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Abstract

An analysis of the mixed convection boundary-layer flow on one face of a semi-infinite
vertical surface embedded in a fluid-saturated porous medium is presented. It is assumed
that the other face of the surface is in contact with a hot or cooled fluid maintaining the
surface at a constant temperature Tr. Using an appropriate similarity transformation, the
governing system of partial differential equations is transformed into a system of ordinary
differential equations, which are then solved numerically. The dependence of the reduced
Nusselt number on the convective (Biot) number and the buoyancy or mixed convection
parameter is investigated. The results indicate that dual solutions exist for opposing flow,
whereas for the assisting flow the solution is unique. Limiting asymptotic forms are also
derived.

Nomenclature

f  modified streamfunction

g acceleration due to gravity

hs  heat transfer coefficient

k  surface thermal conductivity

K  porosity of porous medium

T fluid temperature
Tr, T surface/ambient temperature
temperature difference (= Ty — T
streamwise velocity
outer flow
transverse velocity
streamwise coordinate
transverse coordinate
thermal diffusivity
coefficient of thermal expansion
dimensionless parameters defined in (9)
dimensionless temperature difference
similarity variable
kinematic viscosity of the fluid
streamfunction
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Introduction

In the study of convective heat transfer it is customary to treat the problem as either puref
forced convection or free convection. However, the combination of both forced and fre
convection arises in many transport processes in nature and in engineering devices, such 3
in atmospheric boundary layers, heat exchangers, solar collectors, nuclear reactors, elec
tronic equipment, etc., in which the effects of a forced flow on a buoyantly-induced floy
are significant. A great deal of work has already been performed on the study of convectiy,
flows in fluid-saturated porous media. The problem of mixed convection in porous med;;
has important applications in such fields as geothermal energy extraction, oil recoven
modelling, food processing, thermal insulating systems, in manufacturing processes, envi
ronment, heat storage systems, etc. Many of these applications can be found in the recen
books by Pop and Ingham [1], Bejan et al. [2], Ingham et al. [3], Ingham and Pop [4], Vafa
[5, 6], Nield and Bejan [7] and Vadasz [8].

It appears that Cheng [9] was the first to study the problem of mixed convection adja
cent to inclined surfaces embedded in porous media using the boundary-layer approxima
tion. Similarity solutions were obtained for the situation where the free stream velocity an¢
the surface temperature distribution vary according to the same power function of the dis.
tance along the surface. Further, Merkin [10, 11] examined the effect of opposing buoyancy
forces on the boundary-layer flow on a semi-infinite vertical flat surface at a constant (iso-
thermal) temperature in a uniform fre¢ stré#m, while Aly et al. [12] considered the surface
temperature to vary as x*, where x is the coordinate measuring distance from the leading
edge along the surface and A is a fixed constant. It was shown in these papers that, for op-
posing flow, the numerical solutions break down and the boundary layer may separate from
the surface, giving rise to rather unusual heat transfer characteristics. The governing simi-
larity equations can also admit multiple (dual) solutions. The steady boundary-layer flow
near the stagnation point on an impermeable vertical surface with slip that is embedded in a
fluid-saturated porous medium has been investigated by Harris et al. [13] using the Darcy-
Brinkman fluid model. It was found that dual solutions exist for assisting flows, as well as
those usually reported in the literature for opposing flows. The temporal stability of their
steady flow solutions for different values of the mixed convection parameter has been per-
formed using a linear stability analysis.

Most mixed convection studies in porous media assume an isothermal or variable sur-
face condition, but not a convective boundary condition. The idea of using a convective (or
conjugate) boundary conditions was first introduced by Merkin [14] for the problem of free
convection past a vertical flat plate immersed in a viscous (Newtonian) fluid. More recent-
ly, Aziz [15] used the convective boundary condition to study the classical problem of
forced convection boundary-layer flow over a flat surface. Since then, a number of bounda-
ry-layer flows have been reconsidered now applying convective boundary conditions, see
Aziz [15], Bataller [16], Makinde and Olanrewaju [17], Merkin and Pop [18)] and Makinde
and Aziz [19], for examples.

In the present paper, the effect of steady mixed convec’uon flow over a semi-infinite flat
surface embedded in a fluid-saturated porous medium is studied, in the case when the sur-
face is heated or cooled convectively. Using pseudo-similarity variables, the basic continui-
ty, Darcy and energy equations are reduced to a coupled system of ordinary differential
equations. Conditions are identified for the existence of a true similarity solution. The simi-
larity equations are solved numerically and the results discussed. It is worth, however, men-
tioning that the present problem extends that of Merkin {10, 11] to the case of convective
boundary condition.
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Model

We consider the steady boundary-layer flow along a vertical flat surface embedded in a.
fluid-saturated porous material of constant ambient temperature T,,. We assume that the
constant velocity of the outer (potential) flow is U, and that the surface is heated by con-
vection from a hot or cooled fluid at the temperature Ty, providing a heat transfer coeffi-
cient ke = he(x), where T; > T, corresponds to a heated plate (assisting flow) and
Tf < Ty cotresponds to a cooled surface (opposing flow), respectively. Under these as-
sumptions as well as the usual Boussinesq and boundary-layer approximations, the basic
equations are, see Ingham and Pop [4], Vafai [5], Nield and Bejan [7] for example,

du 2 v )
ax dy
du gKpeor
—=F @
ady v dy
aT aT a%T
— Y — =g — 3
”ax+”ay amayz- 3)
subject to the boundary conditions
v=20 kaT he(T; —T) 0
=0, —_— = ¥ _ on =
T ay NS Y @)

u-U, T->T, as y—-o

where x and y are the Cartesian coordinates measured along the surface and normal to it; u
and v are respectively the velocity components in the x and y directions; T is the fluid
temperature; g is the acceleration due to gravity; K is the permeability of the porous medi-
um; o, is the thermal diffusivity of the porous medium; k is the thermal conductivity of
the surface, Sis the coefficient of thermal expansion and v is the kinematic viscosity.

Following Merkin [10, 11] and Aziz [15] for example, equations (1-3) with the bounda-
ry conditions (4) can be transformed into ordinary differential equations by the similarity
transformation

1/2

Uso
Y= (Z,F‘mUooX)l/Zf(n), T—T, =AT6(m), 1= y(2a x) ®

where AT =Ty — T, and where ¥ is the stream function defined by u = dy/dy, v =
—0y/dx. Using (5), equations (2) and (3) reduce to the ordinary differential equations

fr=c, 0"+f0 = ©

In order to have a similarity solution for equations‘(6), the boundary conditions (4) re-
quire that heat transfer coefficient hr must be proportional to x~*/2, Thus we assume

hy = kCox ™1/ (7

where C, is a constant. Boundary conditions (4) now become
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f::OJ 9,=~Y(1_9) on 7]:0' (8’
fl>1, 80 a n-o ’

where primes denotes differentiation with respect to 7. The dimensionless quantities y and
€ are respectively the convective and the buoyancy (or mixed convection) parameters and
are defined by

©)

2a,,\ 1/ KAT
y = C, ( m) e= gp

U, 120
We note that having € > 0 corresponds to a heated plate T > T, or assisting flow; hav-

ing € < 0 corresponds to a cooled plate (Ty < T,,) or opposing flow, with € = 0 correspond-

ing to forced convection.
We can combine equations (6), noting that f’ = 1 + €6, to reduce the problem to the
single equation

fIII +ffll — 0 (IO)
with boundary conditions (4) giving
f=0, f'"'=—-y(l+e—f") on n=0,

f'- 1$"as n— oo

(11)

It is the problem given by (10, 11) that we now consider in detail.
Results

We start by noting that, for y > 1, the problem reduces to equation (10) but now subject to
the boundary conditions
f=0 f'=14+€¢ on n=20, 12)
ff>1 a np-oow

treated by Merkin [10, 11]. The main point to note about the results given in [10, 11] is the
existence of a saddle-node bifurcation at €, = ~1.3541, with dual solutions for €, < € <
-1, no solutions for € < €, and only a single solution for € > —1. This leads us to expect
the existence of a critical point €, = €.(y) in the present problem.

We also note that, when € = 0, we have the forced convection limit with then f = 7. By
perturbing about this limit it is straightforward to show that

- i o gy YV 13
F'(0) 1+‘/_ \/_ , (0 \/_2_+y\/56+ fore <1 (13)

Opposing flow, € < 0: We plot both f'(0) and f”(0) against € in Figure 1 for representa-
tive values of y. We see that there is a critical point at e, = €,(y) with the vatues of |e_|
increasing as y is decreased. There are dual solutions for €, < € < -1 with the lower
branch solutions terminating in a singularity as € = —1 from below in a similar manner to
that described in {10, 11]. We also note that all solutions have f'(0) = 1, f”(0) =0 at
€ = 0 in agreement with (13).
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In Figure 2 we plot f'(0) and £”(0) against y for representative values of €, both posi-
tive and negative. We see that, for € < e, there is a critical value of y with this critical
value decreasing as |e] is increased, consistent with the results shown in Figure.1. Also, for
values of € > ¢, the solution continues to large values of y with, for a given value of v,
both £'(0) and f”(0) increasing as € is increased. As perhaps expected from (13), f'(0) <
1, f"(0)>0 for e, <e<0 and f'(0)>1, f"(0) <O for e > 0. We see that, for
€ = —1.5 and 2.0, there is an upper bound on y for the existence of a solution, consistent
with the results shown in Figure 3.

15 T v T v T + T T
upper branch solution 06

------ lower branch salution o5t e, y=02 05 10 50
€, = (~3.4080, -0.1098)
1} €, =(-2.0606,-0.2131)
€, = (~1.6580, -0.2844)
€, = (~1.4015,~0.3508)

04r

0.3F

02}
f(D)

(0}
0sf
€, = (-3.4060, 0.4503)

€, = (~2.0606, 0.4257)
01 e =(-1.6580,0.3736)

le, / g ool €4=(-14015,02533)
\‘\ €2 v S3f / upper branch sclution
e ARzl s . lower branch solution
-0.5 . S A A =04
35 -3 -25 -2 -5 -1 -05 0 05 1 15 =4 -35 -3 —25 —2 -15 -1 -05 0 05 % 15

(@ : ()

Figure 1. Plots of (a) f'(0) and (b) f"(0) against € for some values of ¥ obtained from the numerical
solution of equations (10, 11) The values of f'(0) and f"(0) at the critical points are noted on the

figure.

2 T T T T 06 —— T T —— T
upper branch solution c=10 € =-20 -15 1.0
...... . - lower branch solution i
04f 7 1
15} 05 p 05
‘—‘?2. ,'/. "__4'_,..-._
; i T 0
10) 28 0
05F - ] o 05 1
-04 1
or J
-2.0 -15
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Figure 2. Plots of (a) f'(0) and (b) f”(0) against y for the values of € noted on the ﬁgure obtained
from the numerical solution of equations (10, 11)

We can calculate the critical values €, numerically following the approach described in
20] for example. In Figure 3 we plot €, against y with this figure showing that, consistent
with Figure 1, |€.| increases as y is decreased, appearing to become unbounded as y — 0.
Also, €, approaches the large y limit of —1.3541 mentioned above and shown by a broken

ine as y is increased.
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Figure 3. The critical values €, of equations (10, 11) plotted against y. The asymptotic limits of
€. = —1.3541 for large y and expression (18) for y smail are shown by broken lines

We now consider the behaviour of the solution for y small. For € of 0(1), boundary
condition (11) gives f”(0) = 0 and the solution is simply f = #. If we then put

f=n+ydo+-- (19
we find that ¢, satisfies, at leading order,
¢III + q)ll —
0 TN% (15)

@,(0) =0 @2(0) 2 ¢ @0 as n- o0
Equation (15) has the solution

. m TI
@) = ef e=5%/2 ds giving @4(0) = E\E (16)
1 ' '

which is the form given in (13) when expanded for small y.

This approach breaks down when € is large, of 0(y~1). We now put € = 8§y~ and as-
sume that 6 is of O(1). In this case the problem reduces to, at leading order, equation (10)
but now subject to the boundary conditions

f@© =0 f(0)=-6 f -1 as p-ow (17)

This problem has a solution similar to that described in [10, 11] in that there is a critical
value &, of § with §, = -0.46960 and dual solutions for §, < § < 0, no solutions for
6 < 6, and only a single solution for § > 0. Thus we have

€.~ — 046960y 1+ - as y -0 (18)
We also show expression (18) in Figure 3 by a broken line, showing reasonable agree-

ment with the numerical values, given that we expect an 0(1) correction to this expression
for small y.

Aiding flow, € > 0: Our numerical solutions indicate that there is only one solution for
€ > 0 (in fact for € > —1) having f'(0) > 1 and f"(0) < 0 for all values of y and € > 0
tried. This can be seen in Figures 1 and 2 where we plot f'(0) and f"(0) against € (Figure
1) and against y (Figure 2). f'(0) increases and f"(0) decreases as € is increased, with both
f£'(0) and |f"(0)| becoming large for large €.
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This leads us to consider the asymptotic solution for € large, assuming that y is of O(1).
We put

f=(NY3f, 7=(er)"?y | (19)

which leaves equation (10) unaltered except that primes now denote differentiation with
respect to 77. Boundary condition (11) becomes

f=0, f"=-14+y¥31Y3f —~¢1 on 7=0, (20)
fro(en)™? as jjooo @1
Expression (20) suggests an expansion of the form |
f=fo+eBfi+e2Bf + - (22)
The leading-order problem
o +fofed =0, fo(0)=0,
0(0)=~-1 fy->0 as 7-o0

(23)

has aﬁsen previously, see [21] for example, and has f; (0) = 1.36427.
For the problem at 0(6‘1/ %) we put f; = y%/3f, giving
" ffd =0 f@ =0,
; (0)=fo(0) fi=0 as foo
A numerical integration of (24) gives f;(0) = —1.24081.
At 0(e72) we write f, = y*2f, + y~%/3g,, so that
B+ fofs + fofr = fifit f2(0) =0,
(0)=f{(0) f; -0 as f-oo

(24)

(25)

and
97 +fogz +f092=0, g2(0)=0,
gz(0)=0. gz—1 as 7G>0
" The numerical integration of (25, 26) gives f; (0) = 0.84640, g;(0) = 0.43531. Thus
we have that

f’(O) (ve)?/3(1.36427 — 1.24081y/3¢71/3
+ (0.84640y*/3 + 0.43531y~2/3) 2/3 4 ...)

(26)

@7

and |
F"(0)~ey(—1 + 1.36427y%/3e™1/3 — 1.214081y*/3e™%/3 + -.-) (28)

as € — oo, Expressions (27, 28) show that f"(0) is negative and decreasing and that f 0)
is positive and increasing with €, being respectively of 0(€) and of 0 (€%/3) for € large.
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Finally we note that this asymptotic expansion breaks down when y is small, of 0(e~1)
In this case we again put § = ye and the problem, at least to leading order, reduces to tha
give above by (10) and (17)

Conclusions

We have considered the mixed convection boundary-layer flow on a vertical surface that is
heated convectively. We reduced the problem to similarity form, equations (10, 11), though
to do so we required a spatially dependent surface heat transfer coefficient hy which had to
take a specific functional form, expression (7). The problem was found to involve two dj-
mensionless parameters, namely €, a mixed convection parameter that could be either posi-
tive or negative, and a surface heat transfer parameter y. We considered both opposing,
€ < 0, and aiding, € > 0 flows. In the former case we found a critical value €, of ¢, de-
pendent on y , with solutions to our equations (10, 11) being possible only for € > €. We
also found dual solutions for ~1 > € > ¢, see Figure 1. The values of €, were determined
numerically and were found to be negative for all y to increase smoothly with y, Figure 3.
The asymptotic limits of large and small y were discussed. For large y the flow is essential-
ly that given by a prescribed wall temperature with a critical value €, previously deter-
mined [10, 11]. Whereas for small y the flow is essentially that resulting from a prescribed
wall heat flux with there being a smooth transition between these two flow regimes. Our
3o

analysis showed that the range of existence of solutions increased as y was decreased with
€. being of O(y~?) for ¥ small, expression (18).

We also considered aiding flows, Figures 1 and 2, where we saw that the solution could
be continued to large values of €. We derived an asymptotic solution valid for € large with
the leading order problem being the free convection limit corresponding to that for a pre-
scribed wall heat flux [18], perhaps as might be expected. This solution is" independent of
the surface heat flux parameter y, though the higher order perturbations to it did depcnd on
¥, see expressions (27, 28) for example.
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