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PENGANGGAR BERASASKAN
KELOMPOK BAGI MODEL REGRESI

BERGANDA DAN LINEAR MULTIVARIAT

ABSTRAK

Dalam bidang pemodelan regresi linear, regresi kuasa dua terkecil (LS) klasik adalah

mudah dipengaruhi oleh titik terpencil manakala penganggar regresi rendah-kerosakan

seperti regresi M dan regresi pengaruh terbatas mampu menahan pengaruh peratusan

kecil titik terpencil. Penganggar tinggi-kerosakan seperti kuasa dua trim terkecil (LTS)

dan penganggar regresi (MM) adalah teguh terhadap sebanyak 50% daripada pence-

maran data. Masalah prosedur penganggar ini termasuklah permintaan pengkompu-

teran luas dan kebolehubahan subpensampelan, kerentanan koefisien teruk terhadap

kebolehubahan kecil dalam nilai awal, sisihan dalaman daripada trend umum dan kebo-

lehan dalam data bersih dan situasi rendah-kerosakan. Kajian ini mencadangkan suatu

penganggar regresi baru yang menyelesaikan masalah dalam model regresi berganda

dan regresi multivariat serta menyediakan maklumat berguna tentang kehadiran dan

struktur titik terpencil multivariat. Dalam model regresi berganda, prosedur yang dica-

dangkan menyeragamkan fasa langkah tumpuan (langkah-C) dengan fasa regresi ber-

jujukan. Jarak varians Mahalanobis yang minimum dirujuk sebagai MMD-algoritma

tumpuan varians yang menghasilkan penganggar awal. Selepas itu, satu analisis ke-

lompok berhierarki dilakukan dan data seterusnya disusun ke dalam kelompok utama

’set setengah’ dan satu kumpulan atau lebih kelompok minor. Suatu anggaran regresi

xxv



awal kuasa dua terkecil dihasilkan dari kelompok utama dengan perbezaan dalam sta-

tistik sesuai yang mengaktifkan secara jujukan kelompok minor dalam senario regresi

pengaruh terbatas. Dalam penetapan regresi multivariat, suatu penentu kovarians jarak

minimum Mahalanobis dirujuk sebagai MMCD-algoritma tumpuan kovarians meng-

hasilkan penganggar awal. Jarak reja dikira daripada penganggar awal yang menjadi

metrik jarak bagi analisis kelompok berhierarki aglomeratif (AHC). AHC menyusun

data seterusnya ke dalam kelompok utama ’set setengah’ dan kelompok minor da-

lam satu kumpulan atau lebih. Anggaran kuasa dua terkecil awal diperolehi daripada

kelompok utama. Anggaran awal kemudiannya dioptimumkan dengan menggunak-

an langkah tumpuan yang menurunkan fungsi objektif reja disetiap langkah tumpu-

an. Bagi menambahbaik kecekapan anggaran awal, statistik DFFITS digunakan bagi

mengaktifkan kelompok minor. Oleh kerana langkah yang dicadangkan bercampur

fasa kelompok dengan ulangan fasa regresi kuasa dua terkecil ia dikenali sebagai pe-

nganggar berasaskan kelompok bagi model Regresi Berganda dan Linear Multivariat

(singkatannya CLreg). CLreg mencapai titik kerosakan-tinggi yang dapat ditentukan

oleh pengguna. Ia mewarisi sifat normal asimptot regresi kuasa dua terkecil dan ju-

ga varians samaan. Perbandingan kajian kes dan eksperimen simulasi Monte Carlo

menunjukkan kelebihan prestasi berbanding cara kerosakan-tinggi lain daripada segi

kestabilan koefisien. Satu plot dendogram yang diperolehi daripada analisis kelom-

pok digunakan bagi pengenalpastian titik terpencil multivariat. Secara keseluruhannya,

prosedur yang dicadangkan merupakan suatu sumbangan dalam bidang regresi teguh

yang menawarkan sudut pandangan berbeza terhadap analisis data dan gabungan anta-

ra anggaran dan ringkasan diagnostik.
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CLUSTER-BASED ESTIMATORS FOR
MULTIPLE AND MULTIVARIATE LINEAR

REGRESSION MODELS

ABSTRACT

In the field of linear regression modelling, the classical least squares (LS) regression is

susceptible to a single outlier whereas low-breakdown regression estimators like M re-

gression and bounded influence regression are able to resist the influence of a small per-

centage of outliers. High-breakdown estimators like the least trimmed squares (LT S)

and MM regression estimators are resistant to as much as 50% of data contamina-

tion. The problems with these estimation procedures include enormous computational

demands and subsampling variability, severe coefficient susceptibility to very small

variability in initial values, internal deviation from the general trend and capabilities

in clean data and in low breakdown situations. This study proposes a new high break-

down regression estimator that addresses these problems in multiple regression and

multivariate regression models as well as providing insightful information about the

presence and structure of multivariate outliers. In the multiple regression model, the

proposed procedures unify a concentration step (C-step) phase with a sequential regres-

sion phase. A minimum Mahalanobis distance variance referred to as (MMD)-variance

concentration algorithm produces a preliminary estimator. Thereafter, a hierarchical

cluster analysis is performed and then the data is partitioned into a main cluster of “half

set” and a minor cluster of one or more groups. An initial least squares regression es-

xxvii



timate arises from the main cluster with a difference in fit statistic (DFFIT S-statistic)

that sequentially activates the minor clusters in a bounded influence regression sce-

nario. In the multivariate regression setting, a minimum Mahalanobis distance covari-

ance determinant referred to as (MMCD)-covariance concentration algorithm produces

a preliminary estimator. Residual distances computed from this preliminary estimator

serves as a distance metric for agglomerative hierarchical cluster (AHC) analysis. The

AHC then partition the data into a main cluster of “half set” and a minor cluster of

one or more groups. An initial least squares estimate is obtained from the main clus-

ter. The initial estimate is thereafter, optimized using concentration steps that lower

the objective function of the residuals at each concentration step. To improve the ef-

ficiency of the initial estimates, a difference in fit statistic (DFFIT S-statistic) is used

to activate the minor cluster. Since the proposed method blends the cluster phase with

repeated least squares regression phase, it is called the Cluster-based estimators for

Multiple and Multivariate Linear regression Models (CLreg for short). CLreg achieves

a high breakdown point which can be determined by the user. It inherits the asymp-

totic normal properties of the least squares regression and is also equivariant. Case

studies comparisons and Monte Carlo simulation experiments depict the performance

advantage of CLreg over the other high breakdown methods for coefficient stability. A

dendrogram plot obtained from cluster analysis is used for multivariate outlier detec-

tion. Overall, the proposed procedure is a contribution in the area of robust regression,

offering a distinct philosophical viewpoint towards data analysis and the marriage be-

tween estimation and diagnostic summary.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

While least squares methods have dominated the statistical literature on regression for

many years, a significant interest in alternative methods has emanated in the last few

years. One reason for the interest is an increasing awareness of and sensitivity to the

problems that occur with the naive application of least squares. In the professional

statistical domain, there is a ‘usual tale’ that the world is fundamentally linear and nor-

mal. Interestingly, the ‘usual tale’ translated into two assumptions viz a viz linearity

and normality assumptions. These two assumptions form the bedrock of many statis-

tical procedures over the wide range of fields where statistics is applied. Under these

assumptions, there exist in abundance, of attractive statistical theory that is carefully

put together into a broad weapon store that can be exploited to analyse data. It may

even propose to the analyst, the experimental design pattern needed to optimize a given

criteria. This is an outstanding prospect to analysts and researchers, but may as well,

produce misleading inferences, or assurances, in the desired output.

Experimental data are usually contaminated data. According to Hampel et al. (2011),

real data are presumed to contain between 1% to 10% gross contamination. In regres-

sion modelling that studies the functional relationship among variables, the bulk of the

data may assume a linear pattern, but contaminated or spurious data points may be
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inevitable. The resulting effect is that such contaminated data points may indicate that

the regression model is misspecified, that the presumed linear model is not suitable, or

better still, human error occurred during experimental stage or in data recording stage.

In the long run, a statistical analyst is left at the mercy of the validity of the assumptions

being made when conducting analysis. Conditioning a linear model for an experiment

as well as restricting outcomes to an independently and identically distributed random

error is an assumption of convenience because then, the accompanying analysis to be

performed is fixed. On the other hand, assumptions of convenience may not essentially

be the valid assumption. Moreover, adapting a given analytical approach exclusively

because it is very ‘popular’ will arbitrarily restrict the quality of desired results.

The advent of computer science has been the reason for a kind of breakthrough in

the field of Applied Statistics. Due to the discovery of the personal computer in the

1970s, applications involving computer technology have been growing upwards at a

geometric rate. Entree to computer programs and softwares has become almost triv-

ial. Procedures and approximation algorithms that were once seen as too complex to

compute are now viable alternatives. Computational confidence is now developed to

emphatically pursue new techniques and new algorithms in applied statistics. Statisti-

cal procedures that rely on the assumption of Gaussian paradigm such as the classical

methodologies are no longer the only viable option. To an extent, convenience has

been overridden by technology (Bhatt, 2006).
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1.2 Motivation of the Study

Identification of influential observation often referred to as outliers is a common goal

of a data analyst. Classical methods using euclidean and Mahalanobis distances have

been developed to detect such spurious observations but they fail to detect them be-

cause they are affected by the observations they are supposed to identify. Billor et al.

(2000) presented an algorithm for selecting the initial subset in a forward search proce-

dure for multivariate outlier identification. Fan et al. (2013) used the hierarchical clus-

tering procedure to improve the capability of certain multivariate control chart methods

in identifying the presence of multivariate outliers. Hubert et al. (2012) proposed the

deterministic algorithm for robust location and scatter. It turns out that the robust Ma-

halanobis distance computed from the robust location and scatter matrix forms the ba-

sis for outlier identification. The problem with these estimators is that they are imprac-

tical to compute exactly in large samples. As a result, approximation algorithms are

used. The algorithms generally produce estimators with lower consistency rates and

breakdown values than the exact theoretical estimator. This discrepancy grows spo-

radically with sample size, with the implication that huge computations are required

for good approximations in large high-dimensional samples. In the end, masking and

swamping effects lead to false identification of observation as either outlying or other-

wise. This phenomenon motivated this study to investigate and propose an alternative

outlier identification procedure.

The classical least squares (LS) regression produces the ‘best’ estimates when assump-

tions of Gaussian paradigm are all valid. However, the presence of outliers influence

distort these estimates so much so that their values are no longer reliable. The gener-
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alized regression M-estimator reported in Huber and Ronchetti (2011) is an example

of robust regression alternative for small percentage of outliers in the y-dimension.

Hamzah and Nasser (2014) discussed various types of high breakdown M-regression

estimation in the context of generalized linear models; while the least median of

squares (LMS) estimator reported in Rousseeuw and Leroy (2003), least trimmed

squares (LT S) estimator reported in Rousseeuw and Leroy (2003) and the MM es-

timator reported in Maronna et al. (2006) are examples of high breakdown regression

estimators that can resist up to 50% contaminations in datasets. The problem with

these robust alternatives is that the generalized regression M-estimator can only han-

dle small percentage of outliers in the y-dimension and breaks down when x-outliers

are present. According to Hawkins and Olive (2002), the high break down regression

estimators such as LMS, LT S and MM on the other hand implement ‘elemental set ’ or

‘resampling algorithms’ . These algorithms turn out to be completely ineffective in

high dimensions with high level of outlier observations. This is because the algorithm

involves combinatoric-based analysis which becomes completely overwhelmed even

with modest sample size. The phenomenon injects some sort of random sample vari-

ability into the analysis. Hence, reproducibility or lack thereof, becomes a real issue.

Accordingly, the need for an alternative robust regression in multiple regression model

is desirable.

According to Rousseeuw et al. (2004), the classical multiple regression is highly sus-

ceptible to little contaminations in datasets. This setback also occurs in multivariate

regression analysis. Methods such as MCD regression, multivariate S-estimator for

robust estimation and inferences, and multivariate least trimmed squares regression

estimators are robust alternatives to the classical multivariate least squares regression.
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These robust alternatives like their multiple regression counterparts implement ‘resam-

pling algorithms ’ and ‘elemental subset’. The drawback is that methods that imple-

ment ‘resampling algorithms’ and ‘elemental subset’ are ineffective and fail to produce

estimators that are reliable in high dimension. They are characterized with poor effi-

ciency and lack of reproducibility. This research is motivated by these ill-effects to

investigate and propose an alternative multivariate robust regression estimator to ad-

dress the inherent issue with existing alternatives.

1.3 Research Objectives

This research is centered on the study of robust, high breakdown estimators for loca-

tion and dispersion in multivariate outlier identification and its extension to regression

modeling in the multiple and multivariate scenarios with the following objectives.

1. To develop a new estimator for outlier identification that is:

(a) Robust and utilizes substantial information about the sampling distribution,

(b) Able to handle masking and swamping effect in the presence of extreme

observations,

(c) Not computationally intensive.

2. To develop a new regression procedure in the multiple and multivariate models

that:

(a) Achieve high breakdown regression parameter estimates,
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(b) Offers informative summary about likely multivariate outlier structure,

1.4 Thesis Organization

The remaining parts of chapter 1 discuss the background of classical regression ap-

proach alongside some classical outlier diagnostic in regression analysis. A case study

is presented for the purpose of illustration and comparisons. Chapter 2 deals with lit-

erature review of robust methods such as the various robust procedures for computing

location and dispersion estimators and outlier identification procedures, followed by a

review of robust regression methods with emphasis on low breakdown and high break-

down scenarios for multiple regression. A review of existing robust alternatives to LS

multivariate regression concludes chapter 2. The proposed method for outlier iden-

tification is presented in chapter 3 alongside its equivariance property, Monte Carlo

simulation experiment and numerical examples. The proposed algorithm for multiple

regression method is presented in chapter 4 alongside its numerical illustrations, Monte

Carlo simulation and theoretical properties. Chapter 5 introduces the proposed multi-

variate regression method, its theoretical robustness, Monte Carlo simulation experi-

ment and real data application. Chapter 6 concludes the research work with summary

of findings, and areas for future research.

1.5 Regression background and Notation

Regression study can be seen as the study of how two sets of variables are related. The

first set of variables defines the p-predictors denoted as x ji = x1i, x2i, x3i, · · · ,xpi; i =

1, · · · ,n; j = 1, · · · , p. The Gaussian paradigm assumes that these predictor variables
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are fixed. They are sometimes called regressor or independent variables. Their nu-

merical values are either experimental outcomes or sometimes designed in advance

of the experiment. The second set of variables contains the q-responses denoted as

yki = y1i, y2i,y3i, · · · ,yqi; i = 1, · · · ,n; k = 1, · · · ,q. They are often called dependent

variables since their values depend on the regressor variables. Three scenarios can be

described by the aggregation of regressor and response variables. Scenario 1 describes

a situation where p = q = 1 and is referred to as the simple linear regression model.

The second scenario is when p > 1, q = 1 and it is referred to as the multiple linear re-

gression model. Scenario 3 is when p > 1,q > 1 and it is referred to as the multivariate

linear regression model.

The generalized statistical model that expresses the response as a function of the re-

gressor variables with the addition of an error term arising from the random experiment

is given as

yi = f (x1i, x2i, x3i, · · · ,xpi)+ εi, i = 1, · · · ,n (1.1)

where n is the sample size. The specific form of the model in Equation (1.1) is re-

stricted to a family of linear function given by

yi = β0 +β1x1i +β2x2i +β3x3i, · · · ,βpxpi + εi. (1.2)

Note that Equation (1.2) is linear in terms of the unknown parameters βββ j ∈ Rp×1.

In line with the typical linear regression notation, the data are displayed in an n× 1

response vector, y, and an n× p regressor matrix, X. Define βββ j ∈Rp×1 as the parameter
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vector, and ε as the n×1 error vector, the linear regression model is given by

y = Xβββ +εεε (1.3)

The model in Equation (1.3) can be written elementwise as



y1

y2

y3

...

yn


=



1 x11 x21 x31 · · · xp1

1 x12 x22 x32 · · · xp2

1 x13 x23 x33 · · · xp3

...
...

...
... . . . ...

1 x1n x2n x3n · · · xpn





β0

β1

β2

...

βp


+



ε1

ε2

ε3

...

εn


.

For easy understanding, it is important to define some matrices that are pivotal in the

computational process of various regression methods. Create the n× (p+2) matrix Xy

by augmenting the vector of y to the matrix X to obtain

Xy=



1 x11 x21 x31 · · · xp1 y1

1 x12 x22 x32 · · · xp2 y2

1 x13 x23 x33 · · · xp3 y3

...
...

...
... . . . ...

...

1 x1n x2n x3n · · · xpn yn


.

In Chapter 3 where the proposed method for outlier identification will be discussed, as

well as location and dispersion estimators, it becomes crucial to remove the column of

ones from the design matrix X and the augmented matrix Xy. Let Z be the n× p matrix

containing only the p-regressors,
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Z=



x11 x21 x31 · · · xp1

x12 x22 x32 · · · xp2

x13 x23 x33 · · · xp3

...
...

... . . . ...

x1n x2n x3n · · · xpn


,

such that Zy represents the n× (p+1) matrix formed by augmenting the vector y to Z,

given by

Zy=



x11 x21 x31 · · · xp1 y1

x12 x22 x32 · · · xp2 y2

x13 x23 x33 · · · xp3 y3

...
...

... . . . ...
...

x1n x2n x3n · · · xpn yn


.

In order to be able to reference each of the individual observations, the ith row of X

will be referred to as the 1× p row vector x′i, and the 1× p row of z′i will represent the

ith row of Z. When the dependent variable is augmented, the notation becomes x′y,i and

z′y,i for the ith row of Xy and Zy respectively.

The ‘hat ’ symbol is used to denote estimates of parameters. For instance, β̂̂β̂β denotes

the estimates of the parameter vector βββ and the n×1 vector of predicted responses is

obtained as ŷ = Xβ̂̂β̂β such that ŷi represents the predicted response at the ith regressor

space. Also, the n× 1 vector of residuals is computed as r = y− ŷ such that ri is the

residual for the ith observation.
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1.6 The Least squares Regression-LS

The classical least squares (LS)-regression procedure is a method of estimating the pa-

rameter vector βββ of the regression model that is based on the assumption of Gaussian

paradigm. Apart from the model specification assumption, the LS has other assump-

tions concerning the error term. It assumes that the errors are independent and identi-

cally distributed (iid) random variables whose distribution is that of a normal random

variable with mean 0 and a constant variance σ2. The vector of parameter estimates,

β̂̂β̂β , is computed from the loss function popularly referred to as Ordinary Least Squares

(OLS):

min
∀β

n

∑
i=1

(yi −β0 −β1xi1 −β2xi2 −βi3xi3 −·· ·−βpxip)
2

The expression describes the deviation between the observed response values, yi and

their corresponding predicted response values, ŷi which is a function of x′i. Hence, the

ordinary least squares (OLS) minimizes the sum of squared residuals, as a result, it is

named least squares (LS).

When the assumptions of Gaussian paradigm are all valid, the LS-estimator is said to

be the ‘best’ linear unbiased estimator, or BLUE. This implies that the LS-estimator has

the least deviation among all other linear unbiased estimators. Moreover, the maximum

likelihood estimator (MLE) turns out to be the LS-estimator under the validity of these

assumptions.
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1.6.1 Terminology

Robust regression deals mainly with the tendency of an estimator to resist the influence

of extreme observations in datasets. The terms outliers and leverages are often used to

describe these extreme observations, thus, they are defined below.

An outlier can be described as an observation that is extreme in the response space in

relation to the general pattern exhibited by the bulk of the data. Leverage on the other

hand is the term used to define the location of an observation in the predictor space.

A low leverage observation is the data point located near the central tendency of the

predictors while a high leverage observation stays in some extreme position far away

from the central tendency of the predictors. In a concise term a point (y′i,x′i) which

does not follow the linear pattern of the bulk of the data but whose x′i is not outlying

is called vertical outlier. A point (y′i,x′i) whose corresponding x′i is outlying is called

a leverage point. A point (y′i,x′i) is a bad leverage point when it does not follow the

pattern of the bulk of the data; otherwise, it is a good leverage point (this is because it

does not harm the regression fit and icrease efficiency).
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Figure 1.1: Scatter Plot Illustrating Outliers and Leverages

Figure 1.1 depicts the differences between outliers, good leverage points and bad lever-

age points. Point A is an outlier, point B is a good leverage observation, and point C is

a bad leverage observation.

The LS regression is extremely susceptible to influential observations. This is because

an outlier may have a large residual which, when squared, it wrecks the LS objective

function. This is illustrated in the LS regression fit of Figure 1.1 where points A and C

pulled the LS regression line from passing through point B where the bulk of the data

trend follows.
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To summarize, the LS regression is susceptible to as little as one influential observation.

As a consequence, parameter estimates and inferential statistics about the estimation

process turns out to be misleading. If LS regression is blindly implemented without

any exploratory data analysis, it may be unknown when the analysis has severe flaws.

The phenomenon may lead to a conclusion that does not support the data in the actual

sense. It is therefore, necessary to make a right choice of regression methodology in

data analysis.

With the intent to curtail the drawbacks and risks of failure of Gaussian assumptions

in LS procedure, diagnostic approaches have been proposed for the identification of

contaminated observations. These diagnostic tools are applicable in the framework of

robust regression as well.

1.7 Leverage and the Hat Matrix

By definition, the tendency for an observation to overwhelm an estimator relative to

its position in the predictor hyperplane, irrespective of whether the corresponding re-

sponse variable is an outlier or not is referred to as an observation’s leverage. The major

difference between conventional regression and robust regression lies in the quantifi-

cation of this concept.

To begin with, for a p-dimensional predictor variables in a regression model without

intercept parameter, the Mahalanobis distance metric, di, for the ith observation is

given by

di =
√

(zi −m)′C−1(zi −m), (1.4)
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where m is the p×1 mean vector and C is the p× p covariance matrix.

Furthermore, consider the scenario in which the intercept parameter is included in the

model, the ‘hat matrix’ replaces the Mahalanobis distances. This matrix (hat matrix)

described as the p× p matrix H = X(X′X)−1X′, acquired the name hat matrix be-

cause it maps the observed response variable into the predicted values of the response

variables as ŷ = Xβ̂ = Hy. This matrix plays an important role in classical outlier

diagnostics. Myers (2000) enumerated the properties of the Hat matrix as follows:

1. The hat matrix is symmetric and idempotent.

2. The trace of H equals p, the dimensional size: i.e
n
∑

i=1
hii = p.

3. The ith hat diagonal hii is bounded such that:

(a) For models with intercept, 1
n ≤ hii ≤ 1, ∀ i,

(b) For models without intercept, 0 ≤ hii ≤ 1, ∀ i.

4. If hii = 1, then hi j = h ji = 0, ∀ i ̸= j.

5. Every row of H (and by symmetry, every column) sums to one i.e.
n
∑
j=1

hi j = 1, ∀ i.

6. The ith hat diagonal, hii is monotonically related to the ith Mahalanobis distance

di such

hii =
d2

i
n−1

+
1
n
. (1.5)

The hat diagonal primarily measures how far an observation is from the central ten-
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dency in the predictor space (Myers, 2000). As a result, the LS-regression procedure

uses the hat diagonal to measure its leverage. Since the sum of all n hat diagonals

equals p, and thus 2p
n is twice the mean hat diagonal, Myers (2000) proposed a rule of

thumb for identifying leverage points as any observation with hii ≥ 2p
n .

The main drawback of the hat diagonals and the Mahalanobis distance is that they are

both functions of the mean. As a result they are affected by the observation they are

supposed to identify. As can be seen from Equation (1.5), describing the relationship

of hat diagonal to the Mahalanobis distances, these hat diagonals are functions of the

classical mean denoted as m, and the corresponding sample covariance denoted as C.

According to Billor et al. (2000), both m and C are susceptible to influential obser-

vations, and hence, they are not reliable estimators. Consequently, the discussion of

more resistant estimator for m and C is hitherto a desirable alternative. Precisely, a

robust Mahalanobis distance metric will be proposed by substituting m and C by more

resistant estimators of multivariate location and dispersion.

1.7.1 Altered Hat Matrix

The hat matrix is based on the predictor variables only. As a result, it does not account

for outlying observations in the y-subspace. In order to account for the likely presence

of outliers in the response variable, the n× n altered hat matrix, Hy is described as

Hy = Xy(X′
yXy)

−1X′
y. Myers (2000) reported that the altered hat matrix also have the

properties of the hat matrix enumerated in Section 1.7. Its trace is now p+1, as against
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p for the usual hat matrix. Myers (2000) has shown that

Hy = H+
rr′

SSE
, (1.6)

where r is the residual vector and SSE the sum of squares error, both computed from

the LS-regression. Since Hy is based on H, LS residuals and SSE, its diagonal elements

are susceptible to outliers or high leverage points.

1.8 Outlier Diagnostics

In searching for outliers in the response variable, it is ideal to begin with residual

analysis. However, Myers (2000) stated that high leverage points tend to have small

residuals because they overwhelm the fitted values and are masked by it. Consequently,

a cautionary approach when making inferences from the set of residuals is ideal.

Given that residuals constitute the units of the response variable, the extent of what

constitutes a large residual is a function of the scale parameter. Hence, an estimate

for σ , denoted by S is used to re-scale the residuals. Myers (2000) suggested the root

mean square error (RMSE) obtained from the classical regression analysis of variance

(ANOVA) table. The RMSE is then, defined in terms of an internally studentized

residual given by

r
′
i =

ri

s
√

1−hii
. (1.7)

where ri is the ith element of the residual vector r. Lest for lack of independence,

Equation (1.7) follows a Student t-distribution. Given that the numerator and denomi-

nator are not independent and r
′
i does not follow a true t-distribution. However, Myers
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(2000) deemed it to be nearly t-like, and suggested that an ith observation is deemed

outlier if the corresponding |r′i| ≥ 2.

The performance of a regression procedure can be assessed by viewing the regression

analysis when a particular observation is included and when it is removed and then

measure the change in both scenarios. This type of assessment is called ‘single point

deletion analysis’ or the ‘prediction residual (PRESS) approach’. For purpose of no-

tation, ‘−i’ subscript could mean that the analysis is carried out without the ith data

point. Therefore, ŷi,−i denotes the fitted value at x′i when the regression is carried out

without x′i and yi. Ordinarily, the PRESS analysis appears to involve the computation

of n separate regressions, each with a reduced sample size n−1. As a result of manip-

ulations, only the full data regression is required. That is, the residual ri,−i = yi − ŷi,−i

usually referred to as the PRESS residual can be computed as ri,−i =
ri

(1−hii)
.

The presence of outlier in the response space tends to inflate the estimate of scale,

s2 . To deflate such inflation, an alternative to the internally studentized residual is

desirable. Myers (2000) suggested to compute, s2
−i, in the PRESS procedure, where

s−i =

√
(n− p)s2 − r2

i /(1−hii)

n− p−1
(1.8)

is used to compute the externally studentized residuals defined as

Rstudenti =
yi − ŷi

s−i
√

1−hii
. (1.9)

In the opinion of Myers (2000) the Rstudent-statistic follows a t-distribution with n−

p− 1 degrees of freedom, denoted by tn−p−1. Under the Gaussian assumptions, the

17



numerator and denominator are now independent. An outlier is identified by a Rstudent

value if |Rstudenti| > t(1−α),(n−p−1). When the effect of the ith data point is high, the

data point will have a larger Rstudent value than the internally studentized residual.

This is because the estimate of scale s2
−i used in the denominator without this data

point tends to be smaller than the estimate of scale obtained when using all of the data.

1.9 Influence Diagnostics

Huber (1981) defines the term influence, as the relative effect of a particular observa-

tion’s presence on the resulting estimator. Since high leverage outlier has a distorting

effect on the LS estimator, their deletion has a significant effect on the estimator. There-

fore, they are said to be substantially influential. Armed with this definition, one can

infer that single point deletion analysis plays a significant role in influence diagnostics.

The influence of the ith observation can be measured using the statistic referred to as

‘difference in fits’ (DFFITS)-statistic, given as

DFFIT Si =
ŷi − ŷi,−i

s−i
√

hii
. (1.10)

Myers (2000) have shown that the DFFIT S-statistic can be written as

DFFIT Si = Rstudenti[
hii

1−hii
]

1
2 (1.11)

The advantage of the DFFIT S-statistic as an influential diagnostic tool is that it con-

stitutes an outlier diagnostic component, Rstudenti, and a leverage diagnostic compo-

nent, [ hii
(1−hii)

]
1
2 . Hence, the DFFIT S-statistic seems to be a better alternative for both
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the outliers and leverages in its evaluation of an observation’s influence on an estima-

tor (Atkinson et al., 2004). For this reason, the DFFIT S-statistic is used as a measure

to determine the influence of an outlier cluster on the proposed multiple regression

model.

More robust outlier identification, location and dispersion estimator as well as outlier-

resistant regression methodologies are now discussed in Chapter 2. These estimators

are resistant to contaminations of various sorts and can work well in data analysis when

outliers are indeed present, but go unidentified by the conventional procedure.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter discusses the various robust procedures for computing location and dis-

persion estimators and outlier identification procedures. In what follows is the review

of robust regression methods with emphasis on low breakdown and high breakdown

scenarios for multiple regression. A review of existing robust alternatives to LS multi-

variate regression concludes this chapter.

Traditionally, nearly all robust outlier identification procedures are based on the loca-

tion and dispersion estimators. This accounts for why the two (location and dispersion

estimator and outlier identification methods) are jointly discussed. Outlier identifica-

tion methods can be broadly classified into two groups, namely, the forward search

algorithms and the elemental or resampling set algorithms. The forward search proce-

dure heuristically searches for a ‘half subset’ from a data set through a forward stepping

algorithm. The method involves selecting an initial subset that is outlier-free and then

load it (initial subset) according to a decision criterion until the initial subset contains

‘half subset’. Observations with indexes corresponding to the half subset is used to

compute the robust location and dispersion. The robust location and dispersion esti-

mators are in turn, used to compute the Mahalanobis distance. Observations whose

robust Mahalanobis distance is greater than a specified threshold (say δ ) is declared
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as an outlier. The coordinatewise median, the Stahel-Donoho estimator, the Stalactite

plot analysis, the Orthogonalized Gnanadesikan-Kettenring estimator (OGK) and the

block adaptive computationally efficient outlier nominator (BACON) are examples of

the forward search algorithm procedure. The elemental or resampling set procedures

on the other hand computes the location and dispersion estimators by taking a subset

from a data set based on a given objective function that minimizes the error in the

subset selection criterion. A resampling step then optimizes this criterion by lower-

ing the objective function at each resampling step until an optimum subset which is

outlier-free is obtained. A location and dispersion estimator arising from this outlier-

free subset is then used to compute a Mahalanobis distance. A candidate outlier is that

observation whose index corresponds to the Mahalanobis distance that is greater than a

specified threshold (say δ ). The minimum volume ellipsoid (MV E), the minimum co-

variance determinant (MCD) and the Deterministic minimum covariance determinant

(DetMCD) are members of robust outlier identification that implement the elemental

or resampling procedure.

The goal of robust statistics in outlier identification is the desire to obtain a robust

multivariate location estimator, denoted by m, and a multivariate dispersion estimator,

also denoted as C in such a way that the influence of spurious observations can be

subdued. The significance of these techniques to robust regression arena hinges on the

ability to extract information about outlier presence as well as its structures especially

in multivariate settings. This implies a transformation from the Gaussian approach

of ‘equal weight assignment’ into another optimistic more robust approach of weight

assignment to observations based on their influence in the data space. It is important to

state at this point that any mention of ‘half set’ or ‘half dataset’ corresponds to h= [(n+
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p+1)/2]-observations in outlier identification as well as multiple regression settings.

It is modified as h = [(n + k + 1)/2]; k = p + q in multivariate regression settings.

The outlier identification procedures based on the location and dispersion estimators

discussed below is relative to the data matrix Zy.

2.2 Location and Dispersion Estimators

Suppose that Zy is taken from a population with a multivariate normal distribution,

then the classical mean and covariance estimators are computed, respectively, as the

k×1 sample mean vector,

m =

n
∑

i=1
zy,i

n
(2.1)

and the k× k sample covariance (dispersion) matrix,

C =

n
∑

i=1
(zy,i −m)(zy,i −m)′

n−1
(2.2)

Equations (2.1) and (2.2) are apparently, functions of the mean and hence, any outlier

observation can erratically deflate or inflate them. The repercussions are that infer-

ences drawn from these estimators, such as the hat diagonals, for instance, are severely

unreliable in the presence of unusual or extreme observations. Therefore, it is imper-

ative to think of alternative estimators that can resist the influence of these extreme

observations.

One simple way to estimate m and C is to adopt a robust multivariate location esti-

mator in a coordinatewise manner. In the same way as the univariate location estima-
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tion, replace the sample mean by the sample median for each of the k-variables. The

covariance matrix turns out to be the covariance estimation that is centered by this co-

ordinatewise median. According to Billor et al. (2000), the coordinatewise median is

thought to be more robust as much as 50% than the mean. Although the coordinate-

wise median and the dispersion estimator computed from it is robust, computational

convenience appears to have determined the choice of the median in the past. This is

because in the multivariate setting, the coordinatewise median location estimator is not

affine equivariant. According to Rousseeuw and Leroy (2003), this estimator is not

affine equivariant, implying that linear transformations of the data are not equivalently

transformed by the estimator. The procedures discussed below combine outlier identi-

fication with estimation of location and dispersion estimators. They are classified into:

the forward search procedures and elemental or resampling procedures.

2.2.1 The Forward Search Procedures

Several estimators exist that can replace the non robust sample mean vector and dis-

persion matrix estimators. Some of these estimators differ mainly in terms of their

objective functions and theoretical properties. The following are major outlier resis-

tant estimators for multivariate location and dispersion that adopt the forward search

procedure.

2.2.1(a) The Stahel-Donoho Estimator

Proposed independently by Stahel (1981), Donoho (1982) and Dodge (2002) described

the Stahel-Donoho estimator for outlier identification and location and dispersion es-

timation. In simple words, their notion is that a spurious data point will cluster dif-
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ferently from the bulk of the data when they are outlying in a correct metrics. The

procedure is implemented in two stages. A projection computation is used to deter-

mine a robust distance in the first stage. At the second stage, the robust distances serve

as a weight function with a weighted mean vector and weighted dispersion matrix.

According to Rousseeuw and Leroy (1987), this approach is affine equivariant, and at-

tains high breakdown point when the data are in general position. The algorithm itself

is presented below.

Algorithm 2.1: The Stahel-Donoho Projection-based Location and Dispersion Al-

gorithm; Source: Rousseeuw and Leroy (1987)

1. Obtain a robust distance, denoted by ui, for the ith observation zy,i, as:

ui = sup
||v||=1

|z′
y,iv−m

∀ j
ed(z′

y, jv)|

m
∀k

ed|z′
y,kv−m

∀ j
ed(z′

y, jv)|
, (2.3)

where v is the k × 1 directional vector, through which the projections of all n

observations are made. The robust distance that is a function of weights obtained

from ui is used to classify outliers into a different cluster while the clean data

points remain in the main cluster.

2. Using the n robust distances, ui and the data set Zy the robust location estimator

is computed as

m =

n
∑

i=1
w(ui)zy,i

n
∑

i=1
w(ui)

, (2.4)

and the weighted covariance matrix is computed based on the location estimator
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