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α1-ADRENOSEPTOR DAN AT1 RESEPTOR MEMODULASI 

HEMODINAMIK GINJAL DALAM TIKUS HIPERTENSIF MODEL 

GARAM LEBIHAN DAN DOCA YANG DIRAWAT DENGAN TEMPOL 

DAN LOSARTAN 

 

ABSTRAK 

 

Hipertensi merupakan penyebab utama morbiditi dan kematian yang berkait 

rapat dengan kerosakan ginjal. Pengambilan garam lebihan menyumbang kepada 

pathogenesis hipertensi. Reseptor adrenergik-α1 menyumbang kepada modulasi nada 

vaskular ginjal untuk mengawal tekanan darah. Kajian ini telah dijalankan untuk 

mengkaji kesan tempol dan losartan ke atas fungsi dan hemodinamik ginjal dalam 

model tikus Sprague Dawley (SD) dengan diet biasa, model tikus SD dengan garam 

lebihan, model tikus DOCA dengan diet biasa dan model tikus DOCA dengan garam 

lebihan. Semua tikus model dibahagikan kepada kumpulan kawalan, tempol 

(3mmol/l), losartan (10mg/kg, 7 hari terakhir) dan tempol bercampur losartan. Semua 

model tikus telah dikaji selama 42 hari. Kajian hemodinamik ginjal dijalankan pada 

hari ke-43. Data metabolic, tekanan darah, kelajuan gelombang denyutan dan 

vaskular ginjal responsif terhadap noradrenalin (NA), phenylephrine (PE), 

methoxamine (ME) dan angiotensin II (Ang II) telah dikajikan. Data analisis 

membandingkan min ± SEM menggunakan ANOVA satu/dua hala dengan paras 

signifikan 5%. Tempol dan losartan tidak mempengaruhi fungsi ginjal dan 

vasculature ginjal responsif dalam tikus-tikus SD dengan diet biasa. Tikus-tikus SD 

dengan garam lebihan mengalami kenaikan tekanan darah dan kerosakan ginjal yang 

terbukti berdasarkan kreatinin plasma yang meningkat, klearans kreatinin yang 

http://en.wikipedia.org/wiki/Alpha-1_adrenergic_receptor
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menurun dan pengurangan nisbah natrium: kalium. Tikus-tikus DOCA dengan garam 

lebihan mengalami kenaikan tekanan darah dan ginjal tidak berfungsi yang tersokong 

berdasarkan kreatinin plasma yang meningkat, klearans kreatinin yang menurun dan 

penurunan dalam perkumuhan pecahan natrium. Tempol menurunkan tekanan darah 

dalam  model tikus SD dengan garam lebihan, model tikus DOCA dengan diet biasa 

dan model tikus DOCA dengan garam lebihan. Losartan mengurangkan tekanan 

darah tinggi dalam tikus-tikus SD dengan garam lebihan. Pengurangan tindakbalas 

perfusi darah kortikal ginjal terhadap agonis adrenergik membuktikan garam lebihan 

telah menurun responsif reseptor adrenergik-α1 ginjal dalam tikus-tikus SD dengan 

garam lebihan dan tikus-tikus DOCA dengan garam lebihan. Garam lebihan menurun 

sensitiviti AT1-reseptor dalam tikus-tikus SD dengan garam lebihan. Tempol 

memperbaki peratusan penurunan perfusi darah kortikal ginjal terhadap agonis 

adrenergik dalam tikus-tikus SD dengan garam lebihan. Losartan menaikan reseptor 

adrenergik-α1 responsif dan menurunkan kepekaan AT1-receptor dalam tikus-tikus 

DOCA dengan garam lebihan. Tempol bercampur losartan memperbaiki peratusan 

penurunan perfusi darah kortikal ginjal terhadap agonis adrenergic dalam tikus-tikus 

SD dengan garam lebihan dan tikus-tikus DOCA dengan diet biasa. Dapatan kajian 

ini mencadangkan bahawa tempol merendahkan tekanan darah dan memperbaiki α1-

adrenoreseptor sensitif yang mampu memberi perlindungan daripada spesies oksigen 

reaktif dalam model tikus hipertensi.  
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α1-ADRENOCEPTORS AND AT1 RECEPTORS IN MODULATION OF 

RENAL HEMODYNAMICS IN HIGH SALT AND DOCA MODELS OF 

HYPERTENSIVE RATS TREATED WITH TEMPOL AND LOSARTAN 

 

ABSTRACT 

 

Hypertension is a major cause of morbidity and mortality from renal 

impairment. An increase of sodium intake contributes to the pathogenesis of 

hypertension. α1-adrenoceptors modulate renal vascular tone in the regulation of 

blood pressure. This study was undertaken to investigate the effects of tempol and 

losartan on renal function and haemodynamics in Sprague Dawley (SD) rats fed with 

normal diet, SD rats fed with high sodium diet, DOCA-salt treated rats fed with 

normal diet and DOCA-salt treated rats fed with high sodium diet. All models were 

divided into groups of control, tempol (3mmol/l), losartan (10mg/kg, last 7 days) and 

combination of tempol and losartan. The animals were studied for 42 days. The acute 

renal hemodynamic study was performed on day 43. Metabolic data, blood pressure 

(BP), pulse wave velocity (PWV) and renal vascular responsiveness to noradrenaline 

(NA), phenylephrine (PE), methoxamine (ME) and angiotensin II (Ang II) were 

investigated. Data, mean ± SEM were analyzed using one/two-way ANOVA with 

significance level of 5%. Tempol and losartan did not influence renal function and 

renal vasculature responsiveness in SD rats fed with normal diet. SD rats given with 

high sodium diet showed higher BP and renal impairment as evidenced by increased 

plasma creatinine, creatinine clearance and decreased urinary sodium to potassium 

ratio. DOCA-salt rats fed with high sodium diet had higher BP and in renal function 

compromised as supported by increased plasma creatinine, decreased creatinine 

http://en.wikipedia.org/wiki/Alpha-1_adrenergic_receptor
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clearance and increased fractional sodium excretion. Tempol decreased BP of SD 

rats fed with high sodium diet, DOCA-salt treated rats fed with normal diet and 

DOCA-salt treated rats fed with high sodium diet. Similarly, losartan reduced BP in 

SD rats fed with high sodium diet. High sodium diet decreased the responsiveness of 

renal α1-adrenoceptors in SD rats fed with high sodium diet and DOCA-salt rats fed 

with high sodium diet as supported by decreased renal cortical blood perfusion 

(RCBP) in response to adrenergic agonists. High sodium diet also decreased 

sensitivity of AT1-receptors in SD rats fed with high sodium diet. Tempol increased % 

drop of RCBP in response to adrenergic agonists in SD rats fed with high sodium 

diet. Similarly, losartan increased the responsiveness of α1-adrenergic receptors and 

decreased the sensitivity of AT1-receptors in DOCA-salt rats fed with high sodium 

diet. Tempol and losartan given in combination increased % drop of RCBP in 

response to adrenergic agonists in SD rats fed with high sodium diet and DOCA-salt 

rats fed with normal diet. Collectively, the results suggest that tempol lowers MAP 

and improves sensitivity of α1-adrenoceptors thus providing protection against ROS 

in these hypertensive rat models.  
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CHAPTER 1 

INTRODUCTION 

 

Epidemiological and scientific studies have reported that sodium 

consumption is very high in our daily diets (Brown et al., 2009; Li et al., 2012). 

Previous experimental and clinical studies mentioned the vital role of sodium in the 

regulation of blood pressure and the implications of abnormal sodium balance in the 

development of hypertension (Esteva-Font et al., 2010; Koga et al., 2008; Kuller, 

1997; Logan, 2006). Studies have also indicated that a long-term high sodium dietary 

intake contributes to elevated blood pressure (Johns, 2002) especially when the 

kidneys have a decreased function of sodium excretion (Ogihara et al., 2003). It can 

be explained that a decreased function of kidney to excrete sodium would cause 

sodium and water retention. Then, it leads to an increased extracellular fluid and 

increased plasma volume resulting into an elevated blood pressure. Restriction in 

sodium intake has been shown to decrease the blood pressure (Karppanen and 

Mervaala, 2006). Independent of excess sodium intake effect on blood pressure, it 

also increases left ventricular hypertrophy as well as fibrosis in kidneys and arteries 

(Appel et al., 2011). 

 

Experimental work on the pressure natriuresis and diuresis relationship 

developed by Guyton confirmed kidneys played a role in blood pressure regulation 

(Guyton, 1991). However, there are also many systems and mechanisms involved in 

arterial blood pressure regulation such as the baroreceptor mechanism, the 

chemoreceptor system, the central nervous system ischemic response, the renin-
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angiotensin-vasoconstrictor mechanism, the stress relaxation mechanism, the 

capillary fluid shift mechanism, the renal-body fluid mechanism and the aldosterone 

mechanism (Guyton et al., 1972). These mechanisms and systems regulate blood 

pressure by modulating cardiac output, fluid volumes and peripheral vascular 

resistance.  

 

The decreased function of the kidney to excrete sodium is different from 

individual to individual. Those require a higher than the normal levels of blood 

pressure to excrete sodium are called to be salt-sensitive. However, those can excrete 

excess salt at normal level of blood pressure are known as salt-resistant. Several 

mechanisms responsible for decreased salt-sensitivity have been reported such as 

defect in renal function (Campese, 1994), abnormally increasing reactive oxygen 

species generation leading to impairment in the endothelial derived relaxing factor 

nitric oxide activity (Lenda et al., 2000) and abnormally high activation of intra-renal 

renin-angiotensin system (Redgrave et al., 1985).  
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1.1 Urinary system 

1.1.1 Kidney 

Both kidneys are reddish and bean shaped organs. They are located in the 

retroperitoneal cavity of abdomen. The kidneys are located on either side at the level 

of the twelve thoracic to the third lumbar vertebrae. The right kidney is slightly lower 

in position than the left because the liver takes up some of the space above the right 

kidney (Grabowski and Tortora, 2003). Three layers of tissues surround kidneys; 

renal capsule (deep layer), adipose capsule (middle layer) and renal fascia 

(superficial layer). A mass of adipose tissue encases each kidney and holds it in its 

position. The renal capsule and the renal fasciae anchors the kidneys to surrounding 

structures and helps maintain their positions (Thibodeau and Patton, 2007).  

 

The medial border of the kidney has a concave notch called hilus that allows 

structures to enter or leave kidney along with blood vessels, lymphatic vessels, and 

nerves. The frontal section through the kidney reveals two regions that are renal 

cortex or the superficial region and renal medulla or the inner region. The renal 

pyramids make up the medullary tissue. The base of each pyramid faces the renal 

cortex and each renal papilla faces toward the renal hilus (Grabowski and Tortora, 

2003). The cortical tissue extends into the medulla between the pyramids to form 

renal columns. The renal papilla drain into cupslike structure called calyces where 

urine is received from the renal papilla, drained into renal pelvis and then transported 

out of the body through the ureters to the urinary bladder and urethras (Thibodeau 

and Patton, 2007). 
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The ureters are two tubes which are 25 to 30cm in length and transport urine 

from the renal pelvis to the urinary bladder (Grabowski and Tortora, 2003). The 

ureters curve medially from the renal pelvis until reaches through the bladder wall 

and opens at the lateral angle of the trigone in the urinary bladder (Thibodeau and 

Patton, 2007). Each ureter is formed of three layers of tissues which are the mucosa 

or the deepest layer, the muscularis or the intermediate layer and the adventitia or the 

superficial layer. The muscular layer is composed of smooth muscle fibers which 

play a major function in peristalsis to propel urine. The peristalsis waves vary in 

frequency rate and are dependent on how fast the urine is being formed (Grabowski 

and Tortora, 2003).  

 

The urinary bladder is a muscular and distensible bag organ which is situated 

directly behind the pubis symphysis and in front of the pelvic cavity (Grabowski and 

Tortora, 2003). It lies below the parietal peritoneum which covers only its superior 

surface. The remainder of the bladder surface is covered by a fibrous adventitia 

whereas the wall of the bladder is made up of smooth muscles (Thibodeau and Patton, 

2007). The urinary bladder is lined with mucous transitional epithelium that forms 

folds called rugae to permit expansion (Grabowski and Tortora, 2003). There are 

three openings in the bladder, two from the ureters and one into the urethra, which 

helps in urine drainage from the body (Thibodeau and Patton, 2007). The function of 

urinary bladder is to store and excrete urine (Andersson and Arner, 2004).  

 

 

 

 



 

5 

 

The urethra is a small tube lined with mucous membrane that emerges from 

the floor of the urinary bladder to the exterior of the body. In both male and female, 

the urethra is the last part of urinary system for propelling urine out from the body. In 

males, the urethra extends about 20cm, which passes through the center of the 

prostate gland just after leaving the urinary bladder (Thibodeau and Patton, 2007). 

The urethra is joined by two ejaculatory ducts within the prostate. After leaving the 

prostate, the urethra extends down and enters the base of the penis. The urethra 

travels through the center of the penis and ends as a urinary meatus at the tip of the 

penis. In female, the urethra lies directly posterior to the pubis symphysis and 

anterior to the vagina as it passes through the muscular floor of the pelvis. The 

urethra extends down and forward from the bladder for about 3cm and ends at the 

external urinary meatus (Thibodeau and Patton, 2007).   

 

The main functions of the kidneys are to process blood plasma and excrete 

urine in order to maintain the homeostatic balance of the body. The kidneys are the 

most important organs in the body for maintaining fluid electrolyte and acid-base 

balance as well as excreting wastes. They also regulate blood pH, blood volume and 

blood glucose levels as well as synthesize the active form of vitamin D and certain 

prostaglandins. The kidneys influence the secretion rate of antidiuretic hormone 

(ADH) and aldosterone (Grabowski and Tortora, 2003). Kidney plays crucial role in 

controlling and regulating blood pressure (BP) by handling sodium and water 

balance (Gu et al., 2008). Kidneys promote natriuresis and diuresis according to 

different sodium intake in order to maintain normal BP and the development of 

essential hypertension (De Richelieu et al., 2005). 



 

6 

 

1.1.2 Nephron  

Nephron is the basic structural and functional unit of the kidney. The function 

of nephron includes blood plasma processing and urine formation by means of three 

processes. These three processes are filtration, tubular reabsorption and tubular 

secretion. A hydrostatic pressure gradient drives the filtration of the plasma into the 

nephron. The filtrate contains materials that the body must save, the walls of the 

tubules reabsorb these materials back into the blood. As the filtrate begins to leave 

the nephron, the kidney may secrete a few items into the urine for excretion. There 

are two general classes of nephrons which are cortical nephrons and juxtamedullary 

nephrons. Almost all cortical nephrons are located in the renal cortex whereas 

juxtamedullary nephrons lie near the junction of the cortical and medullary layers 

(Thibodeau and Patton, 2007). The structure of nephron includes renal corpuscle, 

Bowman’s capsule, proximal convoluted tubule, loop of Henle, distal convoluted 

tubule and collecting duct.  

 

Filtration is the first step of urine production in which water and small solutes 

of blood filter out and move across glomerular capillaries into Bowman’s capsules 

(Grabowski and Tortora, 2003). Larger cells and plasma proteins do not filter into the 

Bowman’s capsules. The filtration takes place through the glomerular capsular 

membrane. Glomerular filtration depends on systemic blood pressure, a decreased 

blood pressure tends to decrease both glomerular pressure and filtration rate 

(Grabowski and Tortora, 2003). Increase in blood pressure results in constriction of 

afferent arterioles in order to maintain the blood flow to the kidney thereby 

maintaining glomerlar pressure and glomerular filtration (Thibodeau and Patton, 

2007).  
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Reabsorption is the second step in urine formation, which involves passive 

and active transport mechanisms from all parts of the renal tubules. The proximal 

tubule reabsorbs all nutrients and major portion of water and electrolytes back into 

blood stream. The rest of the renal tubule reabsorbs comparatively little of the filtrate.  

 

Tubular secretion means the movement of substances out of the blood and 

into tubular fluids. The descending limb of the loop of Henle removes urea through 

diffusion. The distal and collecting tubules secrete potassium, hydrogen, and 

ammonium ions (Grabowski and Tortora, 2003). They actively transport potassium 

ions or hydrogen ions out of the blood into tubule fluid in exchange for sodium ions 

that diffuse back into the blood. Potassium ion secretion increases when the blood 

aldosterone concentration increases. Aldosterone is a hormone of the adrenal cortex, 

which targets distal and collecting tubule cells to increase the activity of the sodium-

potassium pumps that move sodium ion out of the tubule and potassium ion into the 

tubule. Hydrogen ion secretion increases when the blood hydrogen ion concentration 

increases. Ammonium ions are secreted into the tubular fluid by diffusing out of the 

tubule cells where they are synthesized (Thibodeau and Patton, 2007).  
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1.1.2 (a) Renal corpuscle and glomerulus 

The renal corpuscle is composed of the Bowman's capsule and glomerulus. 

The renal corpuscle is the nephron's beginning filtering component of the kidney. 

The Bowman’s capsule is the cup-shaped mouth of a nephron which surrounds the 

glomerulus. It is formed by two layers of epithelial cells with a space called 

Bowman’s space. Fluids, waste products and electrolytes are filtered through the 

capillaries of the glomerulus into the Bowman’s space and constitute the glomerular 

filtrate which will be processed in the nephron to form urine. At the beginning of the 

nephron, the glomerulus is a network of fine capillaries that performs the first step of 

filtering blood. Glomeruli have thin and membranous walls that are composed of a 

single layer of endothelial cells. Many pores are present in the glomerular 

endothelium, which are larger than other pores of regular capillaries. This increased 

porosity is necessary for filtration to occur at the rate required for normal kidney 

function. Thus, glomerular filtration rate (GFR) is accepted as the measure of the 

overall kidney function (Stevens et al., 2006). 
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1.1.2 (b) Proximal tubule 

The proximal tubule is the second part of the nephron but the first part of the 

renal tubule. Its wall consists of one layer of epithelial cells. The luminal surface of 

the epithelial cells is covered with numerous amounts of microvilli that form the 

brush border. The proximal tubule regulates the pH of the filtrate and secretes 

organic acids, such as creatinine and other bases into the filtrate. Sodium ions, water, 

potassium ions, urea, phosphate ions, citrate ions which enter the proximal 

convoluted tubule are partly reabsorbed into the peritubular capillaries (Grabowski 

and Tortora, 2003). Most of filtrate that enters the renal tubule from Bowman’s 

capsule is reabsorbed before it reaches the end of the proximal tubule and only a 

small volume of filtrate is left to continue to the next portion of the loop of Henle. 

Sodium ions are actively transported out of the lumen of the tubule and into 

peritubular blood. As sodium ions accumulate in the interstitial fluid and become 

temporarily positive with respect to the tubule fluid. This electrical gradient drives 

the diffusion of negative ions from the filtrate into the interstitial fluid and then into 

the peritubular blood. The attraction between negative and positive ions is used to 

drive the passive transport of chloride, phosphate and other negative ions out of the 

tubule. Ion transports out of the proximal tubules causes water osmosis out of the 

tubule and into the peritubular blood and makes the two fluids isotonic. Proximal 

tubules reabsorb nutrients from the tubule fluid, glucose and amino acids into 

peritubular blood by a type of active transport mechanism called sodium cotransport. 

Glucose and amino acids passively move out of the tubule fluid by means of the 

sodium cotransport mechanism (Thibodeau and Patton, 2007).  

 

http://en.wikipedia.org/wiki/Epithelial
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Urea
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Citrate
http://en.wikipedia.org/wiki/Peritubular_capillaries
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1.1.2 (c) Loop of Henle 

The loop of Henle is the segment of renal tubule just beyond the proximal 

tubule. It consists of a descending limb and an ascending limb. The descending limb 

has low permeability to ions and urea but highly permeable to water. The ascending 

limb is impermeable to water but permeable to ions. The cortical ascending limb 

drains urine into the distal tubule. The length of the loop of Henle is important in the 

production of concentrated or diluted urine (Thibodeau and Patton, 2007).  The 

descending loop of Henle receives isotonic fluid from the proximal tubule, then 

reabsorbs water from tubule fluid and picks up urea from the interstitial fluid. The 

volume of fluid in the loop of Henle is lesser than the fluid in proximal tubule. The 

ascending limb of the loop of Henle gets a lower volume of fluid as compared to the 

descending limb. In contrast, the ascending portion of the loop of Henle becomes 

impermeable to water but extremely permeable to ions. Sodium and chloride ions are 

actively reabsorbed from the tubule fluid in the ascending limb. By reabsorbing 

sodium ions from the ascending limb of the loop of Henle, this can cause the tubule 

fluid to be diluted. Reabsorption of sodium ions in the ascending limb also creates 

and maintains a high solute concentration of the medullary interstitial fluid 

(Thibodeau and Patton, 2007). 
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1.1.2 (d) Distal tubule and collecting duct 

The distal tubule is located between the loop of Henle and the collecting duct 

system. The juxtaglomerular apparatus is found at the point where the afferent 

arteriole brushes past the distal tubule. This structure is important in maintaining 

homeostasis of blood flow because it reflexively secretes renin when blood pressure 

in the afferent arteriole drops. Renin triggers a mechanism that produces angiotensin, 

which causes vasoconstriction and the resulting increase in blood pressure. Large 

smooth muscle cells in the wall of the afferent arteriole called juxtaglomerular cells 

contain renin granules. These cells are sensitive to increased pressure in the arteriole 

and function as mechanoreceptors (Thibodeau and Patton, 2007). Modified distal 

tubule cells in the juxtaglomerular apparatus are crowded together to form a structure 

called macula densa. Cells in the macula densa are chemoreceptors that can sense the 

concentration of solute materials in the fluid passing through the tubule. Acting 

together, both cell types in the juxtaglomerular apparatus contribute to homeostasis 

of renal function by influencing the ability of the kidney to produce concentrated 

urine (Grabowski and Tortora, 2003). The function of distal tubule is similar to the 

proximal tubule, which also absorbs sodium ions by active transport but in smaller 

amounts. The distal tubule’s walls are relatively impermeable to water so that sodium 

ions can be reabsorbed but not water. As a result, the solute concentration of the 

tubule fluid continues to decrease. Apart from that, the wall structure of the 

collecting duct also prevents water from leaving the filtrate by osmosis. The 

collecting duct conducts the tubule fluid through the hypertonic medullary region 

(Thibodeau and Patton, 2007). The collecting duct of the kidney consists of a series 

of tubules and ducts which connect the nephrons to the ureter. The components of the 

collecting duct include the connecting tubules, cortical collecting ducts and 

http://en.wikipedia.org/wiki/Collecting_duct_system
http://en.wikipedia.org/wiki/Collecting_duct_system
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Nephron
http://en.wikipedia.org/wiki/Ureter
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medullary collecting ducts. The collecting duct system is involved in ion and fluid 

balance by reabsorption and secretion processes which are regulated by the 

aldosterone and antidiuretic hormones. 

 

 A regulatory mechanism is centered outside the kidney in order to prevent 

excessive loss of water in the body. ADH is secreted by the posterior pituitary. It 

causes cells of the distal and collecting tubules to become more permeable to water. 

Then, water flows out of the tubule by osmosis and goes into the interstitial fluid in 

order to achieve equilibrium. The more ADH is present, the more water is allowed 

out of the tubule and the tubular fluid’s solute concentration matches that of the 

surrounding tissues (Thibodeau and Patton, 2007). ADH increases the solute 

concentration of the urine and decreases water excretion. ADH has a central role in 

the regulation of urine volume. Control of the solute concentration of urine translates 

into control of urine volume. If water is not  reabsorbed by the distal and collecting 

tubules, urine volume is relatively high and water loss from the body is high. ADH 

regulates the body's retention of water by acting to increase water absorption in the 

collecting ducts of the kidney nephron in order to reduce water loss by the body 

(Caldwell and Young, 2006). Aldosterone is a hormone that tends to decrease urine 

volume and conserves water (Hu et al., 2012). Aldosterone is produced from adrenal 

cortex in the adrenal gland. It increases distal and collecting tubule absorption of 

sodium, which in turn causes an osmotic imbalance that drives the reabsorption of 

water from the tubule. The water reabsorption in the distal and collecting tubule 

portions requires ADH to function. Therefore, the aldosterone mechanism works 

together with the ADH mechanism in order to maintain the homeostatsis of body. 

 

http://en.wikipedia.org/wiki/Aldosterone
http://en.wikipedia.org/wiki/Antidiuretic_hormone
http://en.wikipedia.org/wiki/Water_retention_%28medicine%29
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 Urine analysis is often used as an indirect measure of the resulting kidney 

injury or the health status of a person. Urine contains water (Folin, 1905) along with 

nitrogenous wastes, electrolytes, toxins, pigments, hormones (Demir et al., 1994) and 

abnormal constituents. Nitrogenous wastes from protein catabolism are urea, uric 

acid, ammonia and creatinine (Bingham and Cummings, 1985). Electrolytes mainly 

present are ions such as sodium, potassium, ammonium, chloride, bicarbonate, 

phosphate, and sulfate (Shevock et al., 1993). The amounts and types of minerals 

vary with diet. During diseased state, toxins of the body are also excreted into urine 

(Le et al., 1994). Pigments like urobilin or urochromes derived from products of the 

breakdown of old red blood cells in the liver and elsewhere (De Araujo Pantoja et al., 

2012). Various types of food and drug (Drayer, 1976) may contain or be converted 

into pigments that are cleared from plasma by the kidneys into urine. Abnormal 

constituents such as blood, glucose, albumin and cast or calculi can also be found in 

urine (Atmani et al., 1996; Fogo and Barakat, 1990).  
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1.2 Blood vessels 

The kidneys are highly vascular organs which process the blood in important 

ways before returning it to the general circulation (Kang et al., 2001). There are three 

major types of blood vessels, which are arteries, veins and capillaries. Arteries carry 

oxygenated blood from the heart to the capillaries from where veins in general return 

the deoxygenated blood back to the heart (Vito and Dixon, 2003). The actual 

exchange of water and materials between blood and the tissues occurres in capillaries 

(Pappenheimer, 1953). The walls of arteries and veins consist of three separate layers 

which are tunica intima (innermost), tunica media (middle) and tunica adventitia 

(outer). The tunica intima consists of an endothelial cell monolayer which forms a 

smooth, flat and low friction surface. This layer is closest to luminal surface that 

aligns in the direction of blood flow. It also prevents blood cells including platelets, 

leukocytes and other elements from adhering to the luminal surface. Tunica media is 

also a layered structure which is made up of smooth muscle cells, elastic connective 

tissue, collagen and proteoglycans. Smooth muscle cells are responsible for 

vasoconstriction and vasodilation (Tanaka and Yamada, 1990). Endothelium of 

blood vessels are in charge of regulating vascular tone via the generation of 

vasodilator and vasoconstrictor substances (Guzik et al., 2002; Lenda et al., 2000). 

Medial elastin assists in keeping blood flow by expanding with pressure. Medial 

collagen prevents excessive dilation (Clark and Glagov, 1985). The tunica adventitia 

consists of collagen, fibroblasts and some elastin fibers. In some arterial adventitia, 

there is presence of vasa vasorum which is a vascular network.  
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1.3 Heart 

The heart is a muscular organ which can be found in all animals(Beck, 1935). 

The main function of the heart is to generate the force for blood circulation 

throughout the circulatory system by rhythmic contraction and relaxation. In humans, 

the heart is located at the centre of thoracic cavity above the diaphragm. In addition, 

the heart is about 310 grams in males and 225 grams in females. The heart rate of a 

healthy person is 72 beats per minute (Thibodeau and Patton, 2007). It is covered by 

a membranous sac called pericardium that possesses a special fluid that lubricates the 

heart when it beats. 

 

 The human heart is composed of four chambers. The upper two chambers are 

called atria which receive blood back from the vasculature system. The two lower 

chambers called ventricles which receive blood from both atria and generate the 

force to pump blood away from the heart via the blood vessels. The atria and 

ventricles are separated by a septum to prevent blood from mixing between left heart 

and right heart. The interatrial septum separates the left and right atrium, whereas the 

interventricular septum separates the left and right ventricle. The broader upper pole 

of the heart is the base and the lower pole is called the apex (Dickstein et al., 2008). 

The heart wall is made up of three layers, an epicardium (outermost), myocardium 

(middle) and endocardium (inner). The mechanical force of heart moves the wall 

inward and squeezes the blood into the chamber when the cardiac muscles in the 

atrium and ventricle walls contract. As the squeezing gradually increases, the 

pressure pushes the blood out of both atria and ventricles. When the cardiac muscle 

relaxes, the atrium and ventricle expand and fill with blood (Anderson, 2000). 
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Four sets of valves in heart are important to permit the flow of blood in only 

one direction. Atrioventricular valves are two in number which are mitral valve and 

tricuspid valve. The pulmonary semilunar valve and aortic semilunar valve are 

located  where the pulmonary artery and the aorta arise from the right and left 

ventricles, respectively (Thibodeau and Patton, 2007). Cardiac muscle cells play an 

important role in cardiac contraction. The heartbeat is modulated by pacemaker in 

the sinoatrial node. One systole followed by one diastole to form one complete 

heartbeat, which is called as one cardiac cycle.  

 

The left ventricle pumps oxygenated blood into the aorta whose branches 

deliver blood to capillary beds of all tissues and organs in the systemic circuit. The 

deoxygenated blood from the systemic tissues transports back to the heart through 

the superior vena cava into the right atrium. Then, the blood flows from the right 

atrium into the right ventricle through the tricuspid valve. From the right ventricle, 

the blood pumps into the pulmonary artery which carries the deoxygenated blood to 

the lungs for gaseous exchange.  

 

In the lungs, blood becomes oxygenated and travels to the left atrium via 

pulmonary veins. From the left atrium, blood enters through the bicuspid valve into 

the left ventricle. When the pressure in the left ventricle is very low during its 

relaxation, the phase of cardiac cycle is called diastole (Opie, 2004).   
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1.4 Adrenergic receptors  

1.4.1 Classification of adrenergic receptors 

Adrenoceptors or adrenergic receptors are a class of G protein-coupled 

receptors (GPCRs) which are found in cell membrane sites (Rosenbaum et al., 2009). 

Catecholamines, noradrenaline and adrenaline bind to adrenoceptors which act as 

important neurotransmitters and hormones in the central nervous system and 

peripheral nervous system (Guimaraes and Moura, 2001). The adrenoceptors are the 

targets of many therapeutically important drugs in diseases such as cardiovascular 

disorders (Guimaraes and Moura, 2001), hypertension (Chen et al., 2007) and renal 

failure (Khan et al., 2007). There are two major classes of adrenoceptors; α and β 

adrenoceptors. α-adrenoceptors are further divided into α1 and α2 whereas β 

adrenoceptors are divided into β1, β2 and β3. Furthermore, α1-adrenoceptors are 

subdivided into three subtypes: α1A, α1B, and α1D. α2–adrenoceptors are also classified 

as α2A, α2B, and α2C subtypes (Gilsbach and Hein, 2012; Guimaraes and Moura, 2001). 

Specific actions of the α1 receptors mostly involve smooth muscle contraction. The 

action of α1-adrenoreceptor causes vasoconstriction in most of the blood vessels, 

such as those of the skin (Kenney et al., 1991), renal artery (Schmitz et al., 1981) and 

brain (Young and Kuhar, 1980). The α1-adrenoreceptors mediate renal 

vasoconstriction in rats with hypertension induced by various methods including 

DOCA-salt and two-kidney one clip models of hypertension (Sattar and Johns, 1996). 

Specific actions of the α2–adrenoreceptor include inhibition of insulin release from 

the pancreas (Nakaki et al., 1981), induction of glucagon release from the pancreas 

(Hirose et al., 1992) and negative feedback in the neuronal synapses via presynaptic 

inhibition of noradrenaline (NA) release in central nervous system (Dennis et al., 

1987). The β-adrenoceptors mostly perform inhibitory properties except in the heart. 

http://en.wikipedia.org/wiki/Vasoconstriction
http://en.wikipedia.org/wiki/Blood_vessels
http://en.wikipedia.org/wiki/Skin
http://en.wikipedia.org/wiki/Renal_artery
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Pancreas
http://en.wikipedia.org/wiki/Glucagon
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1.4.2 Renal α-adrenergic mechanism 

Renal α1-adrenoceptors mediate the regulation of various renal functions 

including renal hemodynamic, glomerular ultrafiltration, renovascular tone and 

tubular electrolyte reabsorption thereby contributing to the regulation of extracellular 

fluid volume and arterial blood pressure (Dibona and Kopp, 1997). Excessive dietary 

sodium leads to primary hypertension only in those individuals with heightened 

sodium sensitivity associated with a strong genetic background (Chen et al., 2007). 

In hypertension, the primary defect is located in the kidneys. The renal sympathetic 

nerve which densely innervates all the components of the kidney mediates its actions 

through renal α- and β-adrenoceptors during the early stages of the hypertension. 

Renal α-adrenoreceptors are mostly located in proximal tubules and enhance Na
+
 

reabsorption. An increased sodium intake affects the expression of the renal 

adrenergic system in normotensive and few hypertensive animal models, which 

contributes to the pathogenesis of hypertension (Tanoue et al., 2002). Previous 

findings have shown that high sodium diets can cause an elevation of renal 

adrenoceptor density (Saiz et al., 1987). High sodium intake associated with 

increased renal adrenoceptor density causes smooth muscle contractility and sodium 

reabsorption resulting in enhancement of renal vasocontraction and sodium retention 

(Weinberger, 1996). These actions result in blood pressure to increase. This increase 

in blood pressure in turn might cause renal injury
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1.5 Hypertension 

1.5.1 Definition 

Hypertension is defined as mean systolic blood pressure ≥140 mmHg and 

mean diastolic blood pressure ≥90 mmHg (Chobanian et al., 2003; Mancia et al., 

2013). Hypertension is a major public health issue and its prevalence is high in many 

developing countries as well as in the developed world. The prevalence of 

hypertension in Malaysia remains common and high (Ramli et al., 2012; Rampal et 

al., 2008). Hypertension is a major risk factor for a variety of problems especially 

cardiovascular problems (Krause et al., 2011; Levy et al., 1996). Furthermore, 

hypertension is a cause of chronic kidney disease (Foley et al., 1996). The 

development of unmanaged hypertension leads to mortality among the population. 

Drug treatment, dietary and lifestyle changes can improve blood pressure 

management and lower the risk of hypertension complications. Normal blood 

pressure is within the range of 120-129 mmHg systolic and 80-84 mmHg diastolic. 

High normal blood pressure is within the range of 130-139 mmHg systolic and 85-89 

mmHg diastolic (Mancia et al., 2013). High blood pressure is known as stage 1 

hypertension if it is within the range of 140-159 mmHg systolic and 90-99 mmHg 

diastolic (Burt et al., 1995; Mancia et al., 2013). On the other hand, stage 2 

hypertension occurs when systolic blood pressure exceeds 160 mmHg and diastolic 

blood pressure over 100 mmHg (Burt et al., 1995; Mancia et al., 2013). 
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1.5.2 Types of hypertension 

Hypertension can be classified into essential hypertension and secondary 

hypertension. The essential hypertension is developed by no obvious underlying 

medical causes (Carretero and Oparil, 2000). However, the secondary hypertension is 

caused by other conditions such as increasing age with coexisting atherosclerosis 

(Anderson et al., 1994). There are many interrelated factors that can cause 

hypertension and they vary among different individuals. High sodium intake is one 

of the factors, other factors like obesity, insulin resistance, impaired renin-

angiotensin system and sympathetic nervous system, genetic disorders, endothelial 

dysfunction and neurovascular anomalies can also cause hypertension (Beevers et al., 

2001b). Cardiac output, peripheral resistance, renin-angiotensin-aldosterone system, 

autonomic nervous system, bradykinin, endothelin and nitric oxide (NO) play a role 

in the development of essential hypertension (Zhu et al., 2004). The pathophysiology 

of hypertension is still much unknown (Beevers et al., 2001b). ROS has been 

suggested to impair endothelium-dependent vasodilation and reduce NO production 

during elevated sodium intake (Zhu et al., 2004). In DOCA-salt treated animals, the 

mechanism of induction of endocrine hypertension is due to retention of sodium and 

water, this increases circulating blood volume and results in hypertension. Renin 

angiotensin system is suppressed in DOCA salt hypertension model and treatment 

with AT1-receptor antagonist has no effect on the blood pressure. Normal kidney has 

the physiologic ability to excrete the daily sodium load effectively without allowing 

a significant rise in the extracellular volume. Chronic administration of excess 

sodium can lead to the production of hypertension in rats, which is a good research 

model to mimic hypertension in human subject. 
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1.5.3 Renin-angiotensin-aldosterone system 

Renin-angiotensin-aldosterone system (RAAS) plays an important role in 

long-term maintenance of arterial blood pressure despite extremes in dietary sodium 

intake. Blood pressure is regulated by sodium excretion (Stolarz-Skrzypek et al., 

2011). The release of renin is stimulated when sodium intake is low. Renin release is 

inhibited when sodium intake is high. When the RAAS is dysregulated, changes in 

sodium intake affect the blood pressure (Weir and Dzau, 1999). Furthermore, 

hypertension in response to high sodium intake could be partially due to the result of 

insufficient renal vasodilation which is attributed by RAAS blockade (van Paassen et 

al., 1996). 

 

Renin is secreted from the juxtaglomerular apparatus of the kidney in 

response to glomerular underperfusion or a condition when the sodium intake is 

reduced. Renin is responsible for converting renin substrate (angiotensinogen) to 

Ang I, which is a physiologically inactive substance and is rapidly converted to Ang 

II in the lungs by angiotensin converting enzyme (ACE). Ang II is a potent 

vasoconstrictor and thus causes a rise in blood pressure. It stimulates the release of 

aldosterone which results in a further rise in blood pressure related to sodium and 

water retention (Beevers et al., 2001a). Nevertheless, previous studies have reported 

local participation of the RAAS in cardia vascular system and kidney during sodium 

loading (Navar et al., 2006; Nickenig et al., 1998). This suggested that despite of 

suppressed RAAS with salt loading, cardiac and RAAS could be locally stimulated 

to generate Ang II (Matavelli et al., 2007; Varagic, 2006). 
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1.5.4 Sympathetic nervous system 

The nervous system consists of the central nervous system (CNS); brain and 

spinal cord as well as peripheral nervous system (PNS) (Nieuwenhuys et al., 2007). 

The PNS is divided into sensory (afferent) division and motor (efferent) division. 

The afferent division conveys impulses to the CNS whereas efferent division brings 

impulses out from the CNS to peripheral organs for taking action (Levine et al., 

1986). In PNS, the efferent division is subdivided into somatic nervous system (SNS) 

and autonomic nervous system (ANS). The SNS regulates skeletal muscles for body 

movement (Nurmikko et al., 1991) while the ANS controls heart rate and urination 

(De Groat, 1975; Gabella, 2001; Sztajzel, 2004). The ANS is composed of 

sympathetic division and parasympathetic division (Mathias and Bannister, 2013). 

 

The general action of the sympathetic nervous division is to mobilize the 

function of internal organs as diverse as pupil diameter (Wilhelm et al., 2001), gut 

motility (Straub et al., 2006) and urinary output (Schlaich et al., 2010). It is known 

for mediating the neuronal and hormonal stress response commonly called the fight-

or-flight response and is immediatetly active at a basic level to maintain homeostasis 

(Jansen et al., 1995). The parasympathetic system controls the function of organs and 

glands in the body (Quigley, 2010).  

 

A high sodium intake increases the activity of the sympathetic nervous 

system (Carlson et al., 2000). Moreover, salt sensitivity in essential hypertension has 

been associated with increased sympathetic activity which is supported by increased 

renal sympathetic nerve activity (Campese, 1994). The renal sympathetic nerve plays 

an important part in the modulation of renal function which in turn can affect renin 

http://en.wikipedia.org/wiki/Heart_rate
http://en.wikipedia.org/wiki/Pupil
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http://en.wikipedia.org/wiki/Urinary_system
http://en.wikipedia.org/wiki/Homeostasis
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release, extracellular fluid volume and blood pressure (Katholi, 1983).  

 

The sympathetic nervous system plays an important role in controlling 

arterial pressure under different conditions by modifying cardiac output, peripheral 

vascular resistance and renal functions. Kidney increases tubular sodium 

reabsorption, renin release and renal vascular resistance when its sympathetic nerves 

are activated (Grisk and Rettig, 2004). 

 

Any disturbed renal sympathetic nerve activity could directly affect the 

kidney. A mishandling of sodium and water, decreased filtration rate and decreased 

glomerular renal blood flows can lead to renal vasoconstriction and substantial renin 

production (Dibona and Kopp, 1997). Ang II activates NADH/NADPH oxidase that 

increases O2
−
 in vascular tissues (Campese et al., 2005). Previous reports have 

documented that ROS could also mediate the effects of Ang II on sympathtic nerve 

activity (Ye et al., 2006) and elevation of O2
−
 can decrease sodium excretion thus 

leading to hypertension.  

 

Abnormal increase in the renal sympathetic nerve activity in hypertension can 

alter renal function. The changing of sodium and water retention will increase blood 

volume. An increased blood volume associated with an elevated arterial blood 

pressure enhance urinary sodium excretion and water excretion in order to maintain 

homeostasis (DiBona, 2004). 
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High sodium intake activates the central sympathoecitatory mechanisms by 

increasing brain angiotensin activity and sodium concentration in cerebrospinal fluid 

(Huang and Leenen, 1998). The increased Ang II in brain due to  high sodium intake 

can alter the brain in regulating renal sympathetic nerve activity and renal excretory 

function (Johns, 2002). 

 

The arterial baroreceptor reflex activity can modulate the arterial pressure and 

sodium homeostasis through the renal sympathetic nerve system (Osborn and 

Hornfeldt, 1998). An increased mean arterial pressure due to high sodium intake can 

stimulate the sensitivity of arterial baroreceptor. The stimulation can lead to heart 

relaxation, peripheral blood vessels dilation and reduced stimulation on kidney. 

These actions reduce renal tubular sodium reabsorption and produce natriuresis, 

which normalize the arterial pressure (Guyton et al., 1972). 

 

1.6 Oxidative stress  

Oxidative stress is an imbalance between oxidants and antioxidants in favour 

of the oxidants which potentially leads to damage (Sies, 1997). Oxidative stress can 

cause toxic effects through the production of peroxides and free radicals that damage 

cells. Oxidative stress plays a role in many clinical conditions such as hypertension, 

diabetes, and renal failure (Banday et al., 2007; Dobrian et al., 2003; Maritim et al., 

2003; Massy and Nguyen-Khoa, 2001). 
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