EFFECT OF BEATING, POLYVINYL ALCOHOL AND KAOLIN ON PROPERTIES OF PAPER FROM OIL PALM EMPTY FRUIT BUNCH

ASMAHAIZA BINTI MOHAMAD NOOR

Universiti Sains Malaysia

2014

EFFECT OF BEATING, POLYVINYL ALCOHOL AND KAOLIN ON PROPERTIES OF PAPER FROM OIL PALM EMPTY FRUIT BUNCH

by

ASMAHAIZA BINTI MOHAMAD NOOR

Thesis submitted in fulfillment of the requirements

for the degree of

Master of Science

School of Materials and Minerals Resources Engineering

Universiti Sains Malaysia

July 2014

iii

ACKNOWLEDGEMENT

Praise and thanks to Allah SWT for giving me valuable opportunity and strength to accomplish my master project. First of all, I am highly pleased to express my best regards, profound gratitude, and deep appreciation to my honourable supervisor, Prof Hanafi B. Ismail and Dr. Mazlan B. Ibrahim as my cosupervisor, for their constant supervision, inspiring guidance, enthusiastic encouragement and sagacious advice throughout my research.

Furthermore, I would like to take this opportunity to thanks to whom help me a lot to deal with the laboratory machines and other things especially laboratory assistants from School of Industrial Technology, Mr. Abu Mangsor and also to technicians from School of Materials and Mineral Resources Engineering. I really appreciate their contribution towards my project. Moreover, I would like to thank to my beloved parents and family for giving me valuable support and encouragement for me to perform well in this research project.

Lastly, I would like to apologize to everyone whom involve in my project if there is any inconvenience and mistake that I made throughout this project. I am very glad that this project finished on time and I had gained a lot of experiences in this research. Thank you very much.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
LIST OF TABLES	iii
LIST OF FIGURES	xiii
LIST OF EQUATIONS	xix
LIST OF ABBREVIATIONS	xxi
ABSTRAK	xxii
ABSTRACT	xxiii

CHAPTER 1 INTRODUCTION

1.1 Introduction	1
1.2 Problem Statement	3
1.3 Objectives of the Research	6

CHAPTER 2 LITERATURE REVIEW

2.1 Pulp and Paper Industri in Malaysia	7
2.2 Availability of Oil Palm Biomass in Malaysia	11
2.3 Oil Palm Empty Fruit Bunch (OPEFB)	16
2.3.1 Physical and Mechanical Properties of EFB	18
2.3.2 Chemical Composition of Empty Fruit Bunch (EFB) Fiber	21
2.3.2.1 Cellulose	23
2.3.2.2 Hemicellulose	24
2.3.2.3 Lignin	26
2.4 Pulping	27
2.4.1 Mechanical Pulping	29
2.5 Effect of Beating Process on Fiber	32
2.6 Polyvinyl Alcohol (PVA) as Polymer Additives in Papermaking	36
2.7 Filler	39

CHAPTER 3 METHODOLOGY

3.1 Raw Materials	41
3.1.1 Oil Palm Empty Fruit Bunch (OPEFB) Fiber	41
3.1.2 Polyvinyl Alcohol (PVA)	41
3.1.3 Sodium Tetraborate Decahydrate	42
3.1.4 Kaolin	42
3.2 Preparation Raw Material and Additives	42
3.2.1 Preparation of Empty Fruit Bunch (EFB)	42
3.2.2 Preparation of Polyvinyl Alcohol (PVA) Solution	43
3.2.3 Preparation of Borax Solution	44
3.3 Preparation of Empty Fruit Bunch Pulp	44
3.3.1 Mechanical Pulping	44
3.3.2 Pulp Screening	45
3.4 Preparation of Beaten EFB Pulp	46
3.4.1 Disintegration	46
3.4.2 Thickening	47
3.4.3 Beating	48

3.5 Treatment of OPEFB with Additives	49
3.5.1 Treatment of OPEFB with Polyvinyl Alcohol (PVA)	49
3.5.2 Treatment of OPEFB with Kaolin	50
3.5 Pulp Stock Preparation and Handsheet Making	51
3.6.1 Pulp Stock Preparation	51
3.6.1.1 Unbeaten Pulp Stock	51
3.6.1.2 Beaten Pulp Stock	52
3.6.2 Canadian Standard Freeness (CSF)	52
3.6.3 Actual Stock Consistency	54
3.6.4 Handsheet Making	56
3.6.5 Pressing	57
3.6.6 Drying	58
3.7 Testing	59
3.7.1 Physical Testing	59
3.7.1.1 Grammage	59
3.7.1.2 Thickness	60

3.7.1.3 Density	61
3.7.2 Optical Testing	61
3.7.3 Mechanical Testing	61
3.7.3.1 Paper Cutting for Mechanical Testing	62
3.7.3.2 Tensile Strength	63
3.7.3.3 Burst Strength	64
3.7.3.4 Tear Resistance	65
3.8 Characterization	67
3.8.1 Scanning Electron Microscope (SEM) Analysis	67

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Effects on Unbeaten and Beaten OPEFB Mechanical Pulp Toward Paper	
Properties	68
4.1.1 Effect on Physical Properties on Handsheet	70
4.1.1.1 Thickness	70
4.1.1.2 Density	72
4.1.1.3 Grammage	73
4.1.2 Optical Properties	74
4.1.2.1 Opacity	74
4.1.2.2 Brightness	76
4.1.3 Mechanical Properties	77
4.1.3.1 Tensile Strength	77
4.1.3.2 Burst Strength	79
4.1.3.3 Tear Strength	81
4.1.4 Scanning Electron Microscope (SEM)	83
4.1.5 Conclusion	85

Determination of optimising to that of froperices of Deater	
Mechanical Pulp	86
4.2.1 Physical Properties	86
4.2.1.1 Thickness	86
4.2.1.2 Density	88
4.2.1.3 Grammage	89
4.2.2 Optical Properties	90
4.2.2.1 Opacity	90
4.2.2.2 Brightness	91
4.2.3 Mechanical Properties	93
4.2.3.1 Tensile Strength	93
4.2.3.2 Burst Strength	95
4.2.3.3 Tear Resistance	96
4.2.4 Scanning Electron Microscope (SEM)	98
4.2.5 Conclusion	99

4.2 Determination of Optimum PVA Loading toward by Properties of Beaten EFB

Mechanical Pulp with Optimum PVA Loading	100
4.3.1 Physical Properties	100
4.3.1.1 Thickness	100
4.3.1.2 Density	102
4.3.1.3 Grammage	103
4.3.2 Optical Properties	104
4.3.2.1 Opacity	104
4.3.2.2 Brightness	105
4.3.3 Mechanical Properties	106
4.3.3.1 Tensile Strength	107
4.3.3.2 Burst Strength	108
4.3.3.3 Tear Resistance	109
4.3.4 Scanning Electron Microscope (SEM)	110

4.3 Determination of Optimum Kaolin Added to the Handsheet of Beaten EFB

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion	112
5.2 Recommendations	114
REFERENCES	115
APPENDICES	
APPENDIX A	
APPENDIX B	
APPENDIX C	

LIST OF TABLES

Tables	Page
Table 2.1 Projection of Oil Palm Biomass Availability in Malaysia	
(Tonnes/year)	15
Table 2.2 Morphological Properties of EFB Fiber in Comparison with	
Aspen Fiber (Law et al., 2007)	19
Table 2.3 Chemical Compositions of EFB Fiber (Gonzalo et al., 2007)	22
Table 2.4 Decomposition of EFB in the Field (Suhaimi and Ong, 2011).	22
Table 2.5 Classification of Pulping Technique (Smook, 1992)	29
Table 2.6 Properties of Mechanical Pulp	31
Table 2.7 Summarization of Beating Effects and its Consequences	
(Cowan, 2003)	36
Table 2.8 Summarization on Filler Characteristics and Properties.	40
Table 3.1 Amount of PVA and Borax in Pulp Stock	50
Table 3.2 Amount of Kaolin in Pulp Stock	50

LIST OF FIGURES

Figures	Page
Figure 2.1 Pulp and paper manufacturers in Malaysia (Roda and Rathi, 2006).	9
Figure 2.2 Malaysia pulp production and consumption (Roda and Rathi, 2006)). 10
Figure 2.3 Malaysia paper production and consumption	
(Roda and Rathi, 2006).	10
Figure 2.4 Oil palm plantations in Malaysia	11
Figure 2.5 Oil palm plantation areas in Malaysia (MPOB, 2011)	13
Figure 2.6 Oil palm production areas in Malaysia (MPOB, 2011)	13
Figure 2.7 Fresh fruit bunch (a) and empty fruit bunch of oil palm (b and c).	17
Figure 2.8 Transverse section of oil palm fiber cell wall thickness	20
Figure 2.9 Molecular structure of cellulose (Perisko and Randall, 2008)	24
Figure 2.10 Monomers of hemicelluloses (Anonymous, 1996)	26
Figure 2.11 Lignin building blocks (Jeffries, 1994)	27
Figure 2.12 External fibrillation of fibers	33
Figure 2.13 Structure of Polyvinyl Alcohol (PVA)	37

Figure 2.14 Crosslinking of PVA with Sodium Tetraborate	38
Figure 3.1 Moisture Analyzer	43
Figure 3.2 Sprout Bauer Disc Refiner	45
Figure 3.3 Sommerville Screener	46
Figure 3.4 Disintegrator	47
Figure 3.5 Pulp Thickening	47
Figure 3.6 PFI Mill	48
Figure 3.7 Canadian Standard Freeness (CSF) Tester	54
Figure 3.8 Pressing panel	58
Figure 3.9 Precision Micrometer	60
Figure 3.10 Specific part of handsheet for mechanical testing	62
Figure 3.11 High Pressure Mullen Burst Tester	65
Figure 3.12 Elmendolf Tearing Tester	66
Figure 4.1 Freeness of unbeaten and beaten EFB mechanical pulp	68
Figure 4.2 Thickness of handsheets from unbeaten and beaten EFB	
mechanical pulp	70

Figure 4.3 Density of handsheets from unbeaten and beaten EFB	
mechanical pulp	72
Figure 4.4 Grammage of handsheets from unbeaten and beaten EFB	
mechanical pulp	73
Figure 4.5 Opacity of handsheets from unbeaten and beaten EFB	
mechanical pulp	75
Figure 4.6 Brightness of handsheets from unbeaten and beaten EFB	
mechanical pulp	76
Figure 4.7 Tensile index of handsheets from unbeaten and beaten EFB	
mechanical pulp	78
Figure 4.8 Burst index of handsheets from unbeaten and beaten EFB	
mechanical pulp	80
Figure 4.9 Tear index of handsheets from unbeaten and beaten EFB	
mechanical pulp	82
Figure 4.10 SEM micrograph on surface view (X200 magnification)	
of unbeaten EFB handsheet	84

xvii

Figure 4.11 SEM micrograph on surface view (X200 magnification)	
of beaten EFB handsheet	85
Figure 4.12 Thickness of handsheets from beaten EFB mechanical pulp with	
different percentage of PVA	87
Figure 4.13 Density of handsheets from beaten EFB mechanical pulp with	
different percentage of PVA	88
Figure 4.14 Grammage of handsheets from beaten EFB mechanical pulp with	
different percentage of PVA	89
Figure 4.15 Opacity of handsheets from beaten EFB mechanical pulp with	
different percentage of PVA	91
Figure 4.16 Brightness of handsheets from beaten EFB mechanical pulp with	h
different percentage of PVA	92
Figure 4.17 Tensile index of handsheets from beaten EFB mechanical pulp v	vith
different percentage of PVA	94
Figure 4.18 Burst index of handsheets from beaten EFB mechanical pulp with	th
different percentage of PVA	96

Figure 4.19 Tear index of handsheets from beaten EFB mechanical pulp wi	th
different percentage of PVA	97
Figure 4.20 SEM micrograph on surface view (X200 Magnification) of	
beaten EFB handsheets with 0% (a), 3% (b) and 6 % (c) of PVA	99
Figure 4.21 Thickness of handsheets from beaten EFB mechanical pulp with	
3% of PVA and different kaolin loading	101
Figure 4.22 Density of handsheets from beaten EFB mechanical pulp with	
3% of PVA and different kaolin loading	102
Figure 4.23 Grammage of handsheets from beaten EFB mechanical pulp with	
3% of PVA and different kaolin loading	103
Figure 4.24 Opacity of handsheets from beaten EFB mechanical pulp with	
3% of PVA and different kaolin loading	104
Figure 4.25 Brightness of handsheets from beaten EFB mechanical pulp with	
3% of PVA and different kaolin loading	106
Figure 4.26 Tensile index of handsheets from beaten EFB mechanical pulp with	i th
3% of PVA and different kaolin loading	108

Figure 4.27 Burst index of handsheets from beaten EFB mechanic	al pulp with
3% of PVA and different kaolin loading	109
Figure 4.28 Tear index of handsheets from beaten EFB mechanica	al pulp with
3% of PVA and different kaolin loading	110
Figure 4.29 SEM micrograph on surface view of beaten EFB hand	lsheets with

3% of PVA and 0% (a), 6% (b) and 10% (c) of kaolin 111

LIST OF EQUATIONS

Equations	Page
Equation 3.1 Moisture content (%)	43
Equation 3.2 Consistency of pulp (%)	51
Equation 3.3 Actual consistency (%)	55
Equation 3.4 Grammage of handsheet (g/m^2)	59
Equation 3.5 Density of handsheet (g/cm ³)	61
Equation 3.6 Tensile strength of handsheet (N/m)	63
Equation 3.7 Tensile index of handsheet (Nm/g)	63
Equation 3.8 Burst index of handsheet (kPa.m ² /g)	64
Equation 3.9 Tear index of handsheet $(mN.m^2/g)$	66

LIST OF ABREVIATIONS

%	Percent
°C	Degree celcius
ASEAN	Association of Southeast Asian Nations
BW	Basis Weight
EFB	Empty fruit bunch
FFB	Fresh fruit bunch
kPa	kilo Pascal
MC	Moisture content
mm	millimeter
MPOB	Malaysian Palm Oil Board
Ν	Newton
OPEFB	Oil palm empty fruit bunch
OPF	Oil palm frond
OPT	Oil palm trunk
POME	Palm oil mill effluent
PVA	Polyvinyl alcohol
SEM	Scanning Electron Microscopy
Т	Breaking length

TAPPI	Technical Association of the Pulp and Paper
	Industry
TEA	Tensile Energy Absorbed
TI	Tensile Index
TKKS	Tandan kosong kelapa sawit

KESAN PEMUKULAN, POLIVINIL ALKOHOL (PVA) DAN KAOLIN TERHADAP SIFAT –SIFAT KERTAS DARIPADA TANDAN KOSONG KELAPA SAWIT

ABSTRAK

Kesan memukul, polivinil alkohol (PVA) dan kaolin pada sifat-sifat kertas daripada tanda kosong kelapa sawit (TKKS) telah dikaji. Kesan pulpa mekanikal TKKS terpukul dan tidak terpukul, peratus PVA yang ditambah dan peratus kaolin yang ditambah ke dalam stok pulpa terhadap sifat-sifat kertas daripada pulpa mekanikal TKKS telah dibentangkan. Pemukulan oleh pemukul PFI pada 15000 revolusi secara ketara meningkatkan sifat-sifat pulpa mekanikal TKKS dengan meningkatkan sifat-sifat fizikal, mekanikal dan optik bagi kertas dihasilkan. 3% PVA ditambah dalam pulpa mekanikal terpukul tandan kosong kelapa sawit (TKKS) memberi kekuatan optimum ke atas sifat mekanik. Walau bagaimanapun, disebabkan kehadiran lignin dalam pulpa mekanikal terpukul TKKS, penambahan kaolin ke dalam stok pulpa pulpa mekanikal dengan 3% PVA tidak memberi kesan yang banyak kepada kecerahan kertas. Secara ringkasnya, dengan 3% PVA dan 6% kaolin ditambah ke dalam stok pulpa daripada pulpa mekanikal terpukul TKKS menunjukkan pulpa kesan yang penting ke atas sifat mekanik kertas.

EFFECT OF BEATING, POLYVINYL ALCOHOL (PVA) AND KAOLIN ON PROPERTIES OF PAPER FROM OIL PALM EMPTY FRUIT BUNCH

ABSTRACT

Effect of beating, polyvinyl alcohol (PVA) and kaolin on properties of paper from oil palm empty fruit bunch were investigated. The effect of unbeaten and beaten OPEFB mechanical pulps, percentage of PVA addition and percentage of kaolin added into pulp stock toward properties of paper from OPEFB mechanical pulp were presented. Beating by PFI mill at 15000 revolutions significantly improves properties of OPEFB mechanical pulp by enhancing the physical, mechanical and optical properties of handsheets produced. 3% of PVA added into beaten mechanical pulp of oil palm empty fruit bunch (OPEFB) gives optimum strength on mechanical properties. However, due to lignin present in beaten OPEFB mechanical pulp, addition of kaolin into pulp stock of mechanical pulp treated with 3% of PVA does not affect much on brightness of handsheets. In a nutshell, with 3% of PVA and 6% of kaolin added into the pulp stock of beaten OPEFB mechanical pulp shows excellent effects on mechanical properties of handsheet.