
 

COMPARATIVE STUDY ON BEHAVIOUR OF CABLE-STAYED BRIDGE 
WITH NORMAL SUPPORT AND SPRING CONTROLLED SYSTEM 

 
Ma Hnin Ei Cho1, Dr.Tin Tin Win2 

 
1 Postgraduate Student, Department of Civil Engineering, 

 Mandalay Technological University, Myanmar 
2Director, Myanma Science and Technological Research Department, 

Ministry of Science and Technology, Myanmar 
1hnineicho1980@gmail.com 

 

 
ABSTRACT: The main objective of this research is to study the damped spring controlled 

system to reduce the earthquake-induced forces in the structure of cable-stayed bridges by 

applying STAAD-Pro structural analysis. The total length of the proposed cable-stayed bridge 

is 450 ft from abutment to abutment. It has symmetrical span arrangement with 250 ft (main 

span length) and 100 ft (each of side span length) respectively. It consists of dual H-type 

tower and the warren truss type steel girder. The girder has 10ft each panel bays and 5ft in 

height. A reinforced concrete, H-type tower, rises 50 ft above the truss girder base. Its apex is 

15 ft high in pylon that supports a dual-plane cable system. Two pairs of cables on each side 

are arranged as a fan type cable system. Cables are installed from the outermost cable 

connections; from the ends of the bridge to the tower with 50 ft spacing to distribute axial load 

throughout the deck. HS 20-44 AASHTO loading will be applied. Effects of impact loading, 

wind loading, temperature forces and horizontal seismic loading will also be considered.  

Firstly, the static analysis of cable-stayed bridge is accomplished without considering 

the effect of earthquake forces. After that the spring supports are installed between tower and 

girder for effective flexible responses of the cable-stayed bridge due to the horizontal 

earthquake forces only. The intelligent control system is used to guarantee the relative 

movements between the connected structural parts. The bridge is analyzed and designed by 

using the STAAD-Pro engineering software in this study. The materials and loads are 

specified according to the AASHTO specifications. This study provides the proof of seismic 

protection and the comparative results of the controlled and uncontrolled structural system 

such as tower deformations, truss girder axial forces, cable axial forces, truss girder 

displacement and support reactions. 

 

Keywords: cable, earthquake force, spring stiffness, displacement, axial forces 

 

 

1. INTRODUCTION 

Bridges are lifeline structures. In Myanmar, bridges play an important role because of 

natural conditions that the topography is steep and many rivers flow. Among several 

types of bridge, cable-stayed bridges are the most popular bridge type for long-span 

bridges. This can be attributed to several advantages, predominantly being 
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associated with the relaxed foundation requirements. This leads to economical 

benefits which can favor cable-stayed bridges in free spans of up to 1000 m. 

A typical cable-stayed bridge is a continuous girder with one or two towers 

erected above piers in the middle of the span. From these piers, cables are attached 

diagonally to the girder to provide additional support. Because the only part of the 

structure that extends above the road is the towers and cables, cable-stayed bridges 

have a simple and elegant look. Cable-stayed bridges offer outstanding architectural 

appearances due to its small diameter cables, minimum overhead structure, and 

wide choice of design methods. 

 

2. COMPONENTS OF CABLE-STAYED BRIDGE 

The cable-stayed bridge is the structure in which the stiffening girder is supported by 

straight inclined cables which are anchored at the towers. Its structural type is 

regarded as one of the continuous girder types. The structural components of cable-

stayed bridge: the cables, the pylon or the tower and the girder. 

It is apparent that the close supporting points enable the deck to be very slim. 

Even though it has to support considerable vertical loads, it is loaded mainly in 

compression with the largest prestress being at the intersection with the towers. This 

is due to the horizontal force which is applied by each of the cables. This 

characteristic also distinguishes the cable-stayed bridge from the suspension bridge 

because necessary provisions for anchoring cables are much more relaxed. 

 

 

 

 

 

 

 

                   Figure.1. Structural Components of Cable-Stayed Bridge 

 

3. TYPES OF LOADING 

In this study, the loadings applied to the structural model for the proposed bridge by 

using STAAD-Pro engineering software are followings: 

(1) Dead load 

(2) Live load  

(3) Impact or Dynamic effect of the Live load  

(4) Wind load  

cable Tower 

girder 
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(5) Thermal forces and  

(6) Seismic loads due to lateral direction. 

 

4. ANALYSIS METHODS 

Generally speaking, three methods are available for analysis and design of structures 

for seismic loads, namely, response spectrum modal analysis, the time history 

method, and the equivalent static force method. Of these, the first two are called 

dynamic analysis methods. Firstly, the bridge structure is designed by static analysis 

method. And then the dynamic analysis method is applied to the structure with 

controlled spring support condition and uncontrolled system condition. 

Response-spectrum analysis shall be performed using a modal damping 

value for the fundamental mode in the direction of interest not greater than the 

effective damping of the isolation system or 30 percent of critical, whichever is less. 

Modal damping values for higher modes shall be selected consistent with those 

appropriate for response spectrum analysis of the structure above the isolation 

system with a fixed base. For dynamic analysis, the isolated bridge can be modeled 

as a continuous beam for simplicity. Since this model is flexible in the vertical 

direction, it cannot be considered as a rigid block in that direction.  

The basic factors including the spring stiffness involved in engineering design 

are taken into consideration for the three-span bridge model in this study. The span 

length is based on the continuous beam model. Once the span length is decided, the 

size of the cross section can be calculated by applying traffic load as a live load plus 

the dead load of the bridge model. Note that the deflection under normal bridge 

loading must be controlled and can be the determinant for the bridge stiffness. From 

the point of seismic isolation, the bearings are expected to be as flexible as possible. 

The stiffness of the springs can be calculated based on the reaction at the bearing 

and the static settlement limit. 

 

5. THE USE OF DAMPED SPRING SUBJECTED TO EARTHQUAKE FORCES 

 In the proposed configuration of the cable-stayed bridge, the deck and girders can 

be considered to be floating on helical spring bearings.  Helical springs, which have 

both vertical and shear stiffness, are designed to support vertical loads, including the 

self-weight of the bridge, providing the mechanism to accommodate movement in all 

directions. To protect the bridge deck and abutment from damage by an earthquake 

in the horizontal direction, helical springs are also installed between the deck and 

towers.  
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6. DESIGN CONFIGURATIONS OF THE PROPOSED BRIDGE   

In this study, the total length of the proposed cable-stayed bridge is 450 ft from 

abutment to abutment. It has symmetrical span arrangement with 250ft (main span 

length) and 100ft (each of side span length) respectively. Dual H-type reinforced 

concrete tower and dual-plane cable system are selected. The girder, warren truss 

type steel girder, is used. The total width of bridge surface is 30ft, the carriage way 

width is 24ft and the two sidewalks are 3ft each as shown in Fig. 2.  

 The deck is supported by steel stay cables at main pylons. These are 

anchored directly above the web of the main girders. The slab thickness is 9 inches 

above the girders. 

 

                 

 

 

 

 

 

 

 

Figure 2. Elevation and Plan View of Proposed Bridge 

 

The box section H-type tower, which rises 65ft above the supporting pier cap 

and its apex is 15ft high as shown in Fig. 3.  

         

 

   

       

 

 

Figure 3.  Tower with Dual- Plane Cable System 
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 The total traffic load is acting on the deck of the girder, and both the dead 

load and the wind area in most cases are larger for the girder than for the cable 

system. In this study, the stiffening truss girder is chosen.  

According to the standard configuration, the girder has 10ft each panel bays 

and 5ft in height. It is 32ft wide. The warren truss type steel girder is adopted for the 

proposed bridge as shown in Fig. 4. 

 

 

Figure 4. The Proposed Warren Truss Type Steel Girder 

 

 The two planes of stay cables are arranged in the fan pattern. Cables are 

installed from the outermost cable connections; from the ends of the bridge to the 

tower with 50ft spacing to distribute axial load throughout the deck. 

Each strand consists of seven twisted wires, with an external diameter of 0.5 

inch or 0.7 inch as shown in Fig. 5. 37, 61 and 91 number of strands are generally 

used.                     

 

 

                  

 

     Figure 5. Grouting Type Polyethylene Strand 

 

The type of deck-tower connection of cable-stayed bridge is very important to 

protect the bridge under seismic excitations both under construction and after  

construction.  

24 ft 

5 ft 

3 ft 

Polyethylene duct 

Cement grout 

Strand 

Spacer 
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6.1. Design Condition 

 

 

 

6.2. Modeling of the Proposed Cable-Stayed Bridge 

In this study, the type of cable-stayed bridge is modeled as three-span 

continuous bridge which has a main span of 250 ft and side spans of 100 ft 

respectively. It is modeled as space frame model. Its roadway width is 24 ft and 

sidewalks width is 3 ft respectively. In this model, the total number of 752 nodes, 

1403 beam elements and 108 plate numbers are assigned respectively. The steel 

girder and pylon are modeled as space frame and the slabs are as plates. The cable 

is modeled as space solid. The cable system of the bridge was of the efficient fan-

shaped type, which is in good harmony with the H-type pylon. The tower height is 50 

ft above the bottom of the girder. The anchor portion of the pylon is 15 ft and it has 

15 ft above from pile cap. The cross section of the stiffening girder is the warren truss 

type girder that has the length of 450 ft is divided into segments. Each panel bay has 

10 ft long. It is 32 ft wide and 5 ft high. The 100 ft span has two pairs of cables with 

50 ft spacing each. The support of the pylon base is assumed as fixed base on the 

pie cap. On one side of the abutment, truss girder is installed with pinned type 

support and on the other is enforced but support type. And the damped spring 

support type is connected girder and pylon in horizontal and vertical directions. The 

outermost cable connections are edges of the bridge to distribute axial load 

throughout the deck.  

 

Type                           _ Three-Span Cable-Stayed bridge 

Span Length              –  main span    250 ft 

                                      side span      100 ft 

Carriageway width    – 24 ft 

Sidewalk width          _ 3 ft 

Tower Height             _ 50 ft  

Tower Type                _ H-type 

Girder Type                _ Warren Truss type 

Girder Height             _ 5 ft 

Live load                    _ HS 20-44, 20tons 

Slab               _ Asphalt concrete 9 inches thick 
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6.2.1. Boundary conditions of the proposed model 

(a) Material properties 

Material assumptions are the following Table 1. 

 

(b) Properties of stayed cables 

For the proposed bridge, parallel wire strands are used, each strand 

consists of seven twisted wires with an external diameter of 0.5 in. The properties of 

61 Ø 0.5 inch of 7 twisted wires are described in Table 2. 

 

Table 1. Properties of Structural Steel 

Minimum tensile strength 

Minimum yield strength 

fu = 75.0 ksi 

fy = 60.0 ksi 

Modulus of elasticity E = 29,000.0 ksi 

Shear modulus G = 11200.0 ksi 

Poisson’s ratio ν = 0.3 

Coefficient of linear 

expansion 
α = 12.0x10-6 (°C) 

Structural Steel 

(Grade 60, ASTM A 572) 

Unit weight w = 490.0 (lb/ft3)  

 

 

Table 2. Strand Capacities 

Nominal cross-section of steel (inch2) 12.00 

    0.2% proof stress, σ0.2 (ksi) 242.22 

    Ultimate tensile strength, βz (ksi) 270.00 

    Ultimate load (k) 3570.00 

    Modulus of elasticity, E (ksi) 29,000.00 

Poisson’s ratio, ν 0.30. 

 

7. MAXIMUM OUTPUT RESULTS 

From the analysis, the maximum node displacement, beam end forces and 

axial forces of the structure with controlled spring and uncontrolled system due to 
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horizontal earthquake forces (EQx and EQz) are shown in tables and figures as 

below. 

Table 3. Maximum Node Displacement with Control System 

   Horizontal Vertical Horizontal 

 Node L/C X in Y in Z in 

Max X 454 
247 COMBINATION LOAD 

CASE 247 
0.844 1.38 0.012 

Min Y 59 276 LOAD CASE 278 -0.009 -5.152 

 

0.011 

 

Max Z 207 240 EQZ 0.036 0.001 0.871 

 

 

Table 4. Maximum Node Displacement without Control System 

   Horizontal Vertical Horizontal 

 Node L/C X in Y in Z in 

Max X 300 
247 COMBINATION LOAD 

CASE 247 
0.775 0.434 0.004 

Min Y 59 276 LOAD CASE 278 -0.025 -4.84 0.007 

Max Z 207 240 EQZ 0.112 0.001 0.696 

 

 

Table 5. Maximum Beam End Forces with Control System 

 Beam L/C Node Fx kip Fy kip Fz kip 

Max 

Fx 
428 398 LOAD CASE 399 132 4269.66 -49.23 24.07 

Min 

Fx 
1508 400 LOAD CASE 401 109 

-

2602.35 
25.85 -17.97 

Max 

Fy 
408 

248 COMBINATION 

LOAD CASE 248 
220 32.35 662.38 32.83 

Min 

Fy 
429 296 LOAD CASE 298 201 3268.71 

-

750.94 
-77.68 

Max 

Fz 
1511 240 EQZ 132 668.96 583.72 744.95 
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Continued; 

Min 

Fz 
1511 

248 COMBINATION 

LOAD CASE 248 
755 -350.37 

-

700.99 

-

762.20 

Max 

Mx 
424 398 LOAD CASE 399 3 1437.50 23.38 -88.54 

Max 

My 
427 240 EQZ 109 29.43 30.38 596.01 

Max 

Mz 
429 

247 COMBINATION 

LOAD CASE 247 
201 435.7 483.67 -12.09 

 

 

Table 6. Maximum Beam End Forces without Control System 

 Beam L/C Node Fx kip Fy kip Fz kip 

Max 

Fx 
428 398 LOAD CASE 399 132 4270.82 -4.59 21.95 

Min 

Fx 
1508 398 LOAD CASE 399 109 

-

2596.94 
1.42 -7.13 

Max 

Fy 
408 

248 COMBINATION LOAD 

CASE 248 
220 22.52 728.40 40.92 

Min 

Fy 
1511 

247 COMBINATION LOAD 

CASE 247 
755 0 

-

870.61 
-2.44 

Max 

Fz 
1512 

248 COMBINATION LOAD 

CASE 248 
191 0 534.23 2627.97 

Min 

Fz 
1512 

248 COMBINATION LOAD 

CASE 248 
756 0 

-

178.41 

-

2620.43 

Max 

Mx 
424 398 LOAD CASE 399 3 1447.80 14.13 -87.62 

Max 

My 
1512 240 EQZ 191 0 356.32 2624.20 

Max 

Mz 
1513 296 LOAD CASE 298 757 188.98 

-

328.91 
-36.15 
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Table 7. Axial, Shear and Torsion Forces of Tower with Control System 

Beam L/C Node 
Axial 

Force kip 

Shear-Y 

kip 

Shear-Z 

kip 

Torsion 

kip-in 

424 240 3 29.11 26.71 506.59 0 

425 240 9 662.09 24.15 559.92 4959.56 

427 240 109 29.43 30.38 596.01 0 

430 240 115 663.89 21.82 494.96 4741.17 

 

Table 8. Axial, Shear and Torsion Forces of Tower without Control System 

Beam L/C Node 
Axial 

Force kip 

Shear-Y 

kip 

Shear-Z 

kip 

Torsion 

kip-in 

424 240 3 52.18 68.36 519.87 0 

425 240 9 739.02 48.67 545.07 7103.44 

427 240 109 50.40 72.12 590.21 0 

430 240 115 739.73 46.32 499.81 6853.51 

 

 

    Figure 6.  Axial Forces of Top Chord            Figure 7.  Axial Forces of Top Chord  

    Members due to EQx                                    Members due to EQz  

 

 

 

 

 

 

    

    Figure 8. Longitudinal Displacement of        Figure 9. Longitudinal Displacement of                                             

    Top Chord Members due to EQx                  Top Chord Members due to EQz                     
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  Figure 10.Transverse Displacement of        Figure 11.Transverse Displacement of         

 Top Chord Members due to EQx                  Top Chord Members due to EQz 

 

   

Figure 12. Vertical Displacement of Top         Figure 13. Vertical Displacement of Top   

Chord Members due to EQx                            Chord Members due to EQz 

   

   

 

   

 

 

 

Figure 14. Axial Forces of Bottom Chord       Figure 15. Axial Forces of Bottom Chord        

 Members due to EQx                                     Members due to EQz      

 

 

Figure 16. Longitudinal Displacement of        Figure 17. Longitudinal Displacement of         

Bottom Chord Members due to EQx               Bottom Chord Members due to EQz 
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Figure 18. Vertical Displacement of Bottom       Figure 19. Vertical Displacement of                               

 Chord Members due to EQx                              Bottom Chord Members due to EQz 

 

 

 

  

 

 
 
Figure 20. Transverse Displacement of          Figure 21.Transverse Displacement of           

Bottom Chord Members due to EQx               Bottom Chord Members due to EQz 

 

 

Figure 22. Axial Forces of Vertical Web           Figure 23. Axial Forces of Vertical Web  

Members due to EQx                                       Members due to EQz 

 

 

Figure 24. Axial Forces of Lateral Bracing           Figure 25. Axial Forces of Lateral                                                                        

due to EQx                                                             Bracing due to EQz 
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Figure 26. Longitudinal Displacement of          Figure 27. Longitudinal Displacement 

of  Lateral Bracing due to EQx                          of Lateral Bracing due to EQz 

 

 

 

 

 

 

 

 

Figure 28.Transverse Displacement of            Figure 29.Transverse Displacement of  

Lateral Bracing due to EQx                               Lateral Bracing due to EQz 

 

                       

 

 

 

 

 

  Figure 30.Vertical Displacement of Lateral       Figure 31.Vertical Displacement of         

   Bracing due to EQx                                          Lateral Bracing due to EQz 
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Figure 32.Cable Axial Forces due to EQx     Figure 33.Cable Axial Forces due to EQz  
 
8. DISCUSSIONS AND CONCLUSION 

The objective of this research is to study the behavior of cable-stayed bridge with 

normal support and spring controlled system. As a first step, static analyses are 

conducted on the bridge subjected to relative displacements between the girder and 

pylon to study the impact of tectonic movements on the structure. The most 

responses especially vertical deck displacements of the damped spring connected 

between deck and tower that are better than those of the hinged connection as 

shown in previous chapter. The helical spring possesses stiffness in all directions. Its 

stiffness can be customized according to design requirements. Compared to a non-

isolated bridge, a spring-supported bridge is relatively flexible in the vertical direction 

of the structure. And the maximum forces of the members without damped springs 

are greater than installing with the damped springs. In this study: 

1. Maximum deformation was occurred at mid-span under seismic loadings. 

2. In cable-stayed bridge, height of the tower influenced the cable forces and 

deformations of main girders as the loads were finally transferred to the tower. 

3. The deformation of the structure was found to be considerably reduced by the 

spring control system. 

4.  Maximum cable axial forces, girder and tower forces for spring controlled 

system were reduced effectively under horizontal earthquake loadings. 

5. Good results can be obtained by balancing the reduction in forces along the 

bridge with control system as compared to the uncontrolled system. 
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