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The effects, of substrate temperature, Ts, and 2% molecular hydrogen annealing on 

the optical gap, Eo, of evaporated a-Ge thin films on borosilicate glass substrates 

are compared. As T s increases from 100°C to 200°C, Eo increases from 1.13 e V 

to 1.43 e V. However, as T s increases further to 400°C, Eo decreases to 1.27 e V. 

This trend is not observed when an as-deposited film is annealed in steps from 

100°C to 400°C in an atmosphere of 98% nitrogen and 2% hydrogen. In the latter 

case, a non-linear increase of Eo is observed. 

I. Introduction 

Efforts are being directed towards using microcrystalline tetrahedral 

semiconductor material for better efficiency in thin film solar cells. 1 Since 

microcrystallinity is associated with increasing deposition temperature and 

annealing temperature, the effect of both these temperatures on the optical 

bandgap would be interesting to be compared. There is considerable 

interest on whether an annealed tetrahedral semiconductor thin film sample 

in an atmosphere of molecular hydrogen has similar properties, particularly 

the optical bandgap as that as microcrystalline samples made at an initially 

elevated substrate temperature. 

We report here the change of the optical energy gap with elevated substrate 

temperature in a-Ge thin films with comparison to increasing annealing 

temperature in an atmosphere of 2% molecular hydrogen. 

II. Experimental Techniques 

Thin a-Ge films are obtained by thermal evaporation of high-purity 

(99.999%) germanium lumps from a tungsten boat kept at a distance of 20 

cm from ultrasonically cleaned borosilicate glass substrates in pressure 

better than 10-6 torr. 



Six samples of thickness -- 1 f..lm are deposited at substrate temperatures of 

100°C, 150°C, 200°C, 250°C, 300°C and 400°C. The rate of deposition 

is maintained at 120Als - 150 Als. 

An as-deposited sample STF20 (T s -- 27°C) is annealed in steps at 1000C, 

200°C, 300°C and 400°C in an atmosphere of 98% nitrogen and 2% 

hydrogen for 10 minutes. Optical measurements are taken at room 

temperature with a double-beam spectrophotometer. The optical gap is 

obtained by Tauc plot. 

III. Results and Discussion 

The optical gap increases from 1.13 e V to 1.43 e V as the substrate 
temperature increases from 100°C to 200°C. However,wh~n Ts is 

increased further to 250°C, 3000 C and finally to 400°C, Eo decreases to 

1.38 eV, 1.31 eVand 1.27 eV respectively. Table 1 shows the changes of 

Eo with Ts· 

No. Sample Ts (Oc) Eo (eV) 

1 SH 10 100 1.13 

2 SH20 150 1.34 

3 SH30 200 1.43 

4 SH40 250 1.38 

5 SH 50 300 1.31 

6 SH60 400 1.27 

Table 1: The change of optical bandgap values, Eo, with substrate 
temperature, T s. 
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Fig 1: The change of Eo with T s 

When the as-deposited sample STF 20 is annealed in steps from 100ce to 

400c C, the optical bandgap increases from 0.81 eV to 0.89 eV, Table 2 

shows the change of Eo values with annealing temperature in 2% hydrogen. 

Annealing temperature (OC) Eo (eV) 

( as-deposited) 0.78 

100 0.81 

200 0.81 

300 0,83 

400 0.89 

Table 2: The change of Eo values with annealing temperature, T a' 
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Figure 2: The change of Eo with Ta in 2% hydrogen 

The change of optical bandgap values is strongly related to the structure of the 

films. Evaporated a-Ge films of thickness"" 1 f..lm on glass substrates at T s < 

240°C show only a broad X-ray diffraction peak at 28- = 49°C; which is 

typical of the amorphous phase.2 However, when Ts > 240°C, two narrow 

lines at 28 = 53.7° appear in the spectra superimposed on the broad peak, 

indicating the presence of microcrystals embedded in the amorphous phase. 

Upon increasing T s' the strength of the narrow lines keeps growing while the 

broad peak decreases. Finally, at Ts ..... 285°C, the amorphous phase no 

longer exists. Laue photographs, however, indicate the amorphous nature of 

all the samples. This may be due to the crystalline nuclei not large or 

numerous enough for the characteristic crystalline pattern. 
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The variations of the optical gap presented here differ from previous 

observations of the asymptotic behavior of the optical gap with higher 

substrate temperature. The initial trend where Eo varies more rapidly with 

T s at lower values, however, is similar. F. Evangelisti et al2 reported an 

increase of local order as a function of Ts in a-Ge samples grown at 

T s<240°C with the sudden appearance of microcrystals with relatively large 

size of the order of 200A or more at T s ::::::240°C. For substrate temperatures 

between loooe and 240°C, a large percentage of material with a narrower 

distribution of the second-neighbour average distances exist. For 

T s>240°C, crystallites of the order of 200A or more are distributed in the 

amorphous phase. Using Raman scattering, all samples grown at T s ~ 

245°C exhibit a shift of ..... 2.0 - .2.5 cm-1 towards lower energy. Because the 

shift is constant from sample to sample and the crystallite dimension is already 
large (D>300A) and increasing with T s, this shift is attribut~d to strains 

present in the material. 

A relatively large optical gap (1.43 e V) is obtained at the initially high Ts 

( ..... 2000 C) and may be due to increasing network order. A pronounced optical 

gap of 1.7 eV in microcrystal silicon film obtained by P.R. Fang et.a!. created 

considerable interest in photovoltaic applications. 3 Richter and Ley4, 

however, reported microcrystalline silicon films with Eo .- 1.1 eV at the 

substrate temperature of 350°C; a much smaller gap than that observed by 

P.R. Fang et. a1.3 The decrease in gap values of a-Ge films with further 

increase in T s may be due to strains in the network. Furthermore, the 

presence of oxygen cannot be ruled out and may have also caused the optic~l 
gap to be lowered in the high T s samples obtained by Richter and Ley. The 

role of oxygen in causing strains in the a-Ge network needs to be 

investigated. Short-range order variations associated with changes in the 

bond-angle distributions may also directly modify the optical gap. 

Modifications of bond-angle distribution may result in changes in both 

dihedral angle distribution and ring statistics that in turn affect the optical gap. 

Since topological disorder in evaporated a-Ge films is at the minimum at 

T s > 200°C, the lowering of Eo at T s> 250°C may be due to quantitative 

disorder. The effects of topological and quatitative disorder on the band gap 

are discussed by Yonezawa.5 
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Annealing generally increases the optical gap. The values presented here are 

lower than those obtained by Theye6 using similar temperature range. 

However, one must also take into considerations the rate of depos~tion7,8 and 

film thickness. 9,10 Annealing is believed to reduce voids and bond 
distortions. The optical gap values do not decrease even when 'T a ..... 400°C, 

implying the possibility of no phase change even at 400°C. A non-linear 
increase of Eo is observed. The role of molecular hydrogen in annealing, 

however, is not fully understood. Hydrogen may be expected to playa 

significant role as in chemical annealing. 11 Similarly deposited a-Ge films 
annealed in N2 only have lower optical gaps. 
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