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PRESTASI AERODINAMIK KE ATAS PESAWAT TANPA JURUTERBANG, USM 

EFA-1 

 
ABSTRAK 

 

Pesawat tanpa juruterbang merupakan satu bidang yang agak baru di negara 

kita Malaysia. Kemajuan terhadap pesawat tanpa juruterbang yang dihasilkan oleh 

syarikat Composite Technology Research Malaysia (CTRM) telah menggalakkan 

banyak penyelidik dan saintis untuk mempelajari tentang kepentingan dan keupayaan 

pesawat tanpa juruterbang ini. Dalam kajian ini, penyiasatan terhadap prestasi 

pesawat tanpa juruterbang, eFA-1 dilakukan melalui kaedah pengkomputeran dan 

eksperimen. Analisis secara berkomputer telah dilakukan terhadap model pesawat 

tanpa juruterbang secara tiga dimensi dengan menggunakan Dinamik Bendalir 

Berkomputer melalui kod FLUENT 6.0. Eksperimen terhadap model skala telah 

dilakukan dengan menggunakan terowong angin litar terbuka. Penyiasatan dijalankan 

melalui tiga numbor Reynolds yang berbeza iaitu 1.05 x 105, 1.26 x 105 dan 1.60 x 105, 

dengan kenaikan sudut serang. Sifat-sifat aerodinamik seperti pemalar daya angkat 

dan daya seretan yang didapati daripada hasil eksperimen akan dibandingkan dengan 

hasil keputusan berkomputer. Keputusan mendapati bahawa pemalar daya angkat dan 

daya seretan meningkat dengan kenaikan sudut serang. Pemalar daya angkat 

maksimum bagi pesawat eFA-1 ialah 0.888 dan pemalar daya seretan minimum ialah 

0.037. Sudut tegun berlaku pada α=14°. Hasil keputusan daripada simulasi 

menunjukkan keputusan yang memuaskan bila dibandingkan dengan hasil eksperimen 

tetapi fenomena sudut tegun tidak dapat diramalkan. Ini disebabkan oleh had yang 

terdapat pada “model gelora”. Gambaran aliran bendalir membantu dalam pemahaman 

terhadap aliran pada pesawat tanpa juruterbang pada sudut serang yang berbeza. 

Keputusan yang didapati akan menyediakan data-data aerodinamik bagi eFA-1 untuk 

kegunaan masa hadapan. 
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AERODYNAMIC PERFORMANCE OF USM EFA-1 REMOTELY PILOTED 
VEHICLE 

 
 

ABSTRACT 
 
 

 

Remotely Piloted Vehicle (RPV) in our country Malaysia, still in an early stage. 

The development of unmanned vehicle by Composite Technology Research Malaysia 

(CTRM), encourage the local researchers and scientist to study the importance and the 

capability of RPV. The unique design of RPV is a new challenge for the design 

engineers and aerodynamicists. In present study, the aerodynamic investigations are 

carried out on a USM eFA-1 RPV using the computational and experimental methods. 

The computational analysis is made on a three dimensional model of RPV using 

computational fluids dynamic (CFD) code FLUENT 6.0. The experimental works are 

carried on a scale model and tested in an open circuit wind tunnel. The investigations 

have been carried out at three different Reynolds Numbers, i.e., 1.05 x 105, 1.26 x 105 

and 1.60 x 105, at different angle of attack. The aerodynamic characteristics lift and 

drag coefficients obtained from the experimental work are compared to the simulation 

result. The results show that the lift and drag coefficients are increased with the angle 

of attack. The maximum lift that can be achieved by the eFA-1 is 0.888 and the 

minimum drag is 0.037. Stall angle occurs at α=14°. The simulation result shows the 

fairly good agreement with the experimental result but at the stall angle it can’t predict 

the stall phenomena. This is due to the limitation of turbulence model used in this 

study. The flow pattern helps in better understanding for the flow around the RPV with 

different angle of attack. The results obtained will provide an aerodynamic database of 

the eFA-1 RPV for the future use. 



CHAPTER ONE 

INTRODUCTION 

 

1.1 REMOTELY PILOTED VEHICLE 

 
Remotely piloted vehicle (RPV) is a small aircraft which is fully controlled 

by human. Remotely piloted refers to the command from people who control the 

movement of the aircraft using a radio control system. RPV or commonly known 

as Unmanned Aerial Vehicle (UAV) has a direct continuous link to ground 

control unit. It can be launched either from ground, vehicle or airplane. There 

are two categories of UAV, lethal and non-lethal. Lethal UAVs are missile, 

‘smart weapon’, anti-radiation and ‘fire and forget’ missile with an intelligent 

guidance system. Non-lethal UAVs are mostly deployed for civil and police task, 

border patrol, traffic controller, weather inspector and some countries use it for 

agricultural purposes. UAVs are used widely much more in military as a smart 

target, reconnaissance vehicle and ‘spy-in –the- sky’. The armed forces of 

United States of America  have divided the UAVs into four groups, close range 

(UAV-CR), short range (UAV-SR), medium range (UAV –MR) and endurance 

(UAV-E) [Gerken, 1991]. Each group has different endurances, ranges and 

missions. For non-military, the RPVs are used  to search and rescue people, 

aerial inspection of the housing area, fire detection, traffic control, weather 

sampling, surveillance of borders and coast. From World War 1 till now, the 

development of the UAV is still in progress. Many countries are now interested 

in RPV development, exploiting its full potential and have developed their own 

UAV programs. In Malaysia, the first development of UAV which is the two 
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seated aircraft manufactured by Composite Technology Research Malaysia 

(CTRM), is a stepping stone to start research on the aircraft of what is called 

‘eyes in the sky’. 

 

1.2 BACKGROUND OF THE STUDY 

 

Aerodynamic means the study of fluid flow and the interaction of the 

atmosphere around the objects. In aviation, aerodynamic is one of the most 

important fields to consider when designing a new or modifying the existing 

airplane. The collections of aerodynamic database, for example lift, drag and 

moments force will help the designers and aeronautical engineers to improve 

the aerodynamic design and the performance of the airplane. Since the first 

airplane has been developed, the design and performance of the airplane is 

getting better. Many years of studies in aerodynamics leads people to find a 

way and solutions on how to makes airplane or any flying object to get the 

maximum capability in speed, performance, ability in any maneuvering and 

prediction of forces and moment. 

 

At present, the design of UAV is one of the most challenging tasks in 

aerodynamic studies. In UAV design, the placement of the wing, tail and canard 

is somehow, not the same as in the conventional airplane configuration. There 

are a lot of UAV designs such as peanut shape (Canadair CL-227 Sentinel), 

VTOL UAV with counter-rotating blades and variation of shapes in the planform 

wings and tails. These configurations need a lot of aerodynamic skills and 

knowledge to ensure that the UAVs can safely take off, loiter and land. 
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The aerodynamic development and optimization of UAV is carried out in 

many countries by organizations, research and development centers and 

universities. The aerodynamic data are collected from the wind tunnel 

experiments or by CFD simulation.  

 

There are a numbers of CFD software in the market today which will help 

aerodynamicists and designers working on their fields efficiently. FLUENT, 

VSAERO, CFX, PORFLOW, FIDAP and AEROSOFT are examples of CFD 

codes used by researchers for their numerical simulation works. To date, most 

of the aerodynamic data collected is based on wind tunnel and computational 

methods. 

 

1.3 SCOPE OF STUDY 

 

The scope of present study mainly concentrates on getting the basic data 

on aerodynamic characteristics of the eFA-1 RPV model. This was built at the 

School of Mechanical Engineering, Universiti Sains Malaysia. During steady 

flight, there are four main forces subjected on the airplane. These subjected 

forces are lift, weight, drag and thrust. The parameters that are commonly used 

to describe aerodynamic characteristics of an aircraft are lift coefficient (CL), 

drag coefficient (CD) and moment coefficient (CM). These parameters are 

dependant on the Reynolds number, Re and the angle of attack, α. 

In order to obtain the required aerodynamic data, testing was carried out 

on a scaled model of the RPV in an open circuit wind tunnel and this is also 
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complemented by using computational simulation in CFD. Experimental tests 

and CFD simulation are done at different Reynolds numbers and different 

values of the angles of attack. The results provide the aerodynamic database 

for the RPV.  

 

1.4 OBJECTIVE OF STUDY 

 

The main objective of the present study is to obtain lift and drag 

coefficients of eFA-1 RPV. Two different methods are used in this study in order 

to obtain the aerodynamic characteristics which are experimental and numerical 

simulation methods. The experimental work was done using the open circuit 

wind tunnel and the simulation was carried out using the CFD code FLUENT 

6.0. The CFD simulation results were validated against the wind tunnel testing 

results. The results provide the aerodynamic data on eFA-1 RPV for future use. 

 

1.5 USM’s eFA-1 REMOTELY PILOTED VEHICLE  

 

In the present study, the RPV model followed the prototype model that 

was designed by Alfissima et.al [2001]. Alfissima et.al described the method of 

defining basic parameters that can be used as foundation for further work in the 

process of designing the UAV prototype. This was the first paper regarding the 

research work on the development of UAV in the Universiti Sains Malaysia.  
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Alfissima et.al [2001] have designed and fabricated an unmanned aerial 

vehicle system and developed the aeronautics design capability. In the project, 

objective was to build an RPV that is able to carry an optical system to a 

sufficient height to take aerial images. The vehicle was designed to carry a 

payload of approximately 4 kg at a cruising altitude of about 1000 m above the 

sea level and typical operating height at 300 to 600 m above ground. The 

cruising speed was at 100 km/h and flight durations of about 2 to 4 hours. The 

mission profiles of the UAV was that it has to perform take off, climb to reach a 

cruising height of about 1000 m above sea level, cruise flight, loitering, descend 

and landing. For launching, the RPV was designed to takeoff and land 

conventionally for the recovery purpose.  

 

The baseline specifications of the RPV were based on the database of 

typical RPV and UAV that are available in the market. Table 1.1 presents the 

selected baseline configurations of the RPV that has been made. 
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Table 1.1: Baseline specifications of eFA-1 RPV [Alfissima et.al, 2001] 

Baseline Specifications Units 

 

Payload 

Maximum take off weight (MTOW) 

Weight empty (WE) 

Fuel Weight (WF) 

Wingspan (b) 

Aspect Ratio (AR) 

Wing Area (SW) 

Stalling Speed (Vso) 

Maximum Speed (Vmax) 

 

≈ 4kgf 

≈ 19kgf 

≈ 12kgf 

≈ 3kgf 

≈ 3m 

8 

1.125 m2 

13 m/s 

42 m/s 

    

 

Airfoil used as the wing section was the Wortmann fx 63-137. The airfoil was 

designed for low-speed small aircraft. The contour and specifications of the 

Wortmann airfoil are presented in Figure 1.1 and Table 1.2 respectively. 
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Figure 1.1: Contour of Wortmann fx 63-137 

 

Table 1.2: The specifications of the Wortmann fx 63-137 [Alfissima et.al, 2001] 

 

Thickness 

Maximum camber 

Leading edge radius 

Trailing edge angle 

Clmax 

Cdmin 

αmax 

 

 

13.68% 

5.83% 

1.81% 

371.842º 

1.623 (at Re~ 3 x 105) 

0.014(at Re~ 3 x 105) 

13.44º(at Re~ 3 x 105) 

 

Besides the airfoil selection, the configuration and the planform shape 

were also considered. The planform of the wing was designed as rectangle 

because of simplicity and cantilevered. This high wing configuration has been 

chosen due to its flexibility in operation and also easy to fabricate. At the outer 
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part of the wing, 3º dihedral angle was added. The incidence angle of the wing 

was chosen as -2º. This was selected such that the wing should be as efficient 

as possible during the flight mission with maximum lift over drag ratio.  

 

aerodynamic center (a.c.)

center of gravity (c.g.)

The AR of the wing is 8. Fiber glass composite will be the major 

component used in constructing the UAV. However, some parts such as nose 

area and the area where the landing gear are attached were made of Kevlar to 

give better durability. Figure 1.2 shows the schematic diagram of eFA-1 RPV.  

 

Figure 1.2 : The schematic diagram of eFA-1 RPV  
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1.6 THESIS ORGANIZATION 

 

Chapter one gives a brief review on the history and background of the 

research conducted. Research problem is identified in this section, which also 

defines all objectives to be attained during the research. 

 

Chapter two explores all literature on related works carried out by other 

researchers. The focus here was on RPV development, aircraft aerodynamics 

studies and computational study. 

 

Chapter three is based on computational setup and numerical simulation of 

the scaled RPV of the study. 

 

In chapter four gives detailed analysis of the results obtained from the 

computational study and the flow pattern behaviour in RPV. 

 

Chapter five describes experimental setup, fabrication of the scaled model, a 

brief explanation on the wind tunnel testing equipment and testing procedures. 

 

In chapter six, the experimental results have been discussed. Here too the 

experimental and computational results have been compared and analyzed. 

 

Finally, chapter seven presents the conclusion and possible future works. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

This chapter describes the aircraft aerodynamic, RPV, wind tunnel 

testing and CFD. The previous research relating to the RPV development and 

aircraft aerodynamic characteristics are described in detail. Literature survey 

related to wind tunnel that is used for aircraft testing is also discussed. Finally, a 

review on CFD and their applications in aerospace researches is presented. 

 

2.1 AIRCRAFT AERODYNAMIC 

 
2.1.1 Aerodynamic forces on aircraft 

 
The forces developed on aircraft are produced by the interaction 

between the aircraft and the motion of the wind. These forces contribute to the 

performance of the aircraft whereby it influences the aircraft in speed flight, 

ascending and descending, take off and landing. During steady constant speed 

flight, the aircraft is subjected to lift, drag, and weight and thrust forces as 

shown in Figure 2.1. The aerodynamic coefficients for lift, drag and moment are 

functions of configuration geometry and attitude.  

 

 

 

 

 

  

 10



 

 

 

 

 

 

 

 

 

Figure 2.1: Aerodynamic forces acting on an aircraft [Barnard and Philpott, 1995] 

 

The lift is defined as the component of force in the plane of symmetry in 

a direction perpendicular to the line of flight. For steady level flight; the upward 

lift force has to be balanced by the aircraft weight. The formula of the lift is: 

 

LSCVL 2

2
1 ρ=    (2.1) 

 

where: 

L = lift force 

ρ = density 

V = velocity 

S = reference area 

CL = lift coefficient 
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For the conventional aircraft, most of the lifts are generated by the wing. 

When applying the above equation, reference area is referred to the wing 

planform area which includes the area shadowed by the fuselage [Anderson, 

1999]. Horizontal and vertical tail functions control stability and will provide a 

negative lift or down force. Fuselage and tail also contributes to the lift 

generation but in a small percentage. 

 

The generation of lift is achieved by producing a greater pressure at the 

lower surface than upper surface of the body. The difference of the pressure is 

achieved when the airspeed at the upper surface is higher compared to the 

lower surface. Inclination of the body relative to the air flow, also contributes to 

the lift. Lift coefficient measures how efficiently the wing is changing velocity into 

lift. The higher lift coefficient indicates an efficient airfoil design. The lift 

coefficient is stated as follows: 

 

SV

LCL
2

2
1 ρ

=     (2.2) 

 

Drag in general, is a force that causes a resistance in motion. Drag force 

is the force developed parallel to the relative wind. Drag force is defined as: 

 

DSCVD 2

2
1 ρ=    (2.3) 
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where: 

D = drag force 

ρ = density 

V = velocity 

S = reference area 

CD = drag coefficient 

 

van Dam [1999] in his review on different methods of drag prediction 

defines the aerodynamic drag as the sum of tangential or skin friction force and 

the normal or pressure forces parallel to but in the opposite direction of the 

vehicle’s velocity vector.  

 

Besides the skin friction forces and pressure forces that contribute to the 

drag of the body, there are other components which are form, viscous, induced 

and wave drags. Form drag is defined as a dominant component for vehicle 

with extended region of separated flow. The summation of skin friction and form 

drag is called viscous or profile drag. In his studies, van Dam also discussed 

about the induced drag which appear when the vehicle produce a lift. The 

induced drag is a result of the modification in the vehicle pressure distribution 

caused by the trailing vortex system that accompanies the production of lift. If 

one desires to predict a drag through CFD method, van Dam suggested that a 

critical ingredient for accurate drag prediction are meshes with high resolutions 

at relevant areas of the flow field and well-developed numerical solvers that do 

not swamp the flow solution with numerical viscosity. The drag coefficient 
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measures the efficiency of the wing. Low drag indicates that it is an efficient 

airfoil.  

 

The drag coefficient is expressed as: 

 

SV

DCD
2

2
1 ρ

=     (2.4) 

 

 

The lift and drag coefficients are related to the lift to drag ratio which is 

an important term that measures the effectiveness of an aircraft. The lift to drag 

ratio for a complete aircraft includes not only wing drag but also drags 

contributed by the rest of the aircraft [Kroes and Rardon, 1993]. 

 

L/D (aircraft) = lift from wing/drag from wing + other drag  (2.5) 

 

 The net aerodynamic forces act through a point which is called the center 

of pressure (CP). The center of pressure coefficient is the ratio of the distance 

of the CP from the leading edge to the chord length, which is given in 

percentage of the chord length behind the leading edge. The location of CP will 

change when the pressure around the body changes. It moves forward if the 

angle of attack increase and backward if the angle of attack decrease [Kroes 

and Rardon, 1993]. CP is important in the consideration of trimming the aircraft 

and also the stability. However CP difficult to obtain. Normally, the aerodynamic 

center (AC) is used by researchers to determine the concentrated aerodynamic 
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forces location. The location of AC is ¼ chord behind the leading edge and it 

does not move with the angle of attack.  

 

2.1.2 Reynolds Number 

 

In 1883, Osborne Reynolds introduced a dimensionless parameter which 

gave a quantitative indication of the laminar to turbulent flow. For flow of water 

in the pipe, the flow is in laminar below Reynolds number 2100. Transition 

region is in between Reynolds number 2100 to 4000 and turbulent flow has a 

Reynolds number greater than 40000 [Talay, 1975]. Reynolds number depends 

on the chord length, velocity and properties of fluid at different altitudes. High 

Reynolds number is achieved with large chord length, high velocity and low 

kinematics viscosity. Most of the airfoils operate at several million Reynolds 

number. 

 

The Reynolds number is expressed as: 

 

μ
ρVX

=Re    (2.6) 

 

where: 

ρ= density of fluid, kg/m3 

V= mean velocity of fluid, m/s 

X= characteristics length, m 

μ= coefficient of viscosity, kg/m.s 
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Reynolds number is usually used in an aircraft design to take into account the 

scale effect and as an index to predict various types of flows. 

 

2.1.3 Airflow around the airfoil 

 
Figure 2.2 shows the streamlines around a two dimensional airfoil. At a 

small angle of attack, fluid particles will follow the streamline. The streamline 

slow down at the front of the leading edge. The point where the particles are 

slowing down and divided into two parts of surfaces is called stagnation point. 

The division of the streamline causes increase in velocity at the upper surface 

while at the lower surface, the velocity will decrease [Barnard and Philpott, 

1995]. 

 

 

 

 

 

 

Figure 2.2: Streamlines around 2D airfoil [Barnard and Philpott, 1995] 

 

A three dimensional view is shown in Figure 2.3. The flow is represented 

by the stream surface. It is observed that the dividing stream surface meets the 

wing section along a line just under the leading edge. The locus of stagnation 

position is called stagnation line. 
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Figure 2.3: Stream surface [Barnard and Philpott, 1995] 

 

There are two types of flow that exists in the viscous flow, laminar and 

turbulent flows. Anderson Jr. [1989] defines laminar flow as a flow where the 

streamlines are smooth and regular and a fluid element moves smoothly along 

the stream. Whereas, the turbulent flow is the flow where the streamline break 

up and a fluid element moves in a random, irregular and tortuous fashion. The 

presence of the friction in a flow caused a shear stress, τω which has a 

tangential direction to the surface which will give a drag force is called skin 

friction drag. The friction also causes a flow separation. It is due to the pressure 

on the rearward surface less than the pressure on the forward surface. This 

pressure difference causes what is called pressure drag due to separation.  

 

Figure 2.4 shows the boundary layer separation. At the leading edge of 

the airfoil, the pressure is high. As the flow accelerates to the upper surface, the 

pressure is decreased to a minimum value, which is below the static pressure. 

As the flow is near the trailing edge, the pressure gets gradually increased. This 
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region of increasing pressure is called as a region of adverse pressure gradient 

[Anderson JR, 1989]; the pressure increases until it returns to a value close to 

the original free-stream pressure. It means that the air has to travel from the low 

to high pressure by slowing down and giving up some of the extra kinetic 

energy. Close to the surface inside the boundary layer, some of the available 

energy is dissipated in friction, and the air no longer return to its original free 

stream velocity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                            

 

Figure 2.4:  Boundary layer separation [Barnard and Philpott, 1995] 
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 As the angle of attack is increased, at the leading edge, the pressure 

drops to a value far below the free stream static pressure. As the flow moves 

near the trailing edge, the rate of increase in pressure is rapid. The mixing 

process is too slow to keep the lower part of the layer moving and dead water 

region starts to form. The boundary layer stops following the mainstream and 

the flow is said to be separated. The flow field tends to separate from the 

surface and cause stalling [Barnard and Philpott, 1995]. 

 

2.1.4 Effect of vortices 

 
When considering the three-dimensional flows around the airfoil, the 

effect of vortices has to be considered. The investigation of the vortices effect 

on the aircraft is important. Flows with minor disturbance are most desirable 

and it is a challenge subject for the researchers to study and obtain the solution. 

In the aircraft, the separation of flow and vortices are the most critical conditions 

which gives a deteriorating performance in an aircraft. Most of the conventional 

aircraft flight has turbulent flow. The turbulent flow contributes to increase in the 

drag coefficient. The researchers and scientists carry out lot of research to 

overcome this situation and try to improve. 

 

For the three dimensional wing, the wing is exposed to the wind and the 

span wise flow occurs. The higher pressure at the lower surface spills out 

toward the wing tip to the upper wing. The pressure at the upper surface has a 

tendency to equalize the pressure. This causes the lift force per unit span to 

decrease near the wing tip. The spanwise pressure variation exists and as a 

result the incoming flow is inward towards the root at the upper surface and 
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outward at the lower surface. The flow from upper and lower surfaces joins at 

the trailing edge. The differences in spanwise velocity component will cause air 

to roll up and result in vortices as shown in Figure 2.5. 

 

 

 

 

 

 

 

 

Figure 2.5: Formation of tip vortex [Bertin and Smith, 1998] 

 

A short distance downstream, the vortices roll up and combine into two 

distinct cylindrical vortices [Bertin and Smith, 1998]. This situation is shown is 

Figure 2.6. 

 

 

Figure 2.6: Vortex flow effect [Talay, 1975] 

 20



2.2 REMOTELY PILOTED VEHICLE 

 
2.2.1 History of flight: 

 

The history of flight began when human keep questioning the ability of 

the bird to fly. Pre historic man copies the action from the bird. In the year 

around 1500, Leonardo da Vinci found that the movement of the wing will 

produce a resulting force. From that, he invented Ornithopters, the machines 

that were intended to copy the bird’s wing-the muscle power being supplied by 

man. This attempt failed. Instead it was based on the concept lighter-than –air, 

Mongolfier brothers from France, constructed a hot air balloon in 1783 and they 

achieved a height of 6000 ft in a balloon with a diameter of more than 100 ft. 

After that, Sir George Cayley (1773-1857), known as a ‘Father of Modern 

Aerodynamic’ built a glider with a wing and tail. He suggested on idea to have a 

fixed wing for generating lift and a combined horizontal and vertical tail for 

stability. He discovered that the basic force acting on a wing and the increasing 

angle of attack of wing will produce higher lift. At the end of 19th century, a 

German named Otto Liliental first successfully flew a glider of his own design. 

Later, Orville and Wilbur Wright from Ohio built an improve glider based on Otto 

Liliental’s experimental result. In 1896, Dr Samuel Pierpont Langley designed 

small steam-power aircrafts and on December, 1903, the Wright brothers 

achieved success in a gasoline engine-powered machine named Wright Flyer 1. 

Starting from this, the evolution of aviation and aerodynamic has developed. 

Wright brothers built aircrafts based on their studies which are Flyer 2, Flyer 3 

and Wright Type A in 1908 [Talay,1975]. 
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2.2.2 History and development of RPV and UAV 

 

The concept of pilotless vehicle is not new. It has been developed before 

the World War I. In World War II, the Germans developed the V-1 “Buzzbomb” 

rocket, with the concept of pilotless vehicle. It is a simple unmanned aircraft with 

a wingspan of about 19 ft and overall length of 26 ft. Besides that, they were 

also produced by the Allied Forces and used for photo reconnaissance task. 

After that, the UAVs were seen as a potential reconnaissance platform which 

was done in Vietnam War. The modified Teledyne-Ryan AQM-34 Firebee jet 

powered target was used for damage-assessment mission [Gerken, 1991].  

 

The RPV and UAVs are mostly used for the military purposes. Recently, 

the UAVs have been used in all major conflicts including those in the Persian 

Gulf, Kosovo, Afghanistan and Iraq. The success of UAV in the Persian Gulf 

indicates usefulness of UAV in obtaining timely intelligence during modern 

military conflicts. The Pioneer, remotely piloted vehicle, has served in fleet and 

ground operation since 1987. Pioneer air vehicle logged 1011 hours during 307 

flights in Operation Desert Storm [Howard et.al, 1996]. Similarly, the endurance 

of the UAV Predator, equipped by the ordnance, was credited as the first UAV 

with the precision strike capability, when it stalked Taliban and Al-Qaeda 

leaders in Afghanistan War, by striking these targets with Hellfire missiles 

[Ciufo, 2003]. In Iraq war, eleven types of UAV [www.auvsi.org] were used in 

the war for the field duties. In the war, most of the UAVs are deployed for 

surveillance, reconnaissance, and observation and targeting. Desert Hawk, 
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Dragon Eye, Global Hawk, Pioneer, Pointer and Predator are the common 

UAVs that have been deployed for these tasks. 

 

In Malaysia, the first unmanned aerial vehicle was based on the Eagle 

150 ARV aircraft. The system has a ground control unit and it can also be 

handled by remote control. The navigation was made through a highly sensitive 

video camera. So far, Malaysian Government has spent about RM47 million on 

the UAV and has been fully operational in year 2002.The UAVs have to fulfill 

the task of monitoring the country’s border line, surveillance, spying operations 

and as a jammers in electronics warfare. The UAV can fly for about 10 hours, 

with the effective range of 220km. It can carry payload of about 60kg and has a 

radar system for multiple task of surveillance. In the research field, the 

Department of Aerospace Engineering, Universiti Putra Malaysia is intensively 

involved in UAV development. The UAV is expected to be completed in the year 

2006 with the mission tasks of agricultural, surveillance and weather sampling. 

It is designed to be fully controlled by the ground station unit with the absence 

of pilot. The UAV is expected to fly for about 24 hours and at the highest service 

ceiling of about 500 ft [Jamlus, 2004]. 

 

The RPVs are capable to carry camera, sensors, missiles, acoustic 

instrument, air particle sampler and chemical agent detector depending on the 

mission. Nowadays, many aircrafts, which are based on the unmanned aerial 

vehicle system, exists in the market. Micro Aerial Vehicle (MAV) is the smallest 

aircraft. Due to its small size, it has an advantage of ability to fly unnoticed in 

battlefield. Tactical UAV is an aircraft, which is designed to operate at radius of 

 23



 24

100 to 500 km with about 2 to 7 hours endurance while Endurance UAV is 

designed to operate at a high altitude with endurance exceeding 24 hours. 

 

The RPV and UAV have designs of varying dimensions, weight, 

endurance and speed for vision objective requirements. Usually, for the long 

endurance task, the UAV is bigger, heavier and faster. Data of UAV in the 

market today with its specification is presented in Table 2.1 [www.auvsi.org]. 

Commonly, the materials that are used to develop the UAV must be damage 

resistant and designed for limited field repairs. Examples of UAV materials are 

fiberglass composites and aluminum. The power plant, which power the RPV 

and UAV are usually the electronic propulsion system, turbofan engine, piston 

engine or electric motor powered by batteries. The launch and recovery of the 

automated aircraft are done in many ways. For example: hand launched, 

autopilot commanded, wheeled, rocket assisted take off, track mounted 

hydraulic catapult, parachute and airbag. 

 

One of the areas of interest is the aerodynamic performance and design 

of the RPV. This is because of the various shapes of wing and fuselage design, 

launch and recovery at low Reynolds number flying condition. Figure 2.7 shows 

in different configurations of RPV and UAV. Due to limited information about the 

performance of the various shapes of the RPV and UAV designs, research 

centers and universities are doing extensive research on RPV development and 

performance. 

 
 
 
 



 

     Table 2.1 : The data of UAV [www.auvsi.org]    
              
  Name of UAV and RPV   Dimension   Weight       Performance     

    
Overall 
length Wingspan Height MTOW Empty Payload Max.speed Cruise speed Endurance Max.Range 

Max. 
Altitude 

    (m) (m) (m) (kg) (kg) (kg) (km/h) (km/h) (hr) (km) (m) 

  Brumby 1.97 2.82 n.a 35 19 14 185 72 1     

  Fox AT1 2.75 3.60 n.a. 85 55 20 n.a 150 3 to 4 166 4000 

  Fox AT2 2.75 3.60 n.a 125 65 25 n.a 150 3 to 5 166 4000 

  Half-Scale UAV Trainer 1.9 2.5 0.5 18.1 12.7 4.5 148 n.a 1 n.a n.a 

  Kestrel 11 4 5 n.a 120 n.a 25 to 30 185 n.a 5 n.a 2500 

  Micro V 2.85 3.60 n.a 45 27 8 185 118 5 50 4575 
 

 
 

 Mirach 26 3.85 4.73 1.27 200 186 50 220 145 6 100 3500 

  Pioneer (RQ-2A) 4.26 5.11 1.2 203 n.a 45 176 n.a 6 185 3660 

 

 

Shadow 200-T 3.10 3.89 0.86 127.3 83.2 28.2 194 135 4 50 to 200 4500 

 Shadow 200 3.40 3.9 0.89 148.6 91 25.3   155 5 to 6 200 4573 

  Sojka 111 3.83 4.12 1.07 145 125 20 180 n.a 3 100 3000 

  Annasnas Mk I 2.8 3.80 1.3 125 43 25 130 n.a 14 n.a 5000 

  Shadow 400 3.82 5.1   201 147 30   139 5   3660 

  Shadow 600 4.8 6.8   265   41   139 12 to 14   4877 
  Desert hawk 0.732 1,158   1,888   0.373     1.5     
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Figure 2.7: The RPV and UAV with different configuration [www.auvsi.org]
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