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SIFAT MEKANIK, TERMA DAN MORFOLOGI KOMPOSIT POLI(ASID 

LAKTIK)/GENTIAN HAMPAS TEBU 

 

ABSTRAK 

Komposit poli(asid laktik)/gentian hampas tebu (PLA/SCBF) disediakan dengan 

menggunakan kaedah penyebatian leburan dan diikuti oleh pengacuanan mampatan. 

Minyak kacang soya terepoksida (ESO) dipilih sebagai pemplastik bagi komposit 

PLA/SCBF. Demi mengkaji kesan saiz gentian terhadap sifat-sifat komposit PLA, 

SCBF yang dirawat alkali (~5 mm) telah dihancurkan ke dalam bentuk serbuk dan 

dinamakan SCBFP (~500 μm). Sehubungan dengan itu, tiga parameter telah diselidik 

dalam kajian ini, iaitu kandungan SCBF (5-15 wt%), muatan ESO (5-15 phr) dan kesan 

SCBFP. Ujian hentaman Charpy digunakan untuk mengkaji kesan hentaman terhadap 

komposit PLA sementara sifat morfologi dikaji dengan menggunakan mikroskop 

electron penskanan pancaran medan (FESEM). Sifat terma komposit diperiksa dengan 

penganalisa mekanik dinamik (DMA), kalorimeter pengimbasan pembezaan (DSC) 

dan penganalisis thermogravimetrik (TGA). Kekuatan hentaman PLA telah 

dikurangkan dengan penambahan SCBF. Walau bagaimanapun, kekuatan hentaman 

komposit PLA/SCBF-10 telah ditingkatkan dengan kehadiran ESO disebabkan kesan 

pemplastikan. Ujian DMA menunjukkan bahawa penambahan SCBF dapat 

meningkatkan modulus simpanan (E’) PLA. Selain itu, SCBFP boleh mempertingkat 

E’ dengan lebih ketara. Keputusan DSC menunjukkan bahawa SCBF dan SCBFP 

menaikkan darjah penghabluran PLA. ESO telah menurunkan suhu peralihan kaca (Tg) 

bagi komposit PLA. TGA menunjukkan bahawa kestabilan terma komposit 

PLA/SCBFP adalah setara dengan PLA/SCBF. 
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MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES OF 

POLY(LACTIC ACID)/SUGARCANE BAGASSE FIBER COMPOSITES 

 

ASTRACT 

Poly(lactic acid)/sugarcane bagasse fiber (PLA/SCBF) composites were prepared 

using melt compounding followed by compression molding. Epoxidized soybean oil 

(ESO) was selected as plasticizer for the PLA/SCBF composites. In order to study the 

effect of fiber size on the properties of PLA composites, alkali treated SCBF (5 mm 

length) was grounded into powder form and designated as SCBFP (~500 μm). 

Accordingly, three parameters were investigated in this research, i.e., SCBF content 

(5-15 wt%), ESO loading (5-15 phr) and SCBFP effects. Impact properties of PLA 

composites were characterized by Charpy impact test while morphological properties 

were studied using field emission scanning electron microscopy (FESEM). Thermal 

properties of the composites were examined with dynamic mechanical analysis 

(DMA), differential scanning calorimetry (DSC) and thermogravimetry analysis 

(TGA). The impact strength of PLA was reduced by the addition of SCBF.  

Nevertheless, the impact strength of PLA/SCBF-10 composites was improved 

significantly in the presence of ESO due to the plasticization effect. DMA results 

showed that the addition of SCBF increased the storage modulus (E’) of PLA, and the 

effect is more pronounced for the one containing SCBFP. From DSC, results showed 

that SCBF and SCBFP increased degree of crystallinity of PLA.  ESO was found to 

decrease the glass transition temperature (Tg) of PLA composites. As for TGA, the 

thermal stabilities of PLA/SCBFP composites are comparable to that of PLA/SCBF.  
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CHAPTER 1 

INTRODUCTION 

1.1 Research background 

The awareness of preserving Mother Earth is increasing among people from all walks 

of life. As global population continues to increase time by time, topics like greenhouse 

gas emissions, toxicity and resource depletions are being emphasized lately. 

Environmental friendly is one of the major attentions in manufacturing companies 

when they are introducing products to market. In recent years, we have seen that green 

products are emerging and slowly play an important part in our daily lives. Green 

polymers are polymers that were produced using bio-based materials obtained from 

plant sources (Gilfillan et al., 2012). We can see that they are replacing non-

biodegradable polymers that were involved in production of home appliances, 

electronic devices, household cleaners and even production of vehicle parts 

continuously.   

In the field of polymer science and engineering, many studies are made 

regarding different biodegradable polymers that could replace petroleum based 

plastics in all kinds of application (Frone et al., 2013). In order to help reduce 

environmental burden of the petroleum based polymer materials, development of bio-

based composites gained enormous interest in polymer community (Bajpai et al., 

2013). Green composites are one of the most attractive topics where composites can 

be manufactured by adding various natural resources into polymers such as poly(lactic 

acid) (PLA). The addition of natural fibers into polymer materials not only helps to 

reduce environmental impact, they could also reduce the manufacturing cost and 

increase commodity of the product.  
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Poly(lactic acid) (PLA) is an ecological aliphatic polyester obtained from lactic 

acid (Ali et al., 2009). PLA, having extremely good mechanical properties, is produced 

on a large scale from fermentation of corn starch to lactic acid and subsequent 

polymerization. After being used for a longer period, pure PLA can be degraded into 

carbon dioxide, water, and methane (Qin et al., 2011).  

Since PLA is produced using natural resources, its degradation process only 

involves simple hydrolysis of ester bond and does not require any assistance of 

enzymes to activate this reaction (Garlotta, 2001). This contributes to wide application 

of PLA in various fields like biomedical and packaging applications where the 

materials can be disposed of easily without harming the environment. However, there 

are some deficiencies of PLA that can affect its application, such as high production 

cost, brittleness, low thermal stability, lower water vapour and gas barrier properties 

(Frone et al., 2013; Shukor et al., 2014).  

Consequently, reinforcement of PLA matrix had become the attention of many 

researchers in order to improve overall properties of PLA. Many efforts had been done 

to improve the characteristics of PLA in order to compete with low cost and flexible 

commodity polymers. Various materials had been used to blend with PLA including 

non-biodegradable polymers and biodegradable materials (Bajpai et al., 2013). A 

simple way of improving the mechanical, physical and thermal properties of PLA is to 

add natural fibers, such as banana fiber (Majhi et al., 2010), enzyme modified oil palm 

fibers (Mamun et al., 2013), sugarcane bagasse residue (Wang et al., 2013) and olive 

pit powder (Koutsumitopolou et al., 2014).  

In general, natural fibers are able to enhance selected mechanical properties 

(e.g., tensile strength, modulus, impact strength) of a biopolymer (Majhi et al., 2010; 

Mukherjee & Kao, 2011). Graupner et al. (2009) stated that natural fiber reinforced 
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PLA had already made its way into market. For instance, biodegradable urns consisting 

of PLA and flax that were produced by Jakob Winter (Satzung, Germany) by using 

compression moulding method. Other examples include collaboration research of 

NEC Corporation and UNITIKA LTD, developing bioplastic composites for mobile 

phone shells that were made from PLA and 15-20% kenaf fibers. This shows that 

PLA/natural fiber composites were indeed capable of providing many benefits for our 

daily activities.  

In the field of material science, converting biomass-derived waste into useful 

and high valued materials is one of the most challenging topics recently (Moubarik et 

al., 2013). Many natural wastes from plants were used or mixed to prepare different 

types of material such as biodegradable polymers. One of the examples is the 

sugarcane bagasse (SCB) that recently gained popularity among material researchers. 

Bagasse is a natural residue that remains after sugarcane stalks are crushed to 

extract their juice. The fact that SCB is often used as an ideal raw material is because 

it can be easily obtained without much costing since they are wastes. The components 

of SCB had been investigated and result showed that there are cellulose, hemicellulose, 

lignin, ash and wax in the bagasse (Loh et al., 2013). These compositions make SCB 

an ideal filler to be added to biopolymer such as PLA.  PLA is considered as ‘green’ 

and eco-friendly polymeric material. Thus, hybridization of PLA and SCB is targeted 

to produce a ‘green’ composite and will also be able to improve the physical and 

chemical properties of PLA composites. 
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1.2 Problem statement 

Although the bioplastics market is growing rapidly, the price of PLA is still relatively 

high. Incorporating natural resources (as well as waste from natural resources) into the 

matrix of PLA can be an alternative to reduce the cost of production where lesser PLA 

will be used.  In this research, alkali treated sugarcane bagasse fiber (SCBF) and 

sugarcane bagasse fiber powder (SCBFP – which produced by grinding SCBF into 

powder form) was added into PLA. The SCBF was selected because of its high 

availability. Besides reducing the production cost of PLA composites, using SCBF as 

filler material can also help to solve sugarcane bagasse waste problem. In other words, 

converting waste into value added product.   

  Brittleness is one of the reason that limits the application of PLA (Bajpai et al., 

2013). Although PLA/SCBF composite is a good candidate for the development of 

‘green’ composites, the brittleness and thermal stability of the PLA composites need 

to be concerned.  Toughening of PLA composites is necessary because impact strength 

of PLA will be reduced when SCBF is added into PLA matrix. Similar results were 

obtained by Nuthong et al. (2013) where addition of bamboo fiber, vetiver grass fiber 

and coconut fiber reduced the impact strength of PLA. Thus, toughening of PLA/SCBF 

composites is an important task, in order to widen the application of these green 

composites.  
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1.3 Research objectives 

(a). To determine the effects of sugarcane bagasse fiber (SCBF) loading on the 

mechanical, thermal and morphological properties of PLA. 

(b). To compare the effects of SCBF and sugarcane bagasse fiber powder (SCBFP) on 

the impact and thermal properties of PLA. 

(c). To improve the impact strength and thermal properties of PLA/SCBF composites 

by the addition of epoxidized soybean oil (ESO).  

 

 

1.4 Research scopes 

In this study, sugarcane bagasse fiber (SCBF) was first treated with alkali. Then the 

SCBF was grounded into powder form (SCBFP). The PLA/SCBF (and PLA/SCBFP) 

composites were prepared using internal mixer followed by compression molding. The 

SCBF loading was increased in the range of 5, 10 and 15 wt%. The effects of SCBF 

and SCBFP on the impact strength and thermal properties of PLA are studied. In order 

to increase the impact strength of PLA/SCBF composites, epoxidized soybean oil 

(ESO; at 5, 10, and 15%) is introduced. ESO has long been used as plasticizer for 

polyvinyl chloride (PVC) compounds and chlorinated rubbers (Ali et al., 2008).  Thus, 

it is expected that the ESO could also be used to improve the impact properties of 

PLA/SCBF composites.  The impact strength of the PLA composites is studied using 

Charpy impact tester. The thermal properties of the specimens are investigated using 

differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA) and 

dynamic mechanical thermal analyzer (DMA). The morphological properties of the 

PLA composites are examined by field-emission scanning electron microscopy 

(FESEM).  
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1.5 Thesis structure 

Chapter 1 introduces the development of PLA green composites. The problem 

statement, scope of study and structure of thesis are included in this chapter. 

 

Chapter 2 discusses the literature review of this study. The influence of different 

parameters (example: types of fiber, fiber loading and length) were being studied and 

discussed based on research done by other researchers. 

 

Chapter 3 provides the information about the material and method used in this study. 

The general description of the sample characterization methods such as impact test, 

morphology assessment thermal analysis are given in this chapter.  

 

Chapter 4 focuses on the experimental result and discussion. Further elaborations on 

the effects of SCBF and SCBFP on the impact and thermal properties of PLA, as well 

as the influence of ESO on the properties of PLA/SCBF (and PLA/SCBFP) composites 

were provided in this chapter. 

 

Chapter 5 summarizes the significant findings in this study. Suggestions for future 

studies were also recommended. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Green composites 

The usage of natural fibres in thermoplastics and thermosets is now becoming a 

growing trend among composite manufacturers (Faruk et al., 2012). The term ‘green 

composite’ means composites fabricated by natural fibers or crops, which are eco-

friendly (John & Thomas, 2008). Besides environmental friendly, the other advantages 

of green composites include the abundant availability of natural fiber, low cost and 

higher bio-degradability. In general, they can decompose on its own without using 

additional energy or resources.  

A review done by Dicker et al. (2014) summarises the major properties and 

also certain potential applications of green composites. In the review, they concluded 

that green composites have good mechanical properties (e.g., good strength and 

stiffness), environmental friendly (renewable, biodegradable, low embodied energy, 

non-toxicity), low cost, and biocompatibility. However, some of the disadvantages of 

green composites need to be mentioned, e.g., high water absorption, low durability, 

and low toughness. Hence, there are still room for research and development on the 

properties of green composites so that they can be put into good use in various 

industries and applications.  

 

2.2 Biodegradable polymers 

Since environmental preservation became an important issue, biodegradable materials 

are starting to gain popularity ranging from consumers to researchers. Biodegradable 

technologies have then skyrocketed in just a few years and many materials with 

biodegradable properties had been produced. Such materials include biodegradable 
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polymers that were derived from renewable resources. There are four families of 

biodegradable polymers, where the first three families are produced from biomass. As 

for the fourth family, they are obtained from fossil origin (see Figure 2.1). First family 

consists of agro-polymers (e.g. polysaccharides) derived from biomass by 

fractionation. For the second and third families, they are polyesters, respectively 

produced by fermentation from biomass or from genetically modified plants (e.g. 

polyhydroxyalkanoate (PHA)) and by synthesis from monomers obtained from 

biomass (e.g. polylactic acid (PLA)). Lastly, the fourth family are polyesters, fully 

manufactured by the petrochemical process (e.g. polycaprolactone (PCL); 

polyesteramide (PEA); aliphatic or aromatic copolyesters) (John & Thomas, 2008). 

 

 

Figure 2.1: Classification of biodegradable polymers (John & Thomas, 2008). 

 

 Many of these biodegradable polymers can be found and obtained 

commercially. With a large range of promising properties, biodegradable polymers are 

capable of competing with non-biodegradable polymers in various industrial fields 

such as packaging and biomedical devices. This leads to a vast market and opportunity 
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for polymer manufacturers to explore the advantage and benefits of biodegradable 

polymers. As seen in Figure 2.2, the global market of biodegradable polymers in 2010 

was 771 million pounds. This amount is expected to increase significantly to nearly 

932 million pounds in 2011 and will then further increase to 2.5 billion pounds in 2016. 

These data shows the usage of biodegradable polymers had already been accepted and 

applied in various industries, at a compound annual growth rate (CAGR) of 22% for 

the 5-year period. At these rate, future of biodegradable materials especially polymers 

shows great potential to be further developed and applied all over the world.   

 

 

 

Figure 2.2: Global biodegradable polymer market from year 2010 to 2016 (Ruchika, 

2012). 
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