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SANGGA RELAU BAGAS BERBUTIR DALAM PANEL STRUKTUR 

RINGAN UNTUK PERUMAHAN 

ABSTRAK 

Sangga relau bagas berbutir (GBS) adalah bahan buangan utama yang 

dihasilkan oleh industri besi. Dalam usaha untuk menjadikan sebagai bahan 

pozzolanik yang berkesan, GBS perlu dikisar. Dengan proses tersebut, ianya 

mengakibatkan penambahan kos dan meletakkan  tenaga pengeluaran yang lebih, 

dan hasilnya, pelepasan gas  yang tinggi kepada alam sekitar. Kajian ini bertujuan 

untuk menggunakan GBS sebagai pengganti simen separa untuk pengeluaran konkrit 

busa. GBS digunakan sebahagiannya bagi menggantikan simen pada tahap 

penggantian 30-70% mengikut berat simen pada ketumpatan 1300 kg /m3 campuran 

konkrit berbusa menggunakan tiga nisbah pengisi kepada pengikat yang berbeza 

(1.0, 1.5 dan 2.0). Dalam usaha untuk mempunyai pemahaman yang lebih baik 

tentang perbezaan prestasi antara GBS dan sangga relau bagas hancur (GGBS) yang 

digunakan secara meluas, GGBS telah digunakan dalam menghasilkan konkrit 

berbusa menggunakan ketumpatan, tahap penggantian dan nisbah pengisi untuk 

pengikat yang sama. Sebanyak 36 campuran disediakan dan telah diuji untuk sifat 

fizikal, mekanik dan ketahanan pada tempoh masa yang berbeza. Hasil kajian 

menunjukkan campuran optima konkrit berbusa GBS adalah campuran yang 

mengandungi 30% daripada GBS dan nisbah pengisi untuk pengikat 1.5. Campuran 

ini dipilih untuk fabrikasi kelompang luar untuk panel dinding pratuang. Panel 

dinding direka sebagai dinding tanggung beban yang dibuat daripada dua bahagian 

lapisan disambungkan bersama-sama menggunakan bolt keluli. Kedua-dua 

kelompang luar direka sebagai panel berusuk dan teras dalaman yang terdiri daripada 

campuran 500 kg/m3 konkrit berbusa. Melalui ujian eksperimen, panel dinding 
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mencapai purata beban pemecah sebanyak 391kN, iaitu 51.6% lebih tinggi 

berbanding dengan beban teori yang diperolehi menggunakan beban rekabentuk 

muktamad.  
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GRANULATED BLAST FURNACE SLAG IN STRUCTURAL 

LIGHTWEIGHT PANEL FOR HOUSING  

 

ABSTRACT 

Granulated blast furnace slag (GBS) is the main waste material produced by 

the iron industry. In order to activate as an effective pozzolanic material, GBS needs 

to be ground. Hence, adding to its value in cost and putting in to its production more 

energy, and as a result, more gas emissions to the environment. This study aimed on 

using GBS to be used as partial cement replacement for the production of foam 

concrete. GBS is used to partially replace cement at replacement levels of 30-70% by 

weight of cement in a 1300kg/m3 foam concrete mix using three different filler to 

binder ratios (1.0, 1.5 and 2.0). In order to have a better understanding about the 

difference in performance between GBS and the widely used enhanced ground 

granulated blast furnace slag (GGBS), GGBS was used in producing foam concrete 

using similar density, replacement levels and filler to binder ratios. A total of 36 

mixes were prepared and were tested for their physical, mechanical and durability 

properties at different ages. Results showed that the optimum foam concrete GBS 

mix was the mix that contained 30% of GBS and with filler to binder ratio of 1.5. 

This mix was chosen for the fabrication of the outer shell for the precast wall panel. 

The load bearing wall panel made out of two halves connected together using steel 

bolts. The outer shells are designed as a ribbed panel and an inner core made out of a 

500kg/m3 foam concrete mix. Through the experimental test, the wall panels 

achieved an average breaking load of 391kN, which is greater by 51.6% in 

comparison to the theoretical load determined using the ultimate design load.  
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CHAPTER 1 

1.1 INTRODUCTION  

Due to its versatility, economy, raw materials availability, durability and 

strength; concrete is the most widely used material on the planet after water. It can be 

designed to endure the harshest of environmental circumstances and can be 

fabricated to take any shape and form (Ozlutas et al., 2012). Although concrete is 

used extensively, it is a huge contributor to global warming. In the construction 

industry, and especially in the production of concrete, the amount of crushed rocks 

and gravel needed annually is estimated to be up to 11 billion tons (Mehta, 2001). 

Furthermore, to produce a ton of cement, the needed energy consumption and the 

emitted emissions of carbon dioxide (CO2) into the atmosphere are estimated to be 

approximately 150 kWT and 0.81 tons, respectively (Chandra, 1996; Huntzinger and 

Eatmon, 2009).  

It is a well-known fact that technology is becoming increasingly prominent in 

the construction industry. This prominence is the result of the construction 

industries’ need to produce innovative building materials. Hence, nowadays, 

concrete contents are not limited to cement, aggregate, and water, but it also has 

minerals and admixtures that can enhance the quality of the concrete and reduce its 

negative impact on the environment (Aı̈tcin, 2000). In addition, new types of 

concrete have been developed to ensure the creation of more environmentally 

friendly concretes. This is done by reducing the concrete’s exploitation of natural 

resources and reducing the concrete’s energy consumption by making them lighter 

(Ul Haq and Liew, 2007). 
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 Scientists and engineers are continuously striving towards the creation of 

innovative chemical admixtures and supplementary cementing materials (SCMs). 

The use of such materials conserves energy and has environmental benefits because 

of reducing the amount of manufactured cement, and as a result, reducing the amount 

of green house emissions to the atmosphere. Strict regulations and air pollution 

controls caused the production of numerous industrial by-products that can be used 

as SCMs. Such examples are fly ash, ground granulated blast furnace slag (GGBS), 

metakaoline and rice husk ash. These materials have been typically used in concrete 

manufacturing for the sake of cement content reduction, workability and strength 

improvement, and durability enhancement (Chandra, 1996; Siddique, 2007; Siddique 

and Khan, 2011).  

New types of concrete have been developed to counter the effects of global 

warming. Concrete types that are lightweight or use lightweight materials are an 

attempt to re-establish concrete as an environmental friendly material (Noordin and 

Awang, 2005). Lightweight concretes when used in construction reduce the cost and 

sizes of the super and substructures in the building. Lightweight building 

components also reduce the energy consumption used in their transportation and 

placement. In addition, using lightweight concrete in the construction of buildings 

will reduce the building’s energy consumption used for cooling and heating (Fouad, 

2006).  

Foam concrete, as a type of lightweight concrete, has been proven to be more 

environmentally friendly as it uses fewer natural resources than conventional 

concrete. Additionally, it is superior to conventional concrete in terms of fire 

resistance as well as thermal and sound insulation. Foam concrete can offer moderate 

mechanical properties, reduce the weight of superstructures or substructures, 
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minimise the overall cost of construction, and it can be handled and constructed 

relatively faster and easier (Kearsley, 1999; Mahmood, 2010; Noordin and Awang, 

2005). 

Aiming on making foam concrete more environmentally friendly and more 

cost effective (Huntzinger and Eatmon, 2009), extensive research has been done in 

using SCMs in its fabrication. SCMs such as fly ash, GGBS and rice husk ash has 

been used as partial or complete replacements for the binding and/or filler materials 

(Neville, 1996).  

 GGBS is a by-product of the iron industry. In a 1500C blast furnace, iron 

ore, limestone and coke are heated up and melted. As a result of the melting process, 

two products emerge and they are molten iron and molten slag. Due to its lightness, 

the molten slag floats on the molten iron. The molten slag comprises of silicates and 

alumina from the original iron ore with a combination of some oxides that originate 

from the limestone. As mentioned before, GGBS has been used extensively in 

concrete as a partial cement replacement at different levels by weight of cement. 

GGBS is known to have a positive impact on the strength and durability of concrete 

(Siddique, 2007). 

1.2 PROBLEM STATEMENT 

According to a report published by the World Steel Association in 2013, 

Malaysia was placed among the top 25 countries that produce an average 5.9 million 

tons of steel annually (World Steel Association, 2010). The processing of each ton of 

steel produces around 300 kilograms of by-product materials (Neville, 1996). 

Specifically, the steel slag waste in Malaysia is around 1.77 million tons per year. 

65% of slag waste is used as GGBS and the remainder, which is around 620,000 

tons, is disposed in the environment (Motz and Geiseler, 2001). The storage of slag 
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not only occupies large amounts of land resources but also has a negative impact on 

the environment by polluting the soil, underground water and the atmosphere (Li et 

al., 2015). 

GGBS has been exploited extensively in the production of concrete. 

However, after several attempts done by (Bijen, 1996; Chen, 2007; Chi et al., 2012; 

Memon et al., 2007; N. Arreshvhina et al., 2006; Parniani et al., 2011; Wang et al., 

2005; Yüksel et al., 2007; Yüksel et al., 2008), the integration of GGBS was mostly 

limited to conventional concrete while only a few researchers investigated the 

possibility of integrating GGBS in foam concrete. In addition, the replacement level 

of the binder was also limited (Pan et al., 2007; Sanjaya et al., 2007; Wee et al., 

2006; Wee et al., 2011). 

Granulated blast furnace slag (GBS) is yet to be investigated as a partial 

cement replacement. The utilisation of GBS in concrete production will cause a 

reduction in both cost and energy consumption. It is a known fact, that slag particles 

require longer time to be ground than that of cement clinker; hence, require more 

energy (Zandi and Vefa Akpinar, 2012). Conventional methods of construction are 

divided into two major components. The first component is the structural system, 

which comprises of beams, columns and slab frames that are cast in-situ. The 

construction of these frames goes through four operations. 

These operations are erecting the timber formwork and scaffolding, erecting 

the steel bars for reinforcement, fresh concrete pouring into the form and finally, the 

dismantling of formwork and scaffolding. These conventional methods are labor 

intensive, tiresome and require a lot of onsite coordination. The second component 

consists of erecting the partitions, which consist of brick work and plastering (Abdul 

Kadir et al., 2006). 
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As a response to the problems associated with conventional construction 

methods, the technology of industrialised construction is becoming a preferable 

option, especially in making lightweight prefabricated structures, which perform 

better than conventional concrete due to their lesser weight, thermal insulation 

properties, and good strength to weight ratio (Sumadi and Memon, 2008). Along 

with the benefits of utilising the IBS application that was mentioned by in previous 

studies (Onyeizu et al., 2011; Taherkhani et al., 2012), IBS technology saves 

approximately 20% of the wastages from the overall construction cost, such wastages 

typically occur when using conventional construction methods (Lim, 2006).  

The pre-fabrication and pre-casting of structural wall panels have many 

advantages than the other systems. A precast structural wall has the capacity to 

eliminate the structural frame system (columns and beams), sustain the lateral and 

gravity loads, reduce the exterior and interior frame (if they are present in 

construction), and increase the span of the slab. Furthermore, it is able to increase the 

thermal insulation and become part of the precast wall (Ragan, 2011). Moreover, if 

the Malaysian construction industry adopts the IBS construction system, a total 

reduction of 4.72 million tons of CO2 emissions can be achieved. 

In addition, when selecting a precast wall panel system in a given structure, a 

total reduction in emissions of 26.27% is achievable (Omar et al., 2014). However, 

wall panels constructed using conventional concrete are heavy and require special 

attention when transported and erected into their position. Therefore, lighter weight 

wall panels are a good solution in reducing both the cost and energy consumption of 

such construction method. 

Motivated by the problems mentioned previously in this section, this study 

incorporated GBS as a partial cement replacement into producing foam concrete. In 
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addition, a GBS foamed concrete mix is used to fabricate a lightweight wall panel, 

which will be designed and used in the construction of a low medium cost house. 

1.3 OBJECTIVES OF THE STUDY 

The aim of this study is to investigate the possibility of using GBS in the 

production of foam concrete. The GBS is used to partially replace cement at different 

replacement levels. The assessment of such incorporation is made through the 

determination of the physical, mechanical and durability properties of the GBS foam 

concrete. For the sake of comparison, foam concrete containing similar cement 

replacement levels of GGBS has been prepared and its physical, mechanical and 

durability properties were determined. Finally, the foam concrete mix containing 

GBS that offers a balance between maximum GBS content and properties is used to 

fabricate the lightweight wall panel. Therefore, the following objectives are set to be 

achieved by this study: 

1- To investigate the physical, mechanical and durability properties of foam 

concrete using GBS as cement replacement at different levels and 

binder/filler ratio. 

2- To compare the properties of GBS and GGBS foam concrete using similar 

replacement levels and binder/filler ratio.  

3- To establish the optimum replacement level and mix ratio of GBS in foam 

concrete based on adequate mechanical, physical and durability properties.  

4- To construct a functional precast load-bearing wall for low-rise residential 

buildings using the optimum GBS foam concrete mix.    
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1.4 SIGINIFCANCE OF THE STUDY 

From an environmental perspective, utilising GBS as partial cement 

replacement in foam concrete will reduce the dependency on cement and as a result 

decrease the carbon footprint of foam concrete. In addition, GBS utilisation will 

reduce the negative impact of leftover slag on the environment. As a result increasing 

the possibility of using such a slag in the production of other types of concrete. 

Moreover, using GBS instead of GGBS will eliminate the energy consumed for the 

production of GGBS. Furthermore, GBS is more cost effective than its ground 

counter part, hence, manufacturing a cheaper type of foam concrete. 

Since GBS is a new material that its incorporation as a partial cement 

replacement is yet to be investigated, the effect of GBS as a partial cement 

replacement was compared to the well-known and the extensively researched GGBS. 

The uniqueness of such an endeavour was to increase the knowledge about the 

difference in performance of these two materials. These two materials (GBS and 

GGBS) were used to partially replace up to 70% of the cement in foam concrete 

mixes that have a semi-structural density of 1300kg/m3. 

The foam concrete mix that incorporates a maximum amount of GBS without 

affecting the properties negatively was used to fabricate the precast wall panel. The 

panel has unique features in itself. The optimum GBS foam concrete mix will be 

used to fabricate the outer shell in which it is using a semi-structural density and not 

a structural density. In addition, the wall panel will be made out purely from foam 

concrete, hence, creating a lightweight wall panel used for structural applications. In 

addition, the uniqueness of this wall panel also arises from its thinner outer shell 

(thickness = 30mm), which is designed as a ribbed panel.  
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1.5 SCOPE OF THE STUDY 

In this study, GBS will be used as a partial cement replacement in foam 

concrete having a semi structural density of 1300kg/m3. GBS will replace the cement 

using a replacement level of 30-70% by weight of cement at 10% increments. Also 

three different filler to binder ratios will be utilised namely 1.0, 1.5, and 2.0. Each 

GBS foam concrete mix is tested for its mechanical (compressive strength, flexural 

strength, and splitting tensile stress), physical (density, drying shrinkage, ultrasonic 

pules velocity, and porosity) and durability properties (intrinsic permeability, water 

absorption, and carbonation) at various ages. 

At the same time and for the sake of comparison, foam concrete mixes 

containing GGBS with similar replacement levels, density and filler to binder ratio 

are prepared and tested for similar properties at the same age. The lightweight load-

bearing wall will be casted using the optimum GBS foam concrete mix.  The wall 

panel design is based on a two story low medium cost house, which its details are 

listed in chapter five.  For the sake of easiness of handling and transportation, the 

lightweight wall is made out of two halves. Each half panel is designed to have an 

outer shell and core. The outer shell is designed as a ribbed panel and is fabricated 

from the optimum GBS foam concrete mix. While, the core is made out of lower 

foam concrete density (100% cement). The two halves are joined using steel bolts to 

form the lightweight load-bearing wall. 

1.6 THESIS LAYOUT 

This thesis comprises of six chapters. Chapter One already discussed the 

motive of this thesis and its aims, significances and scope.  Chapter Two will review 

the literature related to this study. This chapter contains mainly three parts, the first 

part discusses the applications of foam concrete, foam concrete properties for fresh 
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and hardening density, foam concrete constituents, and the effect of the type of by-

product material or pozzolanic material used as a filler or binder on the properties of 

the mix. The second part of this chapter will briefly discuss the by-product material 

and, especially, steel slag and it’s processing. It also discusses the effects of GGBS 

as a by-product material on properties of concreting material (normal, mortar, and 

lightweight concrete) in the fresh and plastic phases. The third will review types of 

concrete wall panels; the standards used to design these wall panels and studied foam 

concrete wall panels.  

Chapter Three explains in detail the experimental sequence and the methods 

that will achieve the objectives of this study. This chapter consists of two parts; the 

first part describes the preliminary study examining GBS as a supplementary 

cementitious material. Furthermore, it examined the use of GBS as a foam concrete 

constituent. The second part is the main study, which describes the foam concrete’s 

constituents, properties, material testing, and mixing procedure. The properties of 

fresh and hardened foam concrete have been tested according to the standards. 

Moreover, the machinery and testing procedure for the wall was also included as part 

of this chapter.  

Chapter Four reviews the results of the created foam concrete’s mechanical, 

physical, and durability properties. The results are illustrated in graphs and tables, 

which discuss the effects of GBS and GGBS on fresh and hardened properties of the 

foam concrete.  Meanwhile, Chapter Five will discuss the design concept of the wall 

panel. This chapter will explain the wall’s design concept and its mathematical 

calculations. The testing procedures and the results obtained from the actual 

laboratory test and the engineering software (STAAD Pro) will be discussed.  
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Chapter Six will list the conclusions drawn from this research and laid down 

a number of future works based on the current study.   
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CHAPTER 2 

LITERATURE REVIEW AND RELATED WORK  

2.1 INTRODUCTION 

This chapter describes various topics that are related to the objectives of this 

research project. It initially describes foam concrete discretion, application, 

constituents, and its fresh and hardened characteristics. Also, various cementaious 

materials that have been used as binder or filler as well as their effect on the 

properties of foam concrete will be illustrated in this chapter. Furthermore, this 

chapter will review the types of produced by-products as well as their properties and 

utilisation into the construction industry. Moreover, this chapter will review and 

discuss the precast wall panels using lightweight concrete as well as their advantages 

and disadvantages in comparison to other systems.   

2.2 FOAM CONCRETE 

Hoff (1972) defined foam concrete as a type of lightweight concrete with a 

homogenous cell or void structure attained by the inclusion of a foaming agent or by 

the generation of gas within a fresh cementation mixture. It has been calculated that, 

possibly, between 30-80% of the total volume of foam concrete is made up of air 

bubbles or foam.  In addition, Tam et al. (1987) described it as slurry or mortar with 

air bubbles, ranging in size from 0.1 mm to 1 mm, that have been introduced 

chemically or mechanically into the wet mixture. Fouad (2006) described foam 

concrete as a low-density material with structural cells or homogeneous voids 

generated by the introduction of preformed foam or gas into the mortar matrix. The 

common casting densities range from 320 to 1920 kg/m3.  
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Therefore, based on the definitions above, foam concrete can be defined as a 

lightweight concrete that has different densities ranging from 320 to1920 kg/m3. The 

constituents of foam concrete can be any mortar mixture with or without an infill 

material. Any type of binder, like normal concrete, can be used, and instead of coarse 

aggregate, air bubbles with diameters ranging from 0.1 to 1 mm can be introduced 

into the matrix mechanically or chemically by introducing gas in the wet mixture. 

This foam does not perform any chemical action until the cement sets and holds the 

desired shape. The amount of air or foam that is added to the mortar slurry has been 

calculated to range from 30% to 80% of the total volume (ASTM, 2004c; Barnes, 

2008; Fouad, 2006; Hoff, 1972; Liew, 2005; Tam et al., 1987). 

There are two types of foam concrete based on the curing conditions, namely, 

autoclaved and moist foam concrete. In the first type, the foam concrete is cured 

under high-pressure steam at temperatures ranging from 180 to 210 oC, while in the 

second type; the foam concrete is cured under atmospheric pressure and steam. The 

first method of curing is generally used for making precast structural cellular 

elements. Precast moist-cured products are used as secondary structural elements 

because of their good thermal and sound insulation properties (Al-Noury et al., 1990; 

Tam et al., 1987). 

Liew (2005) classified foam concrete based on the densities utilised in 

construction, while Fouad (2006) listed the constituents of the foam concrete based 

on density. Table 2.1 illustrates Liew’s classification. It is worth mentioning that the 

production of aerated concrete was commercialised in Sweden in 1929 and was 

rapidly distributed to other parts of the world at the end of the Second World War. 

From that time, various methods have been devised and different types of foam 

concrete have been produced and used in construction applications in many countries 
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(Abdullah et al., 2006; Brady et al., 2001). 

Table 2.1: Utilization of foam concrete in various application (Liew, 2005) 
 

Based on density 
Author Density range (kg/m3) Application 

Liew (2005) 

300-600 

Thermal insulation for flat roofing 
with required grading. Floor sub-
surfaces. Block infills for sub-
floor slabs. Cavity walls filling. 
General thermal and acoustic 
insulation. Heat insulation slabs. 

  

600-800 

Internal partition wall blocks and 
panels. Roofing slabs. Floors. 
Sub-surface for stables, pig sties 
and poultry farms. Walls, floor 
sub-surfaces of large cool rooms. 
Façade panels. Trench 
reinstatements. 

  

600-800 

Internal partition wall blocks and 
panels. Roofing slabs. Floors. 
Sub-surfaces for stables, pig sties 
and poultry farms. Walls, floor 
sub-surfaces of large cool rooms. 
Façade panels. Trench 
reinstatements. 

  

900-1200 

External wall blocks and panels, 
both structural and non-structural. 
General sound-proofing in 
industrial areas. 

  

 
1200 -1800 

 
Medium weight blocks and slabs. 
Large reinforcement slabs and 
panels. Walls, either precast or 
poured in situ. Garden ornaments 

2.3 MATERIALS UTILISED IN FOAM CONCRETE  

As mentioned before, foam concrete can be based on slurry or mortar mixture 

that consists of Portland cement and water or Portland cement, fine aggregate (sand), 

and water. The binder can be Portland cement or blended cement, consisting of 

Portland cement slag, Pozzolans, lime with siliceous material, fly ash, metakaolin, or 

any other hydraulic material (ACI, 1996; Brady et al., 2001). Pozzolanic materials 

are utilised with varying percentages to replace cement or sand in the foam concrete 

mixture. These materials are cost efficient and environmentally friendly, as well as 
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they can enhance the properties of the foam concrete in its fresh and plastic phases 

(ACI, 2006). It is possible to use admixtures (chemical additives) in foam concrete as 

a percentage of the total weight of the binder.   

The tests listed in ASTM C796 (2004d) and the 1996 and 2006 ACI reports 

are recommended for the trial mixes before the admixtures and supplementary 

materials are utilised in the production of foam concrete in order to determine their 

compatibility with the foam concrete. The typical foaming agents are protein 

hydrozylates or synthetic surfactants with a density varying between 32 to 64 kg/m3, 

as recommended by ASTM (ASTM, 2004c). However, ACI (2006) and Fouad 

(2006), proposed a density of 40 to 65 kg/m3 and 32 to 56 kg/m3, respectively.  

Kearsley (2006) determined the compatibility of the foaming agent by mixing 

samples containing only cement, water, and foam. The water required was obtained 

from various foam percentages and was based on visual observations. Essentially, 

there are two methods for the use of preformed foam in the production of foam 

concrete, namely the wet and dry method. The first method, which is suitable for the 

production of foam concrete with a density of up to 1000 kg/m3, involves spraying a 

solution of the foaming agent with water through a fine mesh to generate bubbles 

with a diameter of 2 to 5 mm.  

The second method is the dry preform method, which involves using the 

power of an air compressor to force the foaming agent and water into a mixing 

chamber, thus resulting in the generation of stable air bubbles having a diameter of 

less than 1 mm (Barnes, 2008; Brady et al., 2001; Ramamurthy et al., 2009). The 

preformed foam technique is the more economical method of producing foam 

concrete as it uses less foaming agent and the mix can be controlled and possibly 

adjusted if there is a human error (Ramamurthy et al., 2009; Wee et al., 2006).  
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Due to the small size of bubbles, the near bubble skeleton, and the stability of 

the protein foaming agent reflect the bond strength of the final foam concrete product 

(Mcgovern, 2000; Nambiar and Ramamurthy, 2007a; Othuman Mydin, 2010). 

Dransfield (2000) stated that although a synthetic foaming agent can be easily 

formulated and it is more stable, its high expansion can open cells and create large 

bubble sizes which can reduce the strength of the foam concrete. Therefore, a protein 

foaming agent is preferable to a synthetic one. A filler or fine aggregate, with a 

maximum particle size of not more than 5 mm, can be used.  

Furthermore, a high strength foam concrete can be obtained by mixing 60 to 

95% sand passing through a 600-micron sieve (ACI, 1996; ACI, 2006; ASTM, 

2004a; ASTM, 2004c; Barnes, 2008; Brady et al., 2001; Fouad, 2006; Ramamurthy 

et al., 2009). Table 2.2 reviews several researches that had been carried out utilising 

different materials and admixtures in powder or liquid form in foam concrete.  

(Fouad, 2006; Hoff, 1972; Liew, 2005; Tam et al., 1987) (ACI, 2006; ASTM, 2004c), (ACI, 1996) (Dransfield, 2000; Kearsley, 
2006) (BSI, 1985b) (BSI, 1992b), 
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Table 2.2: Utilization of various materials as additives and admixtures in 
constituents of foam concrete 

Author Density 
Kg/m3 

Mix 
ratio 

Replacements 
(%) 

Additives 
(%) W/b Foam 

type 
Foam 

density 
(Ranjani and 
Ramamurthy, 
2012) 

1000-
1500 1:1 FAa (10-30) 

(OPC - - Synthetic 
 25-38 

(Jitchaiyaphum 
et al., 2011) 800 - FAa (10-30) 

(OPC) - 0.5 Protein 45 

(Wee et al., 
2006) 600-1900 - GGBS (50) 

(OPC) - 0.3 Protein - 

(Kearsley and 
Wainwright, 
2001b) 

1000-
1500 - 

FA & PFb 
(50-67.7-75) 

(OPC) 
- 0.3 Protein 70 

(Tam et al., 
1987) 

1300-
1600 

1:1.58-
1:1.75 - - 0.6-

0.8 Protein 59 

(Jones et al., 
2003) 1000 1:1.83 

FA (30) 
(OPC), 

FA coarse (30) 
(sand) 

- 0.5-
1.11 

-  
 50 

(Jones and 
McCarthy, 
2005b) 

1400-
1800 

1:1.5-
1:2.3 

FA (30-50) 
(OPC), 
FA coarse 
(50-100) 

Spd 0.26-
0.5 

Synthetic 
 50 

(Jones and 
McCarthy, 
2005b) 

1000-
1400 1:1.83 

FA coarse  
(66-70) 
(sand)  

- 0.5 Synthetic 50 

(Nambiar and 
Ramamurthy, 
2006) 

1000-
1500 1:1 FA (50-100) 

(sand)  - - Protein 50 

(Pan et al., 
2007) 620-1600 1:2.3 - - 0.7 Protein - 

 
(Nambiar and 
Ramamurthy, 
2007b) 

 
840-1753 

 
1:2 

FA 
(0-100) 
(sand) 

 
- 

 
0.94-
1.65 

 
Protein 

 
40 

(Wee et al., 
2011) 693-1635 1:0 GGBS (50) 

(OPC) Sp (8ml/kg) 0.22-
0.6 Protein - 

(Zulkarnain and 
Ramli, 2011) 1150 1:1.5 SFc (10-15) 

(OPC) Sp 0.45 Protein 80 

(Chindaprasirt 
and Rattanasak, 
2011) 

1600 1:2.5 FA (15-30) 
(OPC) 

Propylene 
glycol (1) 

Triethylene 
glycol (1) 

Dipropylene 
glycol(1) 

0.5 - 50 

(Shi et al., 
2012) 500-1000 1:0, 

1:0.6 

FA (20-40-
60) 

(OPC) 
Sp (0.1) 0.3 Protein 55 

(Mydin, 2011) 1000 1:0.5 - 0.5 0.5 Protein 80 

(Panesar, 2013) 500-900 - - - 0.29 
Protein & 

two 
Synthetic 

65 
45-65, 
50-60 

 
(Lim et al., 
2013) 

 
1300 

 
- 

OPA (10-20) 
(sand) 

 
- 

 
0.52-
0.6 

 
Synthetic 

 
45 

(Awang et al., 
2014) 1300 1:2 OPA (25-65) 

(OPC) Sp (1) 0.45 Protein 65 

(Rahyan et al., 
2008) 

1000-
1500 1:1.5 - Sp (1.25) 0.45 Protein 80 

aFA: Fly ash, bPF: Pozz-Fill, SFc: Silica fume, Spd: Super-plasticiser 
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2.4 PROPERTIES OF FOAM CONCRETE 

This section will explain various properties of foam concrete in fresh and hardened 

stages. 

2.4.1 CONSISTENCY AND STABILITY OF FOAM CONCRETE 

The workability of foam concrete, whether it is mortar-based (cement, sand 

and water) or neat cement, is described by the ACI (2005b) as the characteristic of a 

normal fresh mortar mix that is homogeneous and permits easy mixing, placing, 

compacting, and finishing. A common workability test for a basic foam concrete 

mixture is the Brewer test or any other test in ASTM C230 (ASTM, 2004b). In a 

study conducted by Li (2013), the workability of the mortar was determined based on 

the modified cylinder plate method in accordance with ASTM C230 (ASTM, 

2004b), which was adopted from the company that supplied the foaming agent and 

foam generator.  

Valore (1954) noticed that at lower foam concrete densities, the water to 

cement ratio increased with the increase of sand level in the mix. Moreover, he stated 

that the amount of water required in the mix was determined by the consistency 

rather than by a predetermined water/cement ratio. Based on the actual flow table 

test, Kearsley and Mostert (2005) were able to determine the workability of a base 

mixture of foam concrete according to ASTM C230 (ASTM, 2004b). The water 

required for the cement used in their study made up 35% of the total weight of the 

cement, which meant that the minimum water to cement ratio needed to avoid the 

cement pulling the water from the foam is 0.35. When fly ash was included in the 

matrix, the water demand was 0.25 litres for each kg of fly ash. This phenomenon 

occurred due to the spherical shape of the particles. This is also reported in a study 

carried out by Pretorius (2006). An additional reason for this phenomenon is that fly 
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ash (pozzolanic material) is not engaged in the hydration process during the early 

stages (early hours) because it only participates in the processes after the formation 

of calcium hydroxide. (Pretorius, 2006) 

Fly ash, which contains up to 10% unburnt carbon, has a large particle size 

(more than 45 micron) and is reported to increase the water required to achieve a 

specific workability (Kearsley, 1999). However, when fly ash is excluded, Kersealy 

(2006) indicated that the optimum w/c ratio is in the range of 0.38 based on the foam 

content. However, this ratio increased with increment of the ash ratio. Furthermore, 

water demand tends to increase with the increasing percentage of foam. The 

inclusion of GGBS in the foam concrete base mixture at an equal percentage of the 

binder can increase workability. However, increasing the level of GGBS content in 

the mixture in addition to the low w/c ratio can cause the foam to separate from the 

paste (Brady et al., 2001).  

Lim et al. (2013) defined the consistency of foam concrete as the freshly 

obtained density over the designed density. On the other hand, Ramamurthy et al. 

(2009) described it as the ratio of water to solid that can attain the design density. If 

the base mixture of the foam concrete has a low consistency, it will cause the bubbles 

to brake due to the stiffness of the mixture, and if it is too watery, it will lead to an 

increase in density due to segregation. Furthermore, the consistency of the foam 

concrete tends to decline with the addition of foam into the base matrix. In other 

words, the consistency of the foam concrete depends on the volume of water added 

for the desired density, the type of filler, and the water to solid ratio (Brady et al., 

2001; Ramamurthy et al., 2009). Nevertheless, Jones and McCarthy (2005c) 

concluded based on their experiment that replacing the unprocessed fly ash with sand 

enhances the consistency of the matrix compared to using sand as the filler because 
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of the finer state and shape of the fly ash particles. Meanwhile, Lim et al. (2013) 

concluded that the incorporation of oil palm ash as a filler replacement decreases the 

flow-ability of the fresh mix. 

The stability of foam concrete is related to the consistency of the base mix 

and can be represented by the ratio of water to solid, which differs according to the 

filler type. Lim et al. (2013), Valore (1954), and Nambair and Ramamurthy (2007b) 

described the stability of foam concrete as the ratio of the demoulded (hardened) 

density over the obtained density (fresh). In general, the consistency and stability of 

the foam concrete are affected by the amount of foam, the w/s ratio, and the other 

solid materials that are introduced into the mixture (Brady et al., 2001; Ramamurthy 

et al., 2009). Jones and McCarthy (2005c) and in other paper that published by the 

main authors above at (2006) suggested that the stability of foam concrete can be 

indicated by comparing the theoretical and actual amount of foam that is added to 

achieve the desired plastic density which is within the range of ±50 kg/m3 of the 

design value or 3% of the fresh (wet) density.  

Also, it was indicated that in terms of the stability of foam concrete with 

unprocessed fly ash as a replacement for the sand, the amount of foam required is 

more than three times that of normal filler. This is due to the high consistency of the 

base mixture as well as the high content of carbon in the ash. Panesar  (2013) 

mentioned in his study that the inclusion of fine aggregate in the base mixture of the 

foam concrete increases the stability of the foam concrete compared to a slurry (neat 

cement) mixture, which, although it has more consistency, it is unable to hold the air 

bubbles due to segregation. 
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2.4.2 DENSITY  

In order to determine the oven dry density, the ASTM C513 (2004e) and BS 

EN 12390 part seven at (2009a) recommended that a temperature of 110 oC ± 5 oC 

should be applied to the specimen for 24 hours, and the dimensions of the sample 

and its weight per cubic meter or cubic foot should be determined. Both dry and 

fresh densities of foam concrete are important to determine the requirements of the 

mix design, to ensure quality control, and because most of the characteristics of foam 

concrete are explained with regard to oven dry density (Fouad, 2006; Jones and 

McCarthy, 2006; Ramamurthy et al., 2009).  

Basically, preformed foamed concrete with a cement to sand based mixture 

has a higher density and requires more cement (Ramamurthy et al., 2009) than fly 

ash, which has a relatively lower density and requires less foam, as the filler 

replacement. Furthermore, A1-Noury et al. (1990) mentioned that the loss in dry 

density of foam concrete increases with the increasing water to cement ratio. Due to 

the loss of water in the plastic density of foam concrete, Kearsley and Mostert (2005) 

determined that the difference added to the dry density (oven-dried) of the foam 

concrete should range from 600 to 1200 kg/m3 in order to obtain the target density, 

as calculated from the liner equation below: 

Target density = 1.034 Pdry+ 101.96 ….2.1 

On the other hand, Jones and McCarthy (2005b) used the equations below to 

determine the plastic density of foam concrete incorporated with fly ash as a binder 

and filler substitute,  

D = ! + ! + !, where ! = !" + !"finer, f= FAcoarse+ sand……..… 2.2 

Where D is the target plastic density, C is the cement content, f is the content of fine 

aggregate, and W is the free water content, which determined as: 
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W= (w/c) × (PC+ !"finer+ FAcoarse) 

Nevertheless, Fouad (2006) and Neville (1996), in their calculation of the 

amount of solid material based on the oven dry density and with a water content of 

20% of the total binder cement weight, made the following assumption: 

D = 1.2C × A (C and A in kg/m3)……………..… 2.3 

Where D is the dry density, C is the weight of the cement, and A is the weight of the 

aggregate. 

McCormick (1967) determined the wet density with a difference of 5% from 

the design density by using the solid volume calculation method. In his study, he also 

examined the effect of the fineness of the sand, the type of foam agent, and the sand-

cement ratio on the wet density of foam concrete. Jones and McCarthy (2005b) 

mentioned that the proportion of the foam concrete mix can be designed according to 

the plastic density. Nonetheless, it is difficult to do this with the dry density as the 

density of the foam concrete usually drops by about 50 to 200 kg/m3, according to 

the total water content in the mixture. Thus, the design of foam concrete mix depends 

on the foam concrete plastic density and the curing regime.  

In a research by Noordin and Awang (2005), it was noted that there was a 

reduction of 60-120 kg/m3 in the dry density (oven-dried) compared to the target 

density. Thus, indicating that the designed density tends to be higher than the dry 

density. The difference in the dry density and the targeted design density is mostly 

due to the water-cement ratio and the casting density.   

Jeong and Kim (2011) mentioned in his study that the variation between the 

wet density and the oven-dry density depends on the amount of cement paste in the 

matrix. The difference, however, increases with an increase in the amount of cement 

paste. Also, they discovered in their study that the type of the synthetic foaming 
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agent also influences the gap between the wet and the oven-dry density. The air-dry 

density or air curing method for foam concrete is the most convenient industrial 

method. The air-dry density technique relies on many factors, such as weather 

conditions (temperature and humidity), duration of exposure to the weather, the 

density obtained, and the water to binder ratio. Based on the variables and the casting 

conditions, air-dry densities are probably lower by about 80 kg/m3 than the cast 

density (Fouad, 2006; Neville, 1996). 

2.4.3 COMPRESSIVE STRENGTH  

Many factors influence the compressive strength of foam concrete, including 

density, quantity of cement in the matrix, w/c ratio, mix proportions, type of binder 

and filler, admixture, period and type of curing regime, specimen shape and size, and 

pore formation method (Fouad, 2006; Narayanan and Ramamurthy, 2000b). In 

addition, the size, spacing, and regularity of the air voids as well as the void to paste 

ratio might also affect the mechanical properties of the foam concrete (Wee et al., 

2006).  

The curing regime is one of the most important factors influencing the 

mechanical properties of foam concrete. The conventional water curing practice 

promises a higher strength. It has been proven that relative humidity influences the 

compressive strength of the foam concrete when it is exposed to the environment and 

its strength could be reduced by about 35% within a humidity range of 30 to 80% 

(Lee et al., 2011).  

  Based on laboratory experiments, Kearsley (2006) concluded that the best 

curing for foam concrete is moist curing, also known as curing under plastic cover. 

In addition, this method of curing can reduce the cost of foam concrete production. It 

has been reported that moist-cured foam concrete is affordable and can be used for 
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many applications (Tam et al., 1987). Moreover, it has been proven that a good 

curing regime can generate high compressive strength in the long run regardless of 

whether a high level classified or non-classified fly ash is replaced by cement in the 

foam concrete (Kearsley and Wainwright, 2001b). On the other hand, the 

experimental study conducted by Alwi et al. (2010) indicated that curing in salt-

water results in a higher compressive strength than curing in fresh water and in air 

due to the development of a strong matrix bond in the foam concrete samples. 

A comparison that was made based on the ash/cement ratio for the mix with 

and without foam indicated that increasing the ratio decreased the strength of the mix 

without foam, while the mix with the foam acted oppositely or maintained its 

strength as the control mix. The optimum replacement level of the ash by cement is 

50% for a mix content that has 30 or 40% foam (air voids) (Kearsley, 2006). Better 

mechanical properties can lead to optimal strength-to-weight ratio, and this is 

achieved by having a dense microstructure with relatively small air voids and large 

spacing factor (Wee et al., 2006). (Alwi et al., 2010) 

Increasing the w/c ratio in foam concrete positively influences the mechanical 

properties as long as there is no reduction in the a/c ratio. The compressive strength 

of foam concrete depends on both the water to cement and the air to cement ratios, 

unlike mortar, which undergoes a reduction in compressive strength with the increase 

in the w/c ratio (Fouad, 2006; Tam et al., 1987; Wimpenny, 2006). Moreover, the 

presence of 5% to 2% voids in normal concrete dramatically reduces the strength by 

30% to 10%, respectively (Al-Noury et al., 1990). The study by Wimpenny (2006) 

indicated a dramatic change in compressive strength for foam concrete that has a 

density of 1350 kg/m3. However, he found that the strength remained statically the 

same when the w/c ratio was above 0.9 and below 0.75.  
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It was reported that small changes in the w/c ratio due to the amount of water 

content in the sand, which varied between 6%-14%, did not have an effect on the 

strength of the foam concrete (Tam et al., 1987). The sand to cement ratio affects the 

strength and the linear trend reduction when there is an increase in the amount of 

sand. Furthermore, it is worth mentioning that the reduction in compressive strength 

is not affected by further increases in the sand content. The optimum sand/cement 

ratios vary between 0.5-1 for foam concrete containing 20% to 60% foam (Kearsley, 

2006). The fineness of the sand has been reported to increase the compressive 

strength of the foam concrete (Wimpenny, 2006). This phenomenon is attributed to 

the uniform coating on each bubble that prevents overlapping and merging, unlike 

coarse sand which forms large and irregular pores and also leads to the clustering of 

the bubbles (Jitchaiyaphum et al., 2011; Jones and Giannakou, 2004; Nambiar and 

Ramamurthy, 2006). 

Wimpenny (2006) utilised an equal amount of w/c and a/c to examine the 

effect of integrating GGBS in foam concrete. The researcher found that when cement 

is replaced by an equal amount of GGBS, the strength of the foam concrete at 7 days 

is reported to be much lower than the mix that has no GGBS. However, the scenario 

changes at 28 days as the mix with GGBS develops strength that is higher than the 

control mix. It has also been reported that the use of coarse fly ash as a filler in the 

base mix of foam concrete enhances the compressive strength of the foam concrete. 

This phenomenon can be explained as being part of a pozzolanic reaction, where fly 

ash, having a lower specific density than fine aggregate, results in reducing the 

amount of foam required (Nambiar and Ramamurthy, 2006; Valore Jr, 1954).  

Kearsley and Wainwright (2001a) demonstrated that no harmful or major 

effects on the compressive strength of high-density foam concrete for long term 


