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1 INTRODUCTION 

3-Hydroxy-3-methylglutaryl-coenzyme A 

reductase inhibitors, known as statins is, a class 

of drugs to lower LDL-cholesterol and the risk of 

atherosclerosis. Despite its proven long-term 

safety and efficacy by many large scale studies 

[1, 2], statins-related myotoxicity (SRM), the most 

commonly reported side effect, have been 

reported among statin users [3]. 

In light of tremendous advances in 
pharmacogenetic field in the last decade, it is 
becoming extremely difficult to ignore the 
contribution of single nucleotide polymorphism 
(SNP) in solute carrier organic transporter 1B1 
(SLCO1B1) gene had in determining statin 

response and side effects. The SLCO1B1 gene 
encodes organic anion–transporting polypeptide 
1B1 (OATP1B1), a hepatic transporter which 
mediates the uptake of statins from portal blood. 
SNPs in this gene have been shown to affect 
statin transport function and thereby have 
profound effects on statin response and side 
effects. Undeniably, a SNP in the SLCO1B1 for 
example rs4363657, which is located within 
chromosome 12, has been shown to play a 
crucial role in determining statin plasma 
concentrations and subsequent risk in developing 
myopathy [4]. The SLCO1B1 polymorphism 
markedly increased plasma-concentrations of 
active simvastatin acid and resulted in higher risk 
of simvastatin-induced myopathy [5]. Although it 
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has been recognised that elevated plasma statin 
concentration increases the risk of muscle toxicity 
[6-8], the aetiology of SRM is not well understood. 
Since many patients develop SRM such as 
muscle aches and pain, it is very important to 
determine the factors which control local skeletal 
muscle statin concentrations. In fact, little is 
known regarding the molecular determinants of 
statin distribution into skeletal muscle and its 
relevance to toxicity. 

There are several key studies that 
highlighted muscle symptoms, such as fatigue 
and cramp, may be due to lactate build-up in 
muscles. These lactate accumulations may be 
inducing dysfunctional monocarboxylate 
transporters (MCTs) possibly MCT1 and MCT4, 
two of which highly expressed lactate 
transporters in striated muscle [9, 10] and 
transcribed by SLC16A1 and SLC16A3 gene, 
respectively [10]. Other studies, has shown that 
exposure to monocarboxylate lactate, was found 
to be associated with the generation of reactive 
oxygen species (ROS) and the up-regulation of 
genes related to mitochondrial lactate oxidation 
complex in both in vitro and in vivo study using rat 
skeletal muscle cells [11, 12].  

Physiologically, the role of MCTs in skeletal 
muscle is undeniable since the organ is the major 
site of lactate production and removal in the body. 
So far, there is  no study has been carried out to 
investigate the association of the membrane 
transporter with the risk of SRM i.e., myotoxicity 
happens as a result of inhibition to the MCT 
function by a statin and subsequently increases 
muscular lactate levels for which it might be 
perceived as muscle pain or cramp. Moreover, 
substrates for MCTs have not been limited to 
endogenous metabolites but also xenobiotics 
such as statins, gamma-hydroxybutyrate and 
valproic acid [13-16] which thus suggest their 
potential role in predicting SRM.  

Our group has previously shown that HK-2 
cells (a proximal tubule cell line originated from 
human kidney) express MCT1 at both mRNA and 
functional levels [17]. A number of studies also 
have characterised MCT functions in L6 skeletal 
muscle cells [12, 18, 19], by which MCT1 in 
particular mediated lactate transport in both 
mitochondrial and sarcolemma membrane of a 
striated muscle fibre. However, limited evidence 
is available to explain how statins affect the 
function of MCT1 in muscle cells.  There are 
evidences indicating that MCT4, but not MCT1, 
being the statin target and upregulated during 
statin-induced cytotoxicity [20, 21]. In terms of 

blood lactate transport and removal, MCT1 and 
MCT4 were both considered important mediators 
for blood lactate removal [22, 23] thus implicating 
their vital role in maintaining muscle lactate 
concentration. Therefore in this study, we 
determined whether SRM could be promoted by 
the inhibition of MCT1 function by statins primarily 
looking at their ability to inhibit lactate uptake into 
the L6 cells. It is possible that the inhibition of 
MCT1 by statins could advocate myotoxicity due 
to affected lactate transport.  

Apart from the above mentioned SLC 
transcribing membrane transporters, the interplay 
role by efflux transporters typically ATP-binding 
cassette (ABC), in muscle such as multi-drug 
resistance associated protein (MRPs), may also 
modulate statin local exposure in muscle and 
eventually intensify muscle toxicity in the event of 
function inhibition of the transporters. Moreover, 
our group had also shown that 5-(3-92-(7-
chloroquinolon-2-yl)ethenyl)phenyl)-8-
dimethylcarbamyl-4,6-dithiaoctanoic acid 
(MK571) could be used as a high affinity MRP 
inhibitor in an MRP-mediated CMFDA efflux 
assay using HK-2 cells [17]. This dual dye assay 
was developed to evaluate the impact of two 
inhibitors, MK571 (MRP inhibitor) and CSA 
(MDR1 inhibitor); whereby the accumulation of 
dye provides an indirect measure of efflux 
inhibition of the ABC transporters. Therefore, the 
aim of the second part of this study was to 
evaluate the impact of statins on functional 
expression of efflux transporters. In order to 
assess the relative affinity of different statins to 
the MRPs function, the magnitude of the dye 
efflux inhibition was compared to MK571. 

2 MATERIALS AND METHODS 

2.1 Materials and reagents 

Number RT2 ProfilerTM Rat Drug Transporter PCR 

array (Catalogue no:  PARN-070Z) and reagents 

were purchased from Qiagen Ltd (Crawley, UK). 

Simvastatin, atorvastatin, pravastatin, and 

rosuvastatin were gifts from AstraZeneca 

(Alderley Park, Cheshire, UK). [2-3H]-DL-lactate 

(at activity of 20 Ci/mmol) was purchased from 

Hartmann Analytic (Braunschweig, Germany). SV 

Total RNA Isolation System was purchased from 

Promega (Southampton, UK). SYBR Green Dye 

Master Mix for real-time polymerase chain 

reaction was purchased from Roche Applied 

Sciences (Burgess Hill, UK). Reagents for dye 

assay; 5-chloromethylfluorescein diacetate 

(CMFDA) was purchased from Invitrogen 

http://apps.amdi.usm.my/journal/


 
 

 

J. of Biomed. & Clin. Sci. 2016, Vol 1 (1), 17-26  Original Article 

 

http://apps.amdi.usm.my/journal/       19 

 

(Paisley, UK). Unless otherwise stated, all other 

reagents including phloretin (well-defined MCT1 

inhibitor) and α-cyano-4-hydroxycinnamate, CHC 

(a typical MCT1, 2 and 4 inhibitors) were 

purchased from Sigma-Aldrich (Dorset, UK). 

 

2.2 L6 rat muscle cell line 

The L6 rat muscle cell line (ATCC® number: CRL-

1458TM), supplied at myoblast stage, was kindly 

provided by Dr Audrey Brown of Newcastle 

University. L6 exists as myoblasts when cultured 

in maintenance culture medium, which comprises 

high glucose DMEM supplemented with 10 % 

foetal calf serum, 200 units/ml penicillin and 200 

µg/ml streptomycin, until 70-80 % confluency. 

The cells were then introduced to differentiation 

medium (high glucose DMEM supplemented with 

2 % horse serum, 200 units/ml penicillin and 200 

µg/ml streptomycin), upon which the cells 

differentiate into myotube until approximately 80 

to 90 % confluent. L6 cells used in this study 

were within passage numbers 11 through 30. 

For the uptake and efflux experiments, L6 

cells were seeded at 50,000 cells/well and 20,000 

cells/well onto 24-well plates and 96-well plates 

(Coster, Corning Incorporated Corning, UK), 

respectively, for 2 days or until the indicated 

confluence. Cells were then differentiated into 

myotube formation by incubating them with 

differentiation media. The cell monolayers were 

fed a fresh differentiation media every 2 days and 

were used for uptake experiments on day 7.  

 

2.3 Isolation of total RNA and qPCR array for rat 
membrane transporters 

On day 7 of differentiation, total RNA was isolated 

from L6 cells at myotube stage to determine the 

expression of a series of uptake (both SLC and 

SLCO sub-groups) and efflux (ABC group) 

transporters by qPCR array plate. In order to 

assess whether statins affect gene expression of 

the uptake transporters in L6 myotubes, the cells 

were pre-treated on day 5 with simvastatin (2 µM) 

for 48 hrs prior to RNA extraction and compared 

with untreated control cells (contained 0.02 % 

methanol only). The protocols for RNA extraction 

and qPCR array were carried out as previously 

described [17]. 

 

 2.4 Functional assay of monocarboxylate 

transporters (MCTs)  

2.4.1 3H-DL-lactate uptake assay 

Lactate uptake experiments by L6 cells seeded 

on 24-well plates in the presence of statins were 

carried out according to the previously described 

protocols [17]. 

 

2.4.2 3H-DL-lactate efflux assay 

The efflux of radiolabelled substrate was used to 

functionally measure the expression of MCT. 

Briefly, cells were pre-incubated with 300 µl of 

Krebs containing radiolabelled DL-lactate (50 µM) 

for 60-90 minutes at pH 6.0, 37 °C to ensure cells 

were loaded with radiolabelled substrate. After 

incubation, cells were then washed with ice-cold 

Krebs at pH 7.4 three times. To initiate lactate 

efflux, cell monolayers were incubated with 300 µl 

pre-warmed 3H-DL-lactate-free Krebs buffer at pH 

6.0 with and without 500 µM inhibitor. After 

several time intervals, the cell monolayers were 

solubilised in 0.5 mL of 0.05 % SDS and 

transferred to scintillation vials.  

The radioactivity was measured as 

described earlier [17]. Fractional efflux rate (% of 

radiolabelled lactate efflux every 2 min intervals) 

was calculated according to (1) and the 

magnitude of MCT-mediated 3H-DL-Lactate efflux 

in Krebs-inhibitor solution was compared to that 

of control with Krebs buffer only (refer 

Supplementary document for an example of 

calculation). 

 

 
  (1) 

 

2.5 Functional assay of Mrp efflux transporters 

The L6 cells were seeded at a density 20,000 

cells/well and cultured for 24 hours before 

induction of differentiation into myotube formation 

for 6 or 7 days. Retention of MRP-mediated 

fluorescent product of CMFDA (i.e. glutathione 

methylfluorescein, GSMF) was used to determine 

MRPs function in L6 cells and has been 

previously described [17].  

 

2.6 Statistical analysis 

All statistical analysis on data was performed 

using GraphPad Prism software version 4 

(GraphPad Software Inc. San Diego, CA, USA). 

For kinetic analysis, the Michaelis-Menten 

constant (Km) and maximum velocity of substrate 

binding (Vmax) of DL-lactate uptake were analysed 

from a fitted nonlinear regression analysis. 
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Statistical difference between group means was 

tested using Student’s unpaired t-test (also 

known as independent- samples t-test) or a One-

Way ANOVA with Dunnett’s post-hoc test as 

appropriate. Paired t-test was used when the 

mean of continuous variables between groups 

were related in some way. A value of p< 0.05 was 

considered statistically significant. Unless 

otherwise stated, results are expressed as the 

mean ± SEM from at least three separate 

experiments performed on separate days.  

3 RESULTS 

3.1 Relative mRNA expression of key uptake 
and efflux transporters in L6 myotubes  

Among the SLC and SLCO genes transcribing 

uptake transporters, mRNA for Mct1 (transcribed 

by Slc16a1), Mct8 (Slc16a2) and Oatp3a1 

(Slco3a1) were found to be highly expressed in 

L6 cells in contrast to Mct4 (Slc16a3) expression 

(Figure 1A). 

 
Figure. 1 A selection of key (A) uptake and (B) efflux 
transporters in cDNA of L6 myotubes analysed by drug 

transporters qPCR array. The relative expression level was 

analysed by standard qPCR Array and data analysis from 

SABiosciences website 

(http://www.sabiosciences.com/pcrarraydataanalysis.php) and 

calculated using the 2−ΔΔCp method and are relative to the 

geometric mean of five housekeeping genes provided by the 

array. Error bars represent the mean ± SEM (n=3). 
 

 Among ABC efflux transporters, mRNA of Mrp1 

(Abcc1) was expressed at highest level compared 

to Mrp2 (Abcc2), Mrp3 (Abcc3), Mrp4 (Abcc4), 

Mrp5 (Abcc5) and Mrp6 (Abcc6). The mRNA 

expression of other efflux transporters such as 

Bcrp1 (Abcg2) and Mdr1 (Abcb1) were also 

expressed at low level (Figure 1B). Among the 

highly mRNA-expressed uptake (i.e., Mct1 and 

Oatp3a1) and efflux (i.e., Mrp1) transporters in 

the L6 myotubes, pre-treatment with simvastatin 

(2 µM for 48 hours) did not significantly reduce 

the level of expression in compared to the control. 

 

 

3.2 The expression of MCT1 function in L6 cells 

The uptake of 3H-DL-lactate (50 µM) was used to 

assess MCT function in L6 cells. The time course 

for lactate uptake into L6 cells at pH 6.0 (at 37°C) 

is shown in Figure 2A. The 3H-DL-lactate uptake 

was linear up to 5 minutes. Therefore a 2 minutes 

incubation time was chosen for subsequent 

uptake experiments. The effect of extracellular pH 

and sodium ion concentration on 3H-DL-lactate 

uptake was examined over the pH range of 5.5 to 

7.4. 3H-DL-lactate uptake was significantly higher 

(p<0.001) at lower extracellular pH (pH 5.5 vs pH 

7.4) in the presence and absence of Na+. The 

uptake at pH 5.5 was found not to be affected by 

Na+ concentration (Figure 2B). The uptake 

experiments were subsequently performed at pH 

6.0 in the presence of Na+ to mimic physiological 

conditions.  

 

 
Figure. 2  Time course and pH-dependency uptake of 3H-

DL-Lactate in myotubes of L6 rat muscle cells. (A) The 3H-DL-

Lactic acid (50 μM) uptake by L6 (at pH 6.0 and 37°C) was 

linear up to 5 minutes and 2 minutes incubation time was 

chosen for subsequent experiments. (B) Effect of pH and Na+ 

on the uptake of DL-lactate (50 μM) by L6 cells. Data are 

presented as mean ± SEM (n= 12) from three independent 

determinations. *** p< 0.001; Na+, sodium ion. 

 

The kinetics of 3H-DL-lactate uptake by the L6 

cells is shown in Figure 3A and Figure 3B. The 

uptake of DL-lactate (1 µCi/mL) was shown to be 

concentration-dependent (0.1 mM to 20 mM). A 

nonlinear regression analysis with a simple 
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Michaelis-Menten equation gave a Km value of 

16.17 ± 2.4 mM (95% CI = 11.47- 20.87) in the 

presence of Na+ and the Km value of 15.63 ± 3.0 

mM (95% CI= 9.75 – 21.51) in the absence of 

Na+.  The Km values in both conditions were 

found not to be significantly different from each 

other (Figure 3C) suggesting that the presence of 

Na+ has no impact upon the kinetics of the 

transporter in the cells. 

 

 
 

Figure. 3  Concentration-dependence of DL-lactate 

uptake by L6 myotubes. 3H-DL-Lactate uptake at 0.1 – 20 mM 

final concentration (at pH 6.0 and 37 °C) was determined over 

2 minutes in (A) the presence of extracellular Na+ and (B) the 

absence of extracellular Na+. The Km values were 16.17 ± 2.4 

mM (95% CI: 11.47 - 20.87) and 15.63 ± 3.0 mM (95% CI: 

9.75 – 21.51) in the presence and absence of Na+, 

respectively. Data are presented as mean ± SEM from three 

independent determinations. (C) The mean Km value in the 

presence of Na+ (16.17 ± 2.4 mM) was not significantly 

different (paired t-test) compared to that without Na+ (15.63 ± 

3.0 mM). Data are presented as mean ± SEM (n = 6) from six 

parallel determinations. Na+, sodium ion. 

 

3.3 The impact of statin on the MCT-mediated 
3H-labelled DL-lactate uptake 

Inhibition assay was performed to determine 

whether statins affect functional expression of 

Mct1 in particular. L6 cells were incubated with 
3H-DL-lactate in the absence and the presence of 

statins (i.e. simvastatin, atorvastatin, pravastatin 

and rosuvastatin). To confirm that statin was a 

substrate for Mct1, the magnitude inhibition of 

DL-lactate uptake by all tested statins were 

compared to phloretin (a well-defined Mct1 

inhibitor) and CHC (a typical Mct1, 2 and 4 

inhibitors). Figure 4 summarises the degree of 

DL-lactate uptake inhibition. Simvastatin and 

atorvastatin significantly (p<0.001) inhibited DL-

lactate uptake to the same degree as phloretin 

and CHC with IC50 values of 10.7 ± 1.2 µM and 

7.4 ± 0.9 µM, respectively (Table 1). In contrast, 

the inhibitory effects of pravastatin and 

rosuvastatin were not significant even up to 1 

mM.  

 
Figure. 4  The DL-lactate uptake (50 μM) in the presence 

of statins, CHC and phloretin (all at 1 mM). Data are mean 

±S.E.M. n = 12, each data point was derived from a triplicate 

of experiments and from four independent determinations. 

Data were analysed using One-Way ANOVA with Dunnett’s 

post-test and compared to that of control without the presence 

of inhibitor. CHC, α-Cyano-4 hydroxycinnamic acid N-ethyl-

N,N-diisopropylammonium salt;*** p< 0.001; ns, non-

significant. 
 

 
 

The fractional efflux rate of 3H-DL-Lactate (50 

µM) at each time interval was low and the values 

were consistently at the level below than 10% 

from the baseline reading (Figure 5). 

Furthermore, the fractional efflux rates for DL-

lactate were similar when co-incubated with Mct1 

inhibitors, phloretin (a typical MCT1 inhibitor), 
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CHC (non-specific MCT inhibitor), simvastatin (a 

representative of lipophilic statin) and pravastatin 

(a representative of hydrophilic statin), at a 

concentration of 500 µM of each inhibitor to that 

of control (substrate only).  In contrast to the 

uptake function of Mct1 (section 3.2), this finding 

suggests that Mct1 in the L6 muscle cells does 

not exhibit efflux function for DL-lactate.   

 

 
 
Figure. 5  Efflux assay for determination of MCT1-

mediated 3H-DL-Lactate (50 μM) efflux in L6 cells. There was 

no significant inhibition of DL-lactate (50 μM) efflux. Efflux 

rates were approximately 10 % for all conditions. All inhibitors 

were at 500 μM and each point represented as mean ±SEM 

(n =9) from three independent experiments. MCT, 

monocarboxylate transporter; CHC, α-Cyano-4 

hydroxycinnamic acid N-ethyl-N,N-diisopropylammonium salt. 

 

3.4 The impact of statins on the MRP-mediated 

CMFDA efflux 

Our group previously published that MK571 could 

be used a specific inhibitor of MRP-mediated 

GSMF (a fluorescent component of CMFDA), as 

an assay to functionally characterised the 

functional expression of MRP transporter using 

HK-2 cell line. Consistent with the previous 

findings in the HK-2 cells, GSMF retention was 

significantly higher when L6 cells were treated 

with MK571 compared to that of untreated control 

with CMFDA dye only (Figure 6A) (p < 0.0001). 

Pre-treatment of L6 myotubes with (Figure 6B1) 

and without (Figure 6B2) simvastatin (2 µM for 

48 hours) did not result in different MK571 IC50 

values (0.90 ± 0.2 µM vs 1.03 ± 0.2 µM) which 

thus suggested that simvastatin did not modify 

Mrp function in the cells.   

 

 
 

Figure. 6  Inhibition of MRP-mediated CMFDA efflux by 

MK571 in L6 cells. (A) Addition of MK571 at 5 μM resulted in a 

significant increase in CMFDA dye retentioncompared to that 

of control wells with Km value of 6.66 ± 3.6 μM. ***P<0.0001 

demonstrates the level of significance compared to the control 

without MK571 pre-treatment (paired T-test). (B) Dose-

response curve for MRP-mediated CMFDA (1 μM) efflux 

inhibition by MK571 in L6 cells. L6 myotubes were exposed 

with simvastatin (B1) and without simvastatin (B2) pre-

treatment for 48 hrs and resulted in MK571 IC50 values of 

0.90 ± 0.2 µM and 1.03 ± 0.2 µM, respectively. Dye retention 

was measured after treatment with a range of MK571 

concentrations after 40 minutes. Each point represents mean 

+ SEM (n = 18) from 3 independent experiments.  

 

 

Among four statins used in this experiment, only 

simvastatin was significantly inhibited (p<0.05) 

MRP-mediated GSMF efflux, however the 

magnitude of the inhibition was more than five-

fold lower to that seen with MK571 (Figure 7). 
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Figure. 7    The inhibition by statins of the MRP-mediated 

CMFDA dye efflux in L6 cells. The concentration of all 

inhibitors used were 10 μM. Data are presented as mean ± 

SD (n=18) from 3 independent experiments. Data were 

analyzed using one-way ANOVA and Dunnett’s post-hoc 

test;***P<0.0001, *P<0.05 and ns (non-significant) versus 

control. 

4 DISCUSSION 

We have, previously, shown both mRNA and 

functional expression of monocarboxylate 

transporter 1 (MCT1) in HK-2 cells, using DL-

lactate as substrate [17]. In the study, the high 

MCT-expressed HK-2 cells were found to be 

transported by mechanism obeying Michaelis-

Menten kinetics (Km). The DL-lactate uptake was 

likely mediated through the MCT1 transporter 

although the Na+ dependence uptake may have 

suggested the involvement of SMCT1 (sodium-

coupled MCT1), but this was not confirmed 

further [17].  

We then extended the functional study of 

MCT using a model of rat skeletal muscle i.e. L6 

cells, since the statin related side effects 

commonly seen in muscle. In the present study, 

the Km value for the DL-lactate uptake in the L6 

cells was higher compared to that seen in the 

previously studied HK-2 cells. Relatively, the 

mRNA expression level for MCT1 in the HK-2 

cells was higher than L6 rat skeletal cells, 

suggesting its lower affinity to DL-Lactate in the 

muscle model. Likewise, it could be possible that 

HK-2 cells extensively transport or eliminate 

lactate as metabolite substrate and/or product of 

the endogenous production, thus resulting in 

lower Km values (high driving forces) than that of 

muscle cells, since HK-2 cells were found to 

express more MCTs; MCT1, MCT2 and MCT4, at 

both mRNA and protein levels [24]. 

In contrast to the findings in HK-2 cells 

[17], we found that the DL-lactate uptake in L6 

cells was Na+-independent. Since the absence of 

SMCT1 in the HK-2 cells was verified by qPCR, it 

was suggested that the inhibition of Na+/H+ 

exchange in the HK-2 cells resulted in higher 

lactate uptake in the presence of Na+ [17]. 

Therefore, one possible explanation of this 

discrepancy could be the result of high regulation 

of lactate/H+ exchange since it was found as 

major pH regulator in muscle cell compared to 

other mechanisms such as Na+/H+ exchange and 

bicarbonate/H+ [25]. It seems that only the 

presence of excess proton (H+) intensifies the 

lactate transport, in accordance with other 

previous findings [10, 26] and thus suggests that 

muscle symptoms among lipophilic statin users in 

particular, is associated with the disturbance of 

pH regulation in muscle and eventually lactic 

acidosis which might lead to apoptosis and 

toxicity. 

Lipophilic statins, simvastatin and 

atorvastatin, have a significant impact on MCTs, 

presumably MCT1 since this particular membrane 

transporter is found to be present in almost all 

tissues including skeletal muscles, with specific 

location within the tissues [10]. MCT1 is also 

localized in sarcolemmal membrane of 

mitochondrion [27-29], therefore, it is possible 

that statins cause muscle toxicity by interfering 

with mitochondrial function. Indeed this has been 

demonstrated by both in vitro and in vivo 

regarding the mode of action of simvastatin [30-

32], suggesting that lipophilic statins are better at 

targeting MCT1 to induce mitochondrial toxicity 

than hydrophilic statins. Further work in patient 

cohort is thus needed to determine whether 

altered function of MCT1 due to genetic mutation 

would exacerbate statin myotoxicity and/or 

mitochondrial toxicity. 

In contrast to the effect on MCTs, lipophilic 

statins did not inhibit cellular MRP efflux 

transporters. The functional expression of efflux 

transporter in this study is likely to have been 

attributed to by Mrp1 owing to its relatively high 

expression level in the L6 myotubes. MRP1 is 

expressed ubiquitously, and is localised to the 

basolateral, rather than apical, membrane of 

epithelial cells. As with MRP2, MRP1 primarily 

effluxes a wide range of substrates [33, 34], and 

may acts as the most important efflux transporter 

for the extrusion of toxins or metabolites from 

cellular metabolism as suggested by Mueller and 

colleagues [35]. Among MRPs, although less 

evidence is available on the capacity of MRP1 for 

statin efflux than that demonstrated by MRP2 
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[36], it has been demonstrated that polymorphism 

in both ABCC1 (MRP1) and ABCC2 (MRP2) 

genes are equally involved in the incidence of 

statin resistance and response i.e. patients fail to 

achieve adequate reduction of LDL-C level [37, 

38]. Since MRP2, the 190 kDa membrane 

glycoprotein, is highly expressed in human apical 

hepatocytes [39, 40], the mutation and/or 

inhibition of MRP2 may become a major 

determinant of biliary excretion of statins resulting 

in statin plasma elevation, a risk factor for statin-

related myotoxicity. Nevertheless, at local 

exposure in skeletal muscle cells, it has been 

shown that both atorvastatin and rosuvastatin 

accumulation is reduced due to MRP1 over-

expression [41] suggesting that the efflux of both 

statins is also attributed to the MRP1 transporter 

which is consistent with that found by Dorajoo et 

al. in 2008 [42]. 

5 CONCLUSION 

We were able to demonstrate that simvastatin 

had higher affinity to MRPs than MCT1 and other 

statins, based upon the inhibition of MRP-

mediated CMFDA efflux in the L6 cells. This 

observation warrants further evaluations possibly 

by direct transport study using radiolabelled 

simvastatin possibly in skeletal mitochondrion 

model. 
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Supplementary document 
 
Calculation of fractional 3H-DL-lactate efflux  
 

 

 Reading 1 

 

Reading 2         Reading 

3 

Radioactivity collected on the 1st 2 min  4381 4032 3945 

Radioactivity collected on the 2nd 2 min  1493 1390 1529 

Radioactivity collected on the 3rd 2 min  567 587 506 

Radioactivity collected on the 4th 2 min  348 316 366 

Radioactivity collected on the 5th2 min  229 233 245 

Radioactivity collected on the 6th 2 min  231 238 236 

Radioactivity collected on the 7th 2 min  195 197 197 

Radioactivity collected on the 8th 2 min  140 137 138 

Final radioactivity remained in cells  2846 2821 2804 

Total radioactivity  10430 9951 9966 

 
    
     
Thus, fractional efflux rate (%) was gained as follow; 
 

 Reading 1  Reading 2  Reading 3  MEAN  

1  42.00384  40.51854  39.58459  40.70232  

2  24.68177  23.4837  25.39445  24.51997  

3  12.44513  12.96092  11.26447  12.22351  

4  8.723991  8.016235  9.182137  8.640788  

5  6.289481  6.425814  6.767956  6.494417  

6  6.770223  7.014441  6.992593  6.925752  

7  6.130148  6.244057  6.275884  6.216696  

8  4.688547  4.631508  4.690687  4.670247  

 
An example for the values in Reading 1 from the table above were derived as follow; 

 
 
 
42.00384 = 4381/10430*100 
24.68177 = (1493/ (10430-4381)*100 
12.44513 = (567/ (10430-(1493+4381))*100 
8.723991 = (348/ (10430 – (4381+1493+567)*100 
6.289481 = (229/ (10430 – (4381+1493+567+348))*100 
6.770223 = (231/ (10430 – (4381+1493+567+348+229))*100 
6.130148 = (195/ (10430 – (4381+1493+567+348+229+231))*100 
4.688547 = (140/(10430 – (4381+1493+567+348+229+231+195))*100 
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