4.2 (a)-(h): Light intensity profiles provided by the flatbed scanner at line segments 1 to 8	99
Figure 4.3	Corrected scanning resolution in <i>y</i> -direction at height of 1.24 mm above the scanner platen	101
Figure 4.4	Corrected scanning resolution in x - and y -directions at height of 3.06 mm away from the scanner platen	102
Figure 4.5	Successful tracking of the white circular blob at different locations	103
Figure 4.6	NCC coefficient distributions of the successful match for first deformed image	103
Figure 4.7	Effect of subset size on the average NCC coefficient	105
Figure 4.8	Erroneous displacement fields at subset sizes of (i) 11×11 (ii) 21×21 pixel and (ii) perfect match for all of reference subsets at subset sizes over 31×31 pixel	105
Figure 4.9	Frequency of white speckle in <i>x</i> - and <i>y</i> -directions of bounding box	106
Figure 4.10	Definition of element, bounding box and size of the element	107

Figure 4.11	Effect of subset size on DIC programme code running time	108
Figure 4.12	Average NCC coefficients of self-correlation for rubber specimens used in the 2-D SB-DIC experiments	109
Figure 4.13	Comparison of (a) stress-axial strain curve and (b) average NCC coefficient between grayscale and binary images using incremental 2-D SB-DIC method	111
Figure 4.14	Comparison of DIC programme code running time between grayscale and binary images using incremental 2- D SB-DIC method	112
Figure 4.15	2-D displacement vector field at loads of (a) 0.23 MPa (b) 0.66 MPa (c) 1.21 MPa and (d) 1.91 MPa	114
Figure 4.16	3-D representatives of in-plane displacement vector fields at (a) 0.23 MPa (b) 0.66 MPa (c) 1.21 MPa and (d) 1.91 MPa	115
Figure 4.17	Stress-axial strain curves of incremental 2-D SB-DIC method and UTM tensile test	118
Figure 4.18	Comparison of fitted average stress-axial strain curve between incremental 2-D SB-DIC and UTM tensile test	118
Figure 4.19	Axial strain maps of the rubber specimen	121
Figure 4.20	SEM micrograph taken in the cross section area at central part of (a) rubber specimens 1 and (b) rubber specimens 2	122
Figure 4.21	Comparison of 2-D displacement vector fields between the incremental 2-D SB-DIC and the StrainMaster 2-D DIC methods at loads of (a) 0.08 MPa (b) 0.15 MPa and (c) 0.22 MPa	124
Figure 4.22	Comparison of stress-axial strain curve between the incremental 2D SB-DIC and the StrainMaster 2-D DIC methods	126

xiii

Figure 4.23	PR as a function of axial stretch ratio based on engineering and true strain	128
Figure 4.24	Lateral contraction as a function of axial stretch ratio used to describe the incompressible assumption	129
Figure 4.25	2-D displacement vector fields at loads of (a) 0.23 MPa (b) 0.66 MPa (c) 1.21 MPa and (d) 1.91 MPa	131
Figure 4.26	Figure 4.26 (a) 3-D representative of in-plane displacement vector fields at stage 7, 14, 21, 28, 35, 49, 63 and 76 (b) 3-D representative of in-plane displacement vector fields at stage 35, 49, 63 and 76	132
Figure 4.27	Comparison of axial strain between the single-step 2-D SB- DIC and the incremental 2-D SB-DIC methods and normalized cross correlation coefficient of single-step SB- DIC method	134
Figure 4.28	Loading time, scanning time and DIC programme code running time for (a) incremental DIC method and (b) single step DIC method, (c) comparison of total processing time between single-step 2-D SB-DIC and incremental 2-D SB- DIC methods	137
Figure 4.29	Comparison of the fitted stress-axial strain curve between the three hyperelastic models and the standard tensile test	139
Figure 4.30	Comparison of resultant strain maps between single step 2- D SB-DIC method and FEM in (a) circular hole-containing rubber specimen and (b) square hole-containing rubber specimen	140

LIST OF ABBREVIATIONS

2-D Two-dimensional 3-D Three-dimensional 2-D DIC Two-dimensional Digital Image Correlation 2-D SB-DIC Two-dimensional Scanner Based-Digital Image Correlation 3-D DIC Three-dimensional Digital Image Correlation American Society for Testing and Materials ASTM CB Carbon-black Carbon-black filled natural rubber **CB-NR** CBS N-cyclohexyl-benzothiazyl-sulphenamide CC Cross-correlation CCD Charge-coupled device Counter-clockwise CCW CMM Coordinate measuring machine CW Clockwise DIC Digital image correlation DP Dual-phase **Digital Single Lens Reflex** DSLR EPDM Ethylene propylene diene monomer FEM Finite element modelling FOV Field-of-view IPPD N-isopropyl-N'-phenyl-p-phenylenediamine MATLAB Matrix laboratory Moving die rheometer MDR

MTS	Mesostructural testing system
NCC	Normalized cross-correlation
NR	Natural rubber
PCB	Printed circuit board
PDMS	Polydimethylsiloxane
PHR	Part per Hundred
PIC	Programmable Interface Controller
PR	Poisson's ratio
ROI	Region of interest
SAD	Sum of absolute differences
SB-DIC	Scanner based-digital image correlation
SEM	Scanning electron microscope
SIF	Stress intensity factor
SMAC	Smactane
SMR L	Standard Malaysia Rubber L-grade
SSD	Sum-squared difference
SSSIG	Sum of Square of Subset Intensity Gradients
TiAl	Titanium alloy
UK	United Kingdom
uNR	Unfilled natural rubber
USA	United States of America
USC	University of South Carolina
ZNCC	Zero-Mean normalized cross correlation

LIST OF SYMBOLS

a	Constant in polynomial equation
a	Vector in reference subset
α_i	Material constant
В	Initial value in decay function
A	Cross sectional area
b	Constant in polynomial equation
b	Vector in deformed subset
B1	Marker 3
<i>B2</i>	Marker 4
С	Constant in polynomial equation
C_1	Material constant
C_2	Material constant
C_3	Material constant
C_4	Material constant
C_5	Material constant
d	Constant in polynomial equation
Δl	Elongation
Δw	Width contraction
d_{pixel}	Distance in pixel unit
ε_a^e	Engineering axial strain
ε_l^e	Engineering lateral strain in width
E ^e resultant,DIC	Resultant strains in 2-D DIC method
$\varepsilon^{e}_{resultant,FEM}$	Resultant strains in FEM

ϵ_a^t	True axial strain
$\mathbf{\epsilon}_l^t$	True lateral strain in width
ϵ^{e}_{lt}	Engineering lateral strain in thickness
f	Subset centred at reference image
$f(x_i, y_j)$	Pixel value in the reference image
F	Force applied or load applied on rubber specimen in UTM
F_a	Downward force
F_h	Force applied on handle
F _{nr}	Restoring forces in the rubber specimen after applying correction
	factor
F _{out}	Output force
F_r	Restoring forces in the rubber specimen before applying correction
	factor
F_s	Restoring forces in the springs
F	2-D deformation factor
g	Subset centred at deformed image
<i>g</i> _r	Gear ratio
$g(x'_i, y'_j)$	Pixel value in the deformed image
γ 1	Shear strain in x-direction on yz-plane
γ2	Shear strain in z-direction on yz-plane
γ ₃	Shear strain in z-direction on xz-plane
î	Component vector in horizontal direction
I_1	First invariant
I_2	Second invariant
I_3	Third invariant

Ĵ	Component vector in vertical direction
k	Spring constant
k _{eq.}	Equivalent spring constant
k _{out}	Spring constant of the output spring
λ_1	Axial stretch ratio or elongation deformation factor
λ_1'	Axial stretch ratio or elongation deformation factor at particular point
λ_2	Lateral contraction ratio in width or lateral deformation factor
λ_2'	Lateral contraction ratio or lateral deformation factor in width at
	particular point
λ_3	Lateral contraction ratio in thickness
l	Pitch of the leadscrew
l_f	Final gauge length
l_i	Initial gauge length
l_{fs}	Final length given by the distance of the centroid of each subset from
	the reference end
l _{is}	Initial length given by the distance of the centroid of each subset from
	the reference end
m	Subset row
μ_i	Material constant
n	Subset column
r	Radius
R ₀	Decay rate
R _{corrected}	Corrected scanning resolution
$\bar{R}_{corrected}$	Mean corrected scanning resolution
S	Displacement

\overline{S}	Average displacement
<i>S1</i>	Marker 1
<i>S2</i>	Marker 2
σ	Engineering stress
σ'	Engineering stress at particular point
t_c	Programme code running time
t_l	Loading process time
t_s	Scanning process time
\overline{T}	Mean thickness
T_h	Binarization threshold value before auto-cropping process
T_s	Binarization threshold value after auto-cropping process
$ au_{ m i}$	Input torque
$ au_{ m o}$	Output torque
V	variable used to keep tracking of the number of images read
v^e	Poisson's ratio based on engineering strain
v ^e ′	Poisson' ratio based on engineering strain at particular point
v^t	Poisson's ratio based on true strain
W _{is}	Initial width given by the distance between center points of each
	subset from the center position
W _{fs}	Final width given by the distance between center points of each subset
	from the center position
W	Function of the strain invariants or principle stretch ratios
\overline{W}	Mean width
Wr	Maximum load to be applied onto the rubber specimen
x	Variable in decay function

x _o	Length in horizontal direction in reference subset
<i>x'</i>	Length in horizontal direction in deformed reference subset
x _{avg.}	Average extension of springs
x _{out}	Extension for the output spring
Yoff	Offset from the <i>x</i> -axis in decay function
y_o	Length in vertical direction in reference subset
<i>y</i> ′	Length in vertical direction in deformed reference subset
<i>Y1</i>	y-coordinates of the top left corner in marker B1
<i>y</i> ₂	y-coordinates of the bottom left corner in marker B2

ANALISA ANJAKAN SATAH YANG BESAR DAN TERIKAN BAGI GETAH MENGGUNAKAN KORELASI IMEJ DIGITAL BERASASKAN PENGIMBAS 2-D

ABSTRAK

Pelbagai teknik korelasi imej digital (DIC) telah diperkenalkan pada masa lalu untuk menyelesaikan masalah medan penglihatan (FOV) yang terhad untuk ukuran defomasi yang besar. Walau bagaimanapun, kaedah-kaedah tersebut berkongsi satu kelemahan iaitu FOV yang rendah. Dalam penyelidikan ini, satu kaedah yang baru iaitu korelasi imej digital dua dimensi berasaskan pengimbas (2-D SB-DIC) yang memberikan FOV yang besar untuk pengukuran deformasi yang besar bagi specimen getah asli (uNR) yang tidak diisi telah dibangunkan. Untuk mendapatkan data bagi anjakan, terikan, beban dan tekanan, imej-imej telah diimbas dan diproses. Data anjakan diperolehi dengan menggunakan algoritma korelasi imej meningkat. Min untuk modulus tangen and modulus sekan bagi specimen uNR yang diperolehi daripada kaedah 2-D SB-DIC dari lima eksperimen berulang telah dibandingkan dengan hasilan yang diperolehi daripada mesin ujian sejagat (UTM). Satu algoritma baru untuk pemetaan deformasi yang besar bagi specimen uNR dalam satu langkah tanpa memerlukan siri deformasi imej juga dibangunkan. Terikan paksi yang diperolehi daripada cadangan algoritma langkah tunggal 2-D SB-DIC telah dibanding dengan hasilan yang diperolehi daripada algoritma konvensional meningkat korelasi imej digital. Ujian-ujian agihan terikan yang tidak homogen juga telah dijalankan dengan menganalisa deformasi bagi dua specimen getah bersegi empat yang mengandungi lubang bulat dan segi empat tepat dengan menggunakan algoritma yang dicadangkan. Peta-peta terikan paduan bagi spesimen getah segi empat tepat dibandingkan dengan hasilan yang diperolehi daripada model unsur terhingga (FEM). Modulus Young yang diperoleh dengan menggunakan algoritma mengingkat 2-D SB-DIC menunjukkan maksimum kesilapan mutlak sebanyak 9.5% pada 250% terikan paksi dan 4.2% pada 50% terikan paksi bagi modulus tangen and modulus sekan, masing-masing. Sementara itu sisihan maksimum nisbah Poisson berdasarkan terikan kejuruteraan dan terikan sebenar sehingga nilai ambang bagi ketakbolehmampatan untuk bahan polimer adalah hanya 1.36% dan 1.24%, masingmasing. Maksimum sisihan mutlak sebanyak 10.7% pada terikan paksi 320% telah didapati dengan menggunakan cadangan algoritma langkah tunggal 2-D SB-DIC. Untuk ujian-ujian agihan terikan tidak homogen, perbandingan hasilan peta terikan menunjukkan bahawa cadangan algoritma langkah tunggal berganding dengan kaedah 2-D SB-DIC boleh digunakan untuk pemetaan terikan dengan tepat bagi bahan deformasi yang besar seperti getah. Algoritma 2-D DIC langkah tunggal menghapuskan ralat kumulatif yang diperkenalkan daripada algoritma 2-D DIC meningkat di samping mengurangkan masa pemprosesan dalam pemerolehan imej dan imej korelasi dengan banyak.

ANALYSIS OF LARGE IN-PLANE DISPLACEMENT AND STRAIN IN RUBBER USING 2-D SCANNER-BASED DIGITAL IMAGE CORRELATION

ABSTRACT

Various digital image correlation (DIC) techniques have been introduced in the past to solve the limited field-of view (FOV) problem for large deformation measurement. However, these methods share a common limitation which is low FOV. In this research, a novel two-dimensional scanner-based digital image correlation (2-D SB-DIC) method that enables the acquisition of a large FOV of an unfilled natural rubber (uNR) specimen at large deformation has been developed. The images were scanned and processed to obtain displacement, strain, load and stress data. The displacement data were obtained by using the incremental image correlation algorithm. The mean of the tangent and secant moduli of the uNR specimen obtained from the 2-D SB-DIC method from five repeated experiments were compared with those obtained from a universal testing machine (UTM). A new algorithm for mapping large deformation in the uNR specimens in a single-step without the need for a series of deformation images has also been developed. The axial strains obtained by using the proposed single-step 2-D SB-DIC algorithm were compared with those obtained using the conventional incremental image correlation algorithm. Non-homogeneous strain distribution tests were also conducted by analysing the deformation of two rectangular rubber specimens containing circular and square holes using the single-step 2-D SB-DIC algorithm. The resultant strain maps for the rectangular specimens were compared with those from finite element modelling (FEM). The Young's moduli obtained by using the incremental 2-D SB-DIC