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Abstract 
An analysis of the mixed convection boundary-layer flow on one face of a semi-infmite 
vertical surface embedded in a fluid-saturated porous medium is presented. It is assumed 
that the other face of the surface is in contact with·a hot or cooled fluid maintaining the 
surface at a constant "temperature Tf . Using an appropriate similarity transformation, the 
governing system of partial differential equations is transformed into a system of ordinary 
differential equations, ·which are then solved numerically. The dependence of the reduced 
Nusselt number on the convective (Biot) number and the buoyancy or mixed convection 
parameter is investigated. The results indicate that dual solutions exist for opposing flow, 
whereas for the assisting flow the solution is unique. Limiting asymptotic forms are also 
derived. 

Nomenclature 

modified streamfunction 
acceleration due to gravity 
heat transfer coefficient 
surface thermal conductivity 
porosity of porous medium 
fluid temperature. 
surface/ambient temperature 
temperature difference (= Tf - Too) 
streamwise velocity 
outer flow 
transverse velocity 
streamwise coordinate 
transverse coordinate 
thennal diffusivity 
coefficient ofthennal expansion 
dimensionless parameters defmed in (9) 
dimensionless temperature difference 
similarity variable 
kinematic viscosity of the fluid 
streamfunction 
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Introduction 

In the study of convective heat transfer it is customary to treat the problem as either pure!1 
forced convection or free convection. However, the combination of both forced and fr~ 
convection arises in many transport processes in nature and in engineering devices, such a 
in atmospheric boundary layers, heat exchangers, solar collectors, nuclear reactors, elee 
tronic equipment, etc., in which the effects of a forced flow on a buoyantly-induced flo, 
are significant. A great deal of work has already been performed on the study of convectivi 
flows in fluid-saturated porous media. The problem of mixed convection in porous medi; 
has important applications in such fields as geothermal energy extraction, oil reCOvef1 
modelling, food processing, thermal insulating systems, in manufacturing processes, envi 
ronment, heat storage systems, etc. Many of these applications can be found in the recen 
books by Pop and Ingham [1], Bejan et al. [2], Ingham et a1. [3], Ingham and Pop [4], Vafa 
[5,6], Nield and Bejan [7] and Vadasz [8J. 

It appears that Cheng [9] was the fIrst to study the problem of mixed convection adja, 
cent to inclined surfaces embedded in porous media using the boundary-layer apprOXllna, 
tion. Similarity solutions were obtained for the situation where the free stream velocity an( 
the surface temperature distribution vary according to the same power function of the dis· 
tance along the surface. Further, Merkin [10, 11] examined the effect of opposing buoyancy 
forces on the boundary-layer flow on a semi-infinite vertical flat surface at a constant (iso­
thermal) temperature in a unifonn fre~ stre,ttm, while Aly et a1. [12] considered the surface 
temperature to v~ as x..1., where x is· the· coordinate measuring distance from the leading 
edge along the surface and A is a fixed constant. It was shown in these papers that, for op­
posing flow, the numerical solutions break down and the boundary layer may separate from 
the surface, giving rise to rather unusual heat transfer characteristics. The governing simi­
larity equations can also admit multiple (dual) solutions. The steady boundary-layer flow 
near the stagnation point on an impermeable vertical surface with slip that is embedded in a 
fluid-saturated porous medium has been investigated by Harris et a1. [13] using the Darcy­
Brinkman fluid model. It was found that dual solutions exist for assisting flows, as well as 
those usually reported in the literature for opposing flows. The temporal stability of their 
steady flow solutions for different values of the mixed convection parameter has been per­
fonned using a linear stability analysis. 

Most mixed convection studies in porous media assume an isothennal or variable sur­
face condition, but not a convective boundary condition. The idea of using a convective (or 
conjugate) boundary conditions was first introduced by Merkin [14] for the problem of free 
convection past a vertical flat plate immersed in a viscous (Newtonian) fluid. More recent­
ly, Aziz [15] used the convective boundary condition to study the classical problem of 
forced convection boundary-layer flow over a flat surface. Since then, a number of bound a­
ry-Iayer flows have been reconsidered now applying convective boundary conditions, see 
Aziz [15], Bataller [16], Makinde and Olanrewaju [17], Merkin and Pop [18] and Makinde 
andAziz [19],,for examples. 

In the present paper, the effect of steady mixed convection flow over a semi-infinite flat 
surface embedded in a fluid-saturated porous medium is studied, in the case when the sur­
face is heated or cooled convectively. Using pseudo-similarity variables, the basic continui­
ty, Darcy and energy equations are reduced to a coupled system of ordinary differential 
equations. Conditions are identified for the existence of a true similarity solution. The simi­
larity equations are solved numerically and the results discussed. It is worth, however, men­
tioning that the present problem extends that of Merkin [10, 11] to the case of convective 
boundary condition. 
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Model 

We consider the steady boundary-layer flow along a vertical flat surface embedded in a .. 
fluid-saturated porous material of constant ambient temperature Too. We assume that the 
90nstant velocity of the outer (potential) flow is Uoo and that the surface is heated by con­
vection from a hot or cooled fluid at the temperature Tt , providing a heat transfer coeffi­
cient h, = h,(x), where Tf > Too corresponds to a heated plate (assisting flow) and 
Tf < Too corresponds to a cooled surface (opposing flow), respectively. Under these as­
sumptions as well as the usual Boussinesq and boundary-layer approximations, the basic 
equations are, see Ingham and Pop [4], Vafai [5], Nield and Bejan [7] for example, 

au av 
-+-=0 ax ay 

au gKf3 aT 
=----

By v ay 

aT aT a2T 
u ax + v By = am ay2 . 

subj ect to the boundary conditions 

. aT 
v ~ O} -k By = hf(Tf - T) on y = 0 

u----+UCC)J T----+Too as y----+oo 

(1) 

(2) 

(3) 

(4) 

where x and y are the Cartesian coordinates measured along the surface and nonnal to it; u 
and v are respectively the velocity components in the x and y directions; T. is the fluid 
temperature; 9 is the acceleration due to gravrit; K is the perrileability of the porous medi­
um; tXm is the thennal diffusivity of the porous medium; k is the thermal conductivity of 
the surface, fJ is the coefficient of thermal expansion and v is the kinematic viscosity. 

Following Merkin [10, 11] and Aziz [15] for example, equations (1-3) with the bounda­
ry conditions (4) can be transformed into ordinary differential equations by the similarity 
transformation 

( 
U )1/2 

ljJ = (2,am Uoox)1/2[(1]), T - Too = I1TB(rJ), 1] = y 2a:x (5) 

where tlT = Tf - Too and where t/J is the stream function defIned by u = at/J/ay, v = 
-al/J/ax. Using (5), equations (2) and (3) reduce to the ordinary differential equations 

[" = f8', 8" + fB' = 0 (6) 

In order to have a similarity solution for equations (6), the boundary conditions (4) re­
quire that heat transfer coefficient h, must be proportional to X- l/2 . Thus we assume 

hf = kCox-1/2 (7) 

where Co is a constant. Boundary conditions (4) now become 
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f = 0, ()' = -yel - 8) on 1] = 0, 

I' ~ 1, e ~ 0 as 'f1 ~ 00 

where primes denotes differentiation with respect to YJ. The dimensionless quantities y and 
E are respectively the convective and the buoyancy (or mixed convection) parameters and 
are defmed by 

(
2am)1/2 

y = Co U
oo 

' 

nPKI1T 
E=--­

vUoo 
(9) 

We note that having E > 0 corresponds to a heated plate Tf > Too or assisting flow; hav .. 

ing E < 0 corresponds to a cooled plate (Tf < Too) or opposing flow, with E = 0 correspond .. 
ing to forced convection. 

We can combine equations (6), noting that I' = 1 + f(), to reduce the problem to the 
single equation 

['" + ff" = 0 

with boundary conditions (4) giving 

f == 0, f'l =: -y(l + E - f') on 1] = 0, 

f' ~ 1 as 1] -7 00 
~'t' 
'" 

It is the problem given by (10, 11) that we now consider in detail. 

Results 

(10) 

(11) 

We start by noting that, for y » 1, the problem reduces to equation (10) but now subject to 
the boundary conditions 

f = 0, f' == 1 + E on 1] = 0, 

I' ~ 1 as 1] ~ 00 

(12) 

treated by Merkin (10, 11]. The main point to note about the results given in [10, 11] is the 
existence of a saddle-node bifurcation at Ec ~ -1.3541, with dual solutions for tc < E < 
-1, no solutions for 6 < tc and only a single solution for t > -1. This leads us to expect 
the existence of a critical point fc = E"c(Y) in the present problem. 

We also note that, when € == 0, we have the forced convection limit with then f = 1]. By 
perturbing about this limit it is straightforward to show that 

, y~ y~ f (0) --1 + 6 + ... I [" (O}- - E + ... for E « 1 (13) 
Y2 + yJrr V2 + y~ 

Opposing flow, E < 0: We plot both [' (0) and [" (0) against E in Figure 1 for representa­
tive values of y. We see that there is a critical point at Ec = Ee(Y) with the values of Ifel 
increasing as y is decreased. There are dual solutions for Ee < f < -1 with the lower 
branch solutions tenninating in a singularity as f --) -1 from below in a similar manner to 
that describe9- in [10, 11]. We also note that all soluti ons have f' (0) == 1, f II (0) = 0 at 
£ =:: 0 in agreement with (13). 
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In Figure 2 we plot ['(D) and f"(O) against y for representative values of f, both posi­
tive and negative. We see that, for c < E c' there is a critical value of y with this critical 
value decreasing as Itl is increased, consistent with the results shown in Figure.I. Also, for 
values of E: > E:c , the solution continues to large values of y with, for a given value of y, 
both i' (0) and [" (0) increasing as f is increased. As perhaps expected from (13), {f (0) < 
1, iff (0) > 0 for Cc < f < 0 and [' (0) > 1, [If (0) < 0 for E > O. We see that, for 
f = -1.5 and -2.0, there is an upper bound on y for the existence of a solution, consistent 
with the results shown in Figure 3. 

-- upper branch solution 
. - • - . - lower branch solution 

E, = (-3.4060, -0.1098) 

1 e 2'" (-2.0606, -O.2131) 

"(0) 
0.5 

E3 " (-1.6580, -0.2844) 

E4 '" (-1.4015, -0.3508) 

-0.5 L.....----'-_'---.l.-..........J'----'-........-I_...J....,...--.I._-'-----l 

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1.5 
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Figure 1. Plots ofCa) f'(O) and (b) /"(0) against f for some values ofy obtained from the numerical 
solution of equations (10, 11). The values of ['(0) and ["(0) at the critical points are noted on the 
figure. 
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Figure 2. Plots of (a) I' (0) and (b) I" (0) against y for the values of € noted on the figure obtained 
from the numerical solution of equations (10, 11) 

We can calculate the critical values f c nwnerically following the approach described in 
~20] for example. In Figure 3 we plot Ec against y with this figure showing that, consistent 
Mth Figure 1, Itcl increases as y is decreased, appearing to become unbounded as y -+ O. 
I\lso, fc approaches the large y limit of -1.3541 mentioned above and shown by a broken 
ine as y is increased. 
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... 

Figure 3. The critical values € c of equations (10, 11) plotted against y. The asymptotic limits of 
€c = -1.3541 for large rand expression {I 8) for y small are shown by broken lines 

We now consider the behaviour of the solution for y small. For t of 0(1), boundary 
condition (11) gives [If (0) == 0 and the solution is simply [ = 1]. If we then put 

f = 11 + r¢o + ... 
we find that <Po satisfies, at leading order, 

4>~' + 114>~ == 0 
. r~ 

4>0(0) == 0 4>g (0) ~ -6 CPb -7 0 as 1] -+ 00 

Equation (15) has the solution 

giving CPb(O) == E ~ . ~2 

which is the fonn given in (13) when expanded for small y. 

(14) 

(15) 

(16) 

This approach breaks down when E is large, of O(y-l). We now put E = 8y-l and as­
sume that 0 is of 0(1). In this case the problem reduces to, at leading order, equation (10) 
but now subject to the boundary conditions 

f(O) = 0, [" (0) = -0, [' -7 1 as 11 -7 00 (17) 

This problem has a solution similar to that described in [10, 11] in that there is a critical 
value Dc of D with oe = -0.46960 and dual solutions for oe < 8 < 0, no solutions for 
8 < oe and only a single solution for 8 > O. Thus we have 

t c"'" - 0.46960y-l +... as y --) 0 (18) 

We also show expression (18) in Figure 3 by a broken line, showing reasonable agree­
ment with the numerical values, given that we expect an 0(1) correction to this expression 
for small y. 

Aiding flow, E > 0: Our numerical solutions indicate that there is only one solution for 
E > 0 (in fact for E > -1) having f'(O) > 1 and ["(0) < 0 for all values ofy and E > 0 
tried. This can be seen in Figures 1 and 2 where we plot f' (0) and [" (0) against E (Figure 
1) and against y (Figure 2). f' (0) increases and [" (0) decreases as E is increased, with both 
f'CO) and If"(O)1 becoming large for large E. 
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This leads us to consider the asymptotic solution for E large, assuming that y is of 0(1). 
We put 

(19) 

which leaves equation (10) unaltered except that primes now denote differentiation with 
respect to fj. Boundary condition (11) becomes 

f = 0, f" = -1 + y2/3c-l/3 I' - E-1 on if = 0, 

I' -+ (Ey)-2/3 as fj -+ 00 

Expression (20) suggests an expansion of the form 

I = 10 + E-1/ 3/1 + E-2/3 f2 + ... 
The leading-order problem 

I~" + tot~' = 0, toCO) = 0, 

f~'(O) = -1, [~-+ 0 as fj -+ 00 

(20) 

(21) 

(22) 

(23) 

has arisen previously, see [21] for example, and has f~(O) = 1.36427. 

and 

For the problem at O(E-1/ 3 ) we put [1 = y2/3 fr giving 

It' + folt + f~' It = 0 11 (0) = 0, 

It (0) = f~ (0) If -+ 0 as ij -+ 00 

A numerical integration of (24) gives /; (0) = -1.24081. 

At o (E-2/3) we write 12 = y4/3/2 + y-2/302 , so that 

1~" + 101~' + f~/12 = .. ,*/1/;, 12(0) = 0, 

I~' (0) = I; (0) I~ -+ 0 as fj -+ 00 

o~' + [ooi + f~' 92 = 0, 92 (0) = 0, 

9;(0) = 0, B~ -+ 1 as if -+ 00 

(24) 

(25) 

(26) 

The numerical integration of (25, 26) gives I~(O) = 0.84640, g~(O) = 0.43531. Thus 
we have that 

i' (0)--(ye)2/3( 1.36427 - 1.24081y 2/3e-1/3 

+ (O.84640y4/3. + O.43531y-2/3)e-2/ 3 + ... ) (27) 

and 

f"(O)~EY( -1 + 1.36427y 2/3 E-l/3 - 1.214081y4/3 E-2/3 + ... ) (28) 

as € -+ 00. Expressions (27, 28) show that ["(0) is negative and decreasing and that f'(O) 
is positive and increasing with €, being respectively of 0 (E) and of 0 (E2/3) for E large. 
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Finally we note that this asymptotic expansion breaks down when y is small, of O(E-1) 

In this case we again put 8 = yE and the problem, at least to leading order, reduces to tha 
give above by (10) and (17). 

Conclusions 

We have considered the mixed convection boundary-layer flow on a vertical surface that is 
heated convectively. We reduced the problem to similarity form, equations (10, 11), though 
to do so we required a spatially dependent surface heat transfer coefficient hI which had to 
take a specific functional fonn, expression (7). The problem was found to involve two di­
mensionless parameters, namely E, a mixed convection parameter that could be either posi­
tive or negative, and a surface heat transfer parameter y. We considered both opposing, 
E < 0, and aiding, E > 0 flows. In the former case we found a critical value Cc of E, de­
pendent on y , with solutions to our equations (10, 11) being possible only for E ~Ec' We 
also found dual solutions for -1 > E > E c' see Figure 1. The values of E c were determined 
numerically and were found to be negative for all y to increase smoothly with y, Figure 3. 
The asymptotic limits of large and small y were discussed. For large y the flow is essential­
ly that given by a prescribed wall temperature with a critical value Ec previously deter­
mined [10, 11]. Whereas for small y the flow is essentially that resulting from a prescribed 
wall heat flux: with there being a smooth transition between these two flow regimes. Our 
analysis showed that the range of existendlof solutions increased as y was decreased with 
E c being of 0 (y -1) for y small, expression (18). 

We also considered aiding flows, Figures 1 and 2, where we saw that the solution could 
be continued to large values of E. We derived an asymptotic solution valid for E large with 
the leading order problem being the free convection limit corresponding to that for a pre­
scribed wall heat flux [18], perhaps as might be expected. This solution is'independent of 
the surface heat flux parameter y, though the higher order perturbations to it did depend on 
y, see expressions (27,28) for example. 
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