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PENURUNAN ELEKTROKIMIA NITRAT DAN NITRIT MENGGUNAKAN 

ELEKTROD PLATINUM TERUBAHSUAI DENGAN KUPRUM 

ABSTRAK 

Elektropenurunan nitrat dan nitrit dalam kajian ini dijalankan dengan 

menggunakan elektrod platinum terubahsuai dengan kuprum di dalam larutan 0.05 M 

KCl melalui teknik voltammetri kitaran. Satu perbandingan telah dilakukan dengan 

menggunakan pelbagai elektrod kerja seperti kuprum, elektrod kuprum terubahsuai 

dengan kuprum (Cu-Cu) dan elektrod pensil grafit terubahsuai kuprum (PG-Cu). Proses 

permendapan zarah kuprum ditetapkan sebanyak 30 kitaran/ 18 saat untuk semua 

elektrod yang diubahsuai dengan kuprum bagi mendapatkan nisbah yang terbaik. Luas 

permukaan sebenar bagi elektrod Pt, Cu, Cu-Cu, PG-Cu dan Pt-Cu dianggarkan 

sebanyak 1.747 cm
2
, 0.814 cm

2
, 0.988 cm

2
, 1.146 cm

2
 and 2.259 cm

2
. Aktiviti dan 

pemilihan elektropenurunan nitrat dan nitrit adalah lebih memuaskan jika menggunakan 

elektrod Pt-Cu. Plot ip vs. ν
1/2 

menunjukkan bahawa elektron yang dipindahkan dalam 

langkah penentu kadar tindakbalas adalah 1.51, 1.66, 1.88 dan 2.05 melalui elektrod Cu, 

Cu-Cu, PG-Cu dan Pt-Cu yang menunjukkan penurunan kepada nitrit. Pada keupayaan 

yang lebih negatif, bilangan elektron yang dipindahkan ialah 5.15, 5.26, 5.35 dan 6 

masingmasing pada elektrod Cu, Cu-Cu, PG-Cu dan Pt-Cu, yang menunjukkan 

pengeluaran ammonia. Tertib tindakbalas di elektrod Pt-Cu ialah 0.97 dan 0.90 untuk 

kedua-dua tindakbalas penurunan elektro nitrat dan nitrit. Pemalar kadar 

elektropenurunan nitrat (2.228 × 10
2 

min
-1

) dan nitrit (4.690 × 10
2
 min

-1
) apabila 

menggunakan elektrod Pt-Cu adalah lebih tinggi daripada elektrod yang lain di dalam 

kajian ini. Keputusan membuktikan bahawa prestasi elektrod Pt-Cu adalah lebih baik 
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daripada elektrod Cu-Cu dan PG-Cu. Perlakuan elektrokimia elektrod Pt-Cu dalam 

elektropenurunan ion nitrat dan nitrit juga dikaji di dalam medium alkali (0.05 M 

NaOH) dengan kehadiran 5 mM natrium inositol heksafosfat (NaIP6). Komposisi 

elektrod yang berbeza (Cu, Pt, and Pt-Cu) telah digunakan untuk mengkaji aktiviti dan 

pemilihan elektrod terhadap elektropenurunan nitrat dan nitrit dengan menggunakan 

voltammetri kitaran. Elektrod Pt-Cu menunjukkan prestasi yang terbaik. Penambahan 

NaIP6 adalah untuk mengelakkan pengoksidaan atom kuprum kepada ion kuprum. 

Kesan NaIP6 pada aktiviti dan kestabilan elektrod juga disiasat di dalam kajian ini. 

Kehadiran NaIP6 meningkatkan prestasi elektrod Pt-Cu terutama sekali kestabilan 

elektrod. Akhir sekali, prestasi elektrod Pt-Cu dianalisis selanjutnya untuk kajian ion 

penganggu. Gangguan daripada ion nitrat dan nitrit pratambah terhadap proses 

elektropenurunan keseluruhannya ditentukan di dalam 0.05 M KCl. Di sini, pemalar 

kadar elektropenurunan nitrat yang lebih tinggi diperhatikan di dalam sistem tanpa nitrit 

(2.215 × 10
2
 min

-1
) berbanding sistem nitrit ditambah terlebih dahulu (55.97 min

-1
). 

Pemalar kadar elektropenurunan nitrit pula adalah lebih tinggi di dalam sistem tanpa ion 

nitrat (3.954 × 10
2
 min

-1
) berbanding dengan sistem dimana nitrat di tambah terlebih 

dahulu (3.349 × 10
2
 min

-1
). Pada kepekatan nitrit yang tinggi, kadar elektro penurunan 

merosot. Elektropenurunan nitrat dan nitrit berlaku lebih dengan kehadiran ion Cl
-
, 

ClO4
- 

berbanding dengan ion yang lebih besar seperti ion SO4
- 

dan Br
-
. Tertib tindak 

balas dianggarkan kepada 1 iaitu tertib pertama. Kadar tindak balas untuk 

elektropenurunan nitrat dan nitrit adalah tertinggi di dalam larutan KCl. Pemindahan 

elektron untuk langkah elektropenurunan nitrat adalah hampir kepada dua elektron 

manakala bilangan elektron yang dipindahkan untuk langkah elektropenurunan nitrit 



xvi 

ialah daripada empat hingga enam elektron. Untuk analisis kation penganggu, aktiviti 

elektropenurunan diperhatikan bagi kation bercas 1. Tertib tindakbalas yang diperoleh 

ialah kira-kira 1 untuk kedua-dua elektropenurunan nitrat dan nitrit. Untuk penurunan 

elektro nitrat, kadar tindak balas adalah lebih tinggi   ion K
+
 (2.213 × 10

2
 min

-1
) 

daripada ion Na
+
 (2.143 × 10

2
 min

-1
) sementara kadar meningkat dalam urutan Cu < Mg 

< Al < Ca. Kadar tindak balas yang tinggi juga diperhatikan untuk elekropenurunan 

nitrit dalam kehadiran ion Na
+
 (5.571 × 10

2
 min

-1
) berbanding K

+
 ion (4.699 × 10

2
 min

-

1
) manakala ion Ca

2+
menghasilkan kadar tertinggi (6.397 × 10

2
 min

-1
). Had penentuan 

terendah untuk mengesan kepekatan diperoleh sebanyak 1.61 × 10
-7

 M. 
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ELECTROCHEMICAL REDUCTION OF NITRATES AND NITRITES USING 

COPPER MODIFIED PLATINUM ELECTRODE 

ABSTRACT 

The electroreduction of nitrates and nitrites were carried out in this study using a 

copper modified platinum (Pt-Cu) electrode in the presence of 0.05 M KCl solution 

using cyclic voltammetry. Comparison was carried out using various working electrodes 

such as Cu, copper modified copper electrode (Cu-Cu) and copper modified pencil 

graphite electrode (PG-Cu). For the copper modified electrodes, the deposition of the 

copper particles was maintained at 30 cycles/ 18 seconds as the best ratio. The real 

surface area Pt, Cu, Cu-Cu, PG-Cu and Pt-Cu electrodes were estimated to be 1.747 

cm
2
, 0.814 cm

2
, 0.988 cm

2
, 1.146 cm

2
 and 2.259 cm

2
 respectively. The activity and 

selectivity for electroreduction of both nitrates and nitrites were better at the Pt-Cu 

electrode. The plot ipvsν
1/2

 shows that the electrons transferred in the rate determining 

step was 1.51, 1.66, 1.88 and 2.05 on the Cu, Cu-Cu, PG-Cu and Pt-Cu respectively 

indicating the electroreduction of nitrate to nitrite. At more negative overpotentials, the 

number of electrons transferred was approximately 5.15, 5.26, 5.35 and 6 on the Cu, Cu-

Cu, PG-Cu and Pt-Cu electrodes respectively, corresponding to the production of 

ammonia. The order of the reaction in the presence of Pt-Cu electrode was 0.97 and 0.90 

for the electroreduction reaction of nitrate and nitrite respectively. The rate constant of 

electroreduction of nitrate (2.228 × 10
2 

min
-1

) and nitrite (4.690 × 10
2
 min

-1
) when using 

Pt-Cu electrode was relatively higher compared to other electrodes studied which proved 

that Pt-Cu electrode performance is the best compared Cu, Cu-Cu and PG-Cu 

electrodes. The electrochemical behavior of a Pt-Cu electrode on the electroreduction of 
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nitrate and nitrite ions has been investigated in an alkaline medium (0.05 M NaOH) in 

the presence of 5 mM sodium inositol hexaphosphate (NaIP6). Different electrode 

compositions (Cu, Pt, and Pt-Cu) were used to study their activity and selectivity 

towards the electroreduction of nitrates and nitrites using cyclic voltammetry. The Pt-Cu 

electrode shows the best performance. The addition of NaIP6 is to prevent the oxidation 

of copper atoms to copper ions. The effect of NaIP6 on the optimization of the electrode 

activity and stability was investigated in this study. The presence of NaIP6 further 

improves the performance of the Pt-Cu electrode especially the stability of the electrode. 

The effect of the interfering ions on the performance of the Pt-Cu electrode was also 

carried out. The effect of the pre-added nitrate and nitrite to the overall electroreduction 

process was determined in the 0.05 M KCl. Here, a higher rate constantfor nitrate 

reduction was observed in the system without pre-added nitrite (2.215 × 10
2
 min

-1
) 

compared to the system with added nitrite (55.97 min
-1

). The rate constant of reduction 

of nitrite was higher without the presence of nitrate ions (3.954 × 10
2
 min

-1
) compared to 

those in the presence of nitrate (3.349 × 10
2
 min

-1
). At higher concentration of nitrite the 

rate constant of reduction deteriorates. The electroreduction of nitrate and nitrite was 

observed to be more feasible in the presence of Cl
-
 and ClO4

-
 ions compared to the 

larger SO4
-
 and Br

-
 ions. The order of the reaction was approximated to 1. The rate 

constant of the nitrate and nitrite electroreduction was the highest in the KCl solution. 

Electron transfer for nitrate reduction step is nearly two electrons while the number of 

electrons transferred for the nitrite reduction steps varied according to the adsorption 

ability of the preceding nitrate ions which ranged from four to six electrons. For the 

interfering cations analysis, the electroreduction activity was feasiblefor the singly 
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charged cations. The order of reaction attained was approximately 1 for both nitrate and 

nitrite reduction. For the nitrate reduction, the rate of the reaction was higher in the 

presence of K
+
 ions (2.213×10

2 
min

-1
) than the Na

+
 ions (2.143×10

2 
min

-1
) while the rate 

constant increased in the sequence Cu <Al<Mg<Ca for the rest of the cations per mol of 

NO3
-
 and NO2

-
.. A higher reaction rate constant for nitrite reduction was observed in the 

presence of the Na
+
 ions (5.571×10

2
min

-1
)than the K

+
 ions (4.699×10

2 
min

-1
) while Ca

2+
 

ion produced the highest rate (6.397×10
2 

min
-1

) for the rest of the cations. The limit of 

detection of nitrate concentration was determined as 1.61 × 10
-7 

M. 
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CHAPTER 1 

INTRODUCTION 

1.1 Nitrogen Cycle 

Denitrification of nitrogen compounds to molecular nitrogen from terrestrial and 

marine ecosystems plays an important role in the nitrogen cycle. Nitrogen 

predominantly can be found in several oxidation states such as in nitrate (+5) and 

ammonia (-3). The biogeothermal nitrogen cycle (Fig. 1.1) allows the interconversion of 

free atmospheric nitrogen to nitrogenous compounds to maintain the equilibrium 

between them in a huge reservoir. Many oxidative and reductive processes happen in the 

nitrogen cycle (Cabello et al., 2004). All living things need nitrogen to build protein and 

other important biological and chemical molecules such DNA and RNA. One of the 

important nitrogen compounds in the cycle is nitrate which is fixed from the 

environment by nitrogen fixing microorganism, plants and industrial process (Galloway 

et al., 2004). Soils, water and plants such as legumes are the main source of nitrates. 

Nitrate is required as the building block for plant growth and development. When 

animals and humans die, nitrates will be returned to nature by microbial degradation or 

decomposition which will be further reduced to nitrogen. Nitrates have the tendency to 

be converted into nitrites and vice versa in nature (Imsande and Touraine, 1994).  

1.2 Nitrate and its derivatives uses 

Nitrate is generally used as a precursor to produce useful products such as ammonia, 

hydroxylamine, hydrazine, nitrous oxide and many more in laboratories industries. The  
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Figure 1.1 The nitrogen cycle and various processes of nitrification and  

  denitrification (adapted from Cabello et al., 2004).  
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versatility of this chemical agent ensured the wide range exploration not only in the 

industrial sector ranging from manufacturing of fireworks, explosive materials and 

production of dyes but as an anti microbial agent (Moorcroft et al., 2001; Saiful Alam et 

al., 2012). 

The nitrogen gas produced from nitrate reduction used in the Haber process (Modak, 

2002) in the presence of hydrogen gas to produce ammonia. The reaction that takes 

place is as follows: 

N2(g) + 3H2(g)                     2NH3(g)       (1.1) 

This process in indirectly important for the agricultural sector where ammonia based 

fertilizer can be produced. The nitrogen source in the ammonia based fertilizer is useful 

for the uptake by the plant. In the nuclear industry, strong alkaline solution is used to 

neutralize the nitric acid in the waste cleanup solution. The recycling of the alkaline 

solution after neutralization applies the theory of the conversion of nitrate into ammonia 

(Xing et al., 1990).  

Manufacturing of caprolactam has gained increasing interest as it is an 

intermediate required for the production of nylon-6 fiber and resins. Hydroxylamine is 

added in the earlier part of the synthesis together with cyclohexanone to produce 

caprolactam (Ichihashi and Sato, 2001). Nitrate is also used as a starting material for the 

production of hydrazine and azides (Bae et al., 2007) which are precursors for polymer 

synthesis and manufacture of pesticides. In the food industry, nitrites are constantly 

added into meat products as a preservative agent. This is to extend the shelf life of the 

processed food and to prevent food poisoning by microorganisms such as Clostridium 
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botulinum (Swann, 1977). Reduction of nitrate also plays a vital part in the medical field 

where nitrous oxide (N2O) also known as laughing gas is used as an anesthetic. Patients 

are given a low concentration of N2O as a pre-surgical procedure (Jevtovic-Todorovic et 

al., 1998).  In biological processes, nitrate is assimilated by microorganisms through 

fixation of inorganic nitrogen in the atmosphere which is taken up by plants as nutrients 

for the photosynthesis process. The nitrogen component in nitrate is equally important at 

the molecular level. The nitrogen atom is vital for production of amino acids production 

which in turn act building blocks for nucleic acids and other cellular components (Patey 

et al., 2008). 

1.3 Environmental and Health Risks  

The nitrogen cycle is further divided into three reservoirs of nitrogen such as the 

atmosphere, soils and marine. Increasing human activities annexing a new reservoir for 

nitrogen thus changes the established equilibrium of the nitrogen cycle (Smil, 2011). 

The contamination of nitrate and its derivatives slow down efforts on achieving a global 

clean environment. Most of the contamination happens on surface and in groundwater 

due to various factors. Urbanization and industrialization increases human activities and 

industrial discharge that contain nitrate without proper treatment into the rivers or lakes 

(Hasnat et al., 2011). The perturbation of the nitrogen cycle generates severe 

consequences such as acid rain and greenhouse effect to the current environment due to 

extensive urbanization and human activities (Estudillo-Wong et al., 2013). In the 

agriculture sector, overuses of fertilizers in the plantations have been known as one of 

the major causes of nitrate contamination in water (Cuibus et al., 2012). Higher dosage 

of nitrogen based fertilizers was used to intensify the agricultural activity (Massai et al., 
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2009). Another source of nitrate contamination is the animal faeces or manure. Improper 

removal of animal faeces from farms causes the leaching of nitrate into ground water. 

Furthermore, certain farmers store manure as a cheaper alternative to fertilizers. 

However, the efficiency of this organic fertilizer compared to more expensive 

commercial fertilizers is way lower and this encourages those farmers to apply an excess 

of manure, which indirectly increases nitrate concentration in groundwater (Hallberg 

and Keeney, 1993). In addition, the activity of microbial and usage of pesticides also 

elevate the nitrate concentration in agricultural land (Mahvi et al., 2005).  Irrigation 

impact and storm runoffs also increase nitrate leaching into the ground water (Kim et al., 

2007). Excessive accumulation of nitrates and its derivatives can cause eutrophication 

due to algae and phytoplankton bloom of rivers, lakes and seas. This thus lowers the 

level of oxygen in water and further deteriorates the habitat of aquatic organisms (Platt 

et al., 2003; Saiful Alam et al., 2012). Besides atmospheric deposition of nitrates and 

ammonia affecting the natural ecosystem, the emission of nitrous oxides from industrial 

area and vehicle contributes to the greenhouse gas accumulation behind CO2 and CH4. 

Nitrates are generally less hazardous but readily converted or reduced to nitrite 

and other nitrogenous compounds such as ammonia (NH3), nitrous oxide (N2O), 

nitrogen dioxide (NO2) and many more that cause serious threat to human health.  The 

high solubility of nitrates in water and the reduction from certain bacteria in food 

products and human intestines enhance the conversion into nitrite (Badea et al., 2001). 

Nitrites on the other hand, upon reaching the blood circulation system will react with 

hemoglobin to form methemoglobin by oxidizing the Fe
2+

. Methemoglobin reduces the 

efficiency to transport oxygen to vital organs in the human body thus contributing to a 
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condition known as methemoglobinemia (Huang et al., 1998). Methemoglobinemia also 

occurs in infants which is known as blue baby syndrome (Lecloux, 1999 and Pintar, 

2003). Besides, Epron et al. (2001) also reported that elevated blood pressure which 

leads to hypertension occurs when the level of the nitrate is high in the human body. 

Nitrosamine which is a carcinogenic compound is formed by the reaction 

between nitrite and amines, amides or other nitrogenous compounds. Nitrate ingestion 

also linked to mutagenic, teratogenic effects and induces cancer to certain vital organs 

such as the liver and stomach (Moorcroft et al., 2001).  

The intake of excessive red and processed meat which is cured with nitrite can 

cause food poisoning by increasing the formation of N-nitroso compounds (NOC) in 

humans. Again this compound induces several types of human cancer which includes 

tumor of the thyroid gland, ovary and kidney (Habermeyer et al., 2015). 

1.4  Regulations and Recommendations 

Although the nitrate has its own demands and drawbacks, certain regulations 

needed to be undertaken in order to minimize the health risk factor to humans. The 

major source of exposure to humans is through drinking water. The World Health 

Organization has imposed the maximum permissible level of nitrate, nitrite and 

ammonia at 50 mg L
-1

, 3 mg L
-1

, and 0.5 mg L
-1

 respectively (Manea et al., 2010; World 

Health Organization, 2011). The European Union states that 50 mg L
-1

 of nitrate is the 

legally permissible level in potable water (Badea, 2009). The United States 

Environmental Protection Agency (EPA), 2012 regulates the level of nitrate and nitrite 

in drinking water at 10 mg L
-1

 and 1 mg L
-1

 respectively. The Malaysian government 
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through the Ministry of Health regulates the maximum contaminant level (MCL) of 

nitrate and nitrite at 10 mg L
-1

 and at 1.5 mg L
-1 

for ammonia (Ministry of Health 

Malaysia, 2010). 

1.5  Denitrification- Past and Current technologies 

 There are many techniques including biological, chemical and physiochemical 

methods such as reverse osmosis, ion exchange chromatography and catalytic reduction 

by hydrogen which have been reported for the reduction of nitrates.  The development of 

denitrification method is used to fulfill the demand of uncontaminated drinking water. 

1.5.1 Biological Denitrification 

Biological removal of nitrates from water depends on heterotrophic 

microorganisms which require an organic carbon source. Since drinking water does not 

have enough carbon sources, it was added externally by means of methanol, ethanol, 

shredded newspapers and wheat straw. Post treatment of water effluent is needed to 

remove color from the wheat in the water (Aslan and Turkman, 2005). Furthermore 

biological denitrification (reduction) requires continuous monitoring with addition of 

carbon sources, temperature and pH control (Reyter et al., 2006). In addition, the rate of 

biological denitrification is very slow which is a major setback for the current fast paced 

world. It is difficult to control the parameters for optimum removal of nitrate. The cost 

of maintenance is extremely high and the organic substrate needed for the process has to 

be supplied constantly (Polatides and Kyriacou, 2005). Generation of biological waste 

and large residence time restrict the employment of biological denitrification (Barrabes 

et al., 2006). 
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1.5.2 Chemical Denitritfication 

Nitrates can be also removed chemically in the presence of Fe
0
. However, this 

reaction depends on the initial solution pH. At higher acidity, nitrates were rapidly 

removed by Fe
0
. Iron oxidation consume H

+
 thus a constant supply of acid or organic 

buffer solution is required to maintain the reduction at a high rate (Xu et al., 2012). On 

top of that, Fe
0
 efficiency deteriorates once an oxide layer is formed therefore anoxic 

conditions need to be maintained throughout the reduction process.  Fe
0
 is added to the 

contaminated water as a sample pre-treatment step which needs to be cleaned to produce 

iron free water at the end of the analysis (Huang et al., 2003). Another parameter of 

concern is the ratio between the catalyst and substrate. A precise ration between 

Fe
0
/NO3 is needed to efficiently remove nitrate from the system in a stipulated time. 

Furthermore, control of pH is vital for the reduction of nitrate by iron (Huang et al., 

1998). Polatides and Kyriacou (2005) reported that chemical methods require large 

quantities of metal, therefore the cost of operation might escalate if noble metals such as 

platinum or palladium are used as reducing agent. In addition, the production of toxic by 

product if is not treated properly could further cause negative impact to the environment. 

1.5.3 Physio-chemical Denitrification 

As for the physio-chemical method, reverse osmosis technique was used to 

remove nitrates from salt water, to purify industrial effluents and reduce water hardness. 

This technology is widely employed due to its low specific energy consumption and to 

excellent performance. However, the desalination process cost more as it needs to utilize 

extensive energy and produces high amount of CO2 due to consumption of fossil fuels 
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(Qiblawey et al., 2011). Spectrophotometry technique normally applied to determine 

nitrite. This can be done by reacting sulphanilamide and N-1-naphthylenediamine which 

require utmost control of the level of acidity for each step in the process. The 

carcinogenic effect and interference presence in the sample matrix could tamper the 

result and make it unreliable. Furthermore, many steps of sample pre-treatment was 

needed before a proper sample analysis can take place. Ion Chromatography and High 

Performance Liquid Chromatography method are much faster, reliable and have higher 

sensitivity than spectrophotometric method although they too are often time consuming 

for sample analyzing and need for the sample to be treated earlier (Badea et al., 2001). 

Ion exchange resins are also widely being used. Even though the process is selective i.e. 

removes only the required nitrate from potable water, the production of a large excess of 

regeneration agent, NaCl, is inevitable. The used regeneration solution is contaminated 

by nitrates and post treatment of effluents is thus needed to remove nitrates so that the 

NaCl solution can be reused again (Katsounaros and Kyriacou, 2007).  

1.5.4 Catalytic Hydrogenation 

Catalytic hydrogenation using various bimetallic systems has been another 

alternative way to remove nitrate to atoxic nitrogen from contaminated water in a 

versatile conditions (Krawczyk et al., 2011). In spite of that, costly H2 consumption and 

optimum catalysis fabrication present some drawbacks to this method (Reyter et al., 

2008a).  
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1.5.5 Electrochemical Denitrification 

Electrochemical methods have advantages such as no requirement of chemicals 

before and after the treatment, producing no sludge, requirement of a small area and low 

investment cost. Furthermore, one can selectively reduce nitrate ions to the desirable 

products such as nitrogen and ammonia (Koparal and Ogutveren, 2002). Manea et al. 

(2010) reported that electrochemical treatment is user friendly as it produces rapid 

response towards the reduction activity and simple operation. This method also can be 

applied for large scale nitrate reduction where higher concentrations of nitrate can be 

used without any requirement of a reduction agent. The final products of the nitrate 

electroreduction depends on electrolyte pH, cathode material and applied potential 

(Badea, 2009). Electrochemical methods also register higher current efficiencies where 

most of the charge produced is converted to useful current which drives the 

electrochemical system or reaction. Currently, the need for more green, clean and much 

safer waste water treatment ensures that the electrochemical method is the better option 

(Ohmori et al., 1999). The long term performance over 24 hours of continued usage is 

another added advantage of these electrochemical methods. Electrode cleaning and 

activation is made by applying a low intensity. In spite of this, direct nitrate reduction 

has shown poor sensitivity on unmodified electrodes, marked irreproducibility and 

happens at negative overpotentials which need to be attended to produce optimum 

results (Luo et al., 2013; Moorcroft et al., 2001). 
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1.6 Problem Statement 

 The electrochemical reduction of nitrate faced continuous problem on the 

reliability of unmodified electrodes, surface passivation and interference by other ions in 

the working solutions. The combinations of different electrode materials are needed to 

tackle these problems. The addition of NaIP6 in the working system especially in the 

sodium hydroxide solution seems to improve the electrode surface corrosion but work 

need to be carried out to investigate the effect on the nitrate reduction reaction.  

1.7 Research Aims and Objectives 

The aim of the current study is to compare the electrochemically modified 

working electrode performance in various factors that influences the electroreduction of 

nitrates and nitrites by the means of cyclic voltammetry. The first part of this study is 

focused on electrode preparations, characterization, polarization and kinetic studies. The 

overall performance of copper modified platinum electrode (Pt-Cu) is compared with 

copper modified pencil graphite, copper modified copper electrode, and bare copper and 

platinum electrodes. The activity of the electrode is mainly concentrated in the neutral 

media (potassium chloride) to reduce the interferences from other factors. The 

investigation in this study will concentrate on Pt-Cu as the electrode of interest. The 

final part of the study is concerned on the optimization of the Pt-Cu electrode on the 

electroreduction of nitrates and nitrites in the alkaline medium, initial nitrate and nitrite 

concentration, influence of different cations, influence of supporting electrolyte and 

limit of detection of nitrates and nitrites. The addition of inhibitor NaIP6 reduced the 

surface passivation of copper based electrodes thus extend the usage of the copper 
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modified electrodes in alkaline medium. The electrodeposition of copper for the 

electrode modification will be carried out electrochemically and was characterized by 

means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). 

The summary of the overall objectives of this study are as follows: 

i. To prepare the copper, platinum, copper modified copper, copper modified 

pencil graphite and copper modified platinum electrodes electrochemically. 

ii. To characterize, compare and evaluate electrochemically the performance of the 

Pt-Cu electrode with PG-Cu, Cu-Cu, Pt and Cu electrodes in potassium chloride 

medium. 

iii. To evaluate the effect of the corrosion inhibitor, NaIP6 on the Pt-Cu electrode in 

alkaline medium, NaOH 

iv. To evaluate performance of the Pt-Cu electrode under various parameters that 

influences the electroreduction of nitrate and nitrite. 
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CHAPTER 2  

LITERATURE REVIEW 

In this study, the electrochemical method was employed to evaluate the 

electroreduction activity of nitrates and nitrites. Cyclic voltammetry technique is known 

for its vast applications and advantages (Bard and Faulkner, 2001; Luo et al., 2013). The 

dependence of nitrate reduction on the nature or type of electrode surface makes this 

process interesting. Several factors influence the electroreduction of nitrate and nitrite 

which was pointed out by Dima et al., (2003) such as nature of electrode materials, 

electrode potential, and presence of any additives on the solution and electrolyte pH. 

2.1 Electrode Materials  

The fabrication of an electrode or catalyst is important to ensure the 

electroreduction process that was undertaken will give a desirable result. Some of the 

electroreduction work has been carried out on unmodified electrodes while certain 

researchers have opted for modified electrodes which take different electroreduction 

pathways or mechanisms. Although the bare or unmodified electrodes are a good option 

to reduce nitrate, the extensive surface passivation affects the ability of the electrode to 

reproduce the results. Furthermore, lower sensitivity for nitrate reduction is also 

observed (Davis et al., 2000). One of the metals that are vastly used as an electrode 

material is platinum. Platinum based electrode material displays an excellent stability 

and good reduction properties especially in aqueous solutions which is further enhanced 

by the fabrication of the bimetallic electrode or catalyst (Kerkeni et al., 2002). Silver 

based bimetallic electrodes are been good promoters for nitrate reduction, nearly same 
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level as those of copper. The more noble a metal is (Au > Pt > Pd), the less active for it 

to reduce nitrate (Gauthard et al., 2003).  

 Yang et al. (2013) reported that promoter metal is important to enhance 

the adsorption of nitrate to the Pt surface. Although the rate determining step is the 

reduction of NO3
-
 to NO2

-
 , the concentration of nitrite near the interfacial surface of the 

electrode determines the intermediate and the end product of the reaction. One of the 

intermediate product is nitrous acid where it decomposes to NO which is reduced to 

N2O (important intermediates for N2 production) on the Pt surface. However, this 

happens only in acidic media. Another setback occurs here is the hydrogen evolution 

potential where the formation of the N2O is retarded. Here, nonvolatile hydrogenated 

products are formed such as hydroxylamine and ammonia. 

 Copper on the other hand have been reported to be an efficient electrocatalyst 

for the nitrate reduction. The activity and the rate concerning the nitrate reduction are 

greatly improved in different medium. A better activity is also observed in copper 

among all coinage metals i.e. Cu, Ag and Au (Dima et al., 2003, Majidi et al., 2011, 

Polatides & Kyriacou, 2005; Tada & Shimazu, 2005). Copper shows that 

chemisorptions do not solely influences the surface of the electrode (Shiddiky et al., 

2011). 

 The dependence of nitrates reduction on the nature or type of electrode surface 

makes the nitrate reduction interesting. The surface composition of bimetallic electrode 

influences the final product of the electroreduction of nitrate. Simpson et al. (2004) 

reported that changing the ratio of element in Cu-Ni alloys produces ammonia for 
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Cu75Ni25 and hydroxylamine for Cu50Ni50 and Cu25Ni75 respectively. The synergistic 

effect of bimetals can be explained where different adsorption sites for H-atoms (on the 

Ni) and  NO3
-
 (on Cu) co-exists. Macova and Bouzek (2005) showed that increasing the 

weight percentage of Zn on copper electrode (from 30 wt % to 41 wt %) increases the 

activity of the modified catalyst. However the end product detected in their system was 

ammonia. In a work by Pronkin et al. (2007), the modification of metal particles (Pd 

nanoparticles) by foreign adatoms (Cu atoms) increases the rate of electroreduction 

process. Pt atom shows similar characteristics as Pd in such way that it is highly 

selective for nitrite reduction (Barrabes et al., 2006).  

The porosity of the surface of electrodes increases the catalytic capacity of the 

bimetallic and tri-metallic electrodes (Hasnat et al., 2011). The amount of coverage of 

N-species on the surface determines the reduction products. High coverage leads to 

nitrogen formation while low coverage leads to ammonia formation (de Vooys et al., 

2000). The structural defects on the surface of an electrode act as preferential site for 

nitrate adsorption thus improving the reduction activity of nitrates. The rate of reduction 

of analyte (NO3
-
) increases as the surface of the electrode in contact with the electrolyte 

increases bearing other variables are kept constant. Deposition of nano-size materials on 

monometallic electrodes changes the surface area thus modifying the chemical, physical 

and mechanical properties (Reyter et al., 2006).  

 On the deposition of particles on electrode surfaces, Dai et al. (2004) stated that 

the deposition time is directly proportional to the size of deposited material. It means 

that the longer the deposition time, the more visible the material that was being 

deposited. Increase in concentration of solution will also increase the tendency for 
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nanoparticles formation. Wang et al. (2006) reported that smaller particles were 

achieved when electrodeposition of copper was carried out at more negative potentials. 

Although the nitrate reduction capacity was increased when increasing the deposition 

amount, the electrode shows a negative trend on the nitrite reduction capacity when too 

much of the secondary particles were deposited on the electrode. 

Electrodeposition of copper in acidic solutions is a slow and a kinetically 

controlled process. However, in the presence of bisulfate and chloride, the deposition of 

copper is enhanced kinetically. The large anions disturbed the salvation shell of strongly 

hydrated Cu
2+

 ions hence partially reducing to Cu
+
 via complexation with Cl

-
 at the 

overpotential deposition potential region and further to Cu atoms (Markovic et al., 

1995). Specific anion in the electrodeposition bath affect the morphology of the 

deposited Cu. Chloride ion improves electrodeposition of Cu atoms by increasing the 

surface roughness and waviness which increases the number of active sites. However it 

also oxidized 40-60% of deposited copper when an anodic potential sweep was applied. 

Nitrate interacts with copper thus induces dissolution. The presence of chloride in nitrate 

containing bath prevent the aforementioned reaction. Sulphate ions modify the 

morphology and brighten the copper electrodeposits (Chrzanowska et al., 2012, de 

Almeida et al., 2002; Ramos et al., 2001).  

2.2 Kinetic and Mechanism studies of NRR in different Medium and pH 

According to de Groot et al. (2004), the type of electrolyte used plays an 

important role in the reduction of nitrate. In perchloric acid solution the co-adsorption of 

ClO4
-
 ion is very weak and considered negligible when compared to sulphate. This has a 
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profound effect on the reaction rate. At a higher concentration of nitrate, negative 

reaction order was obtained. Santos et al., (2008), elaborated that at a low concentration 

of H
+
, different mechanism for reduction of nitrate was observed. The surface 

passivation on the surface of platinum electrode hindered the appearance of extra peak 

which was only observed in the concentration of < 10 mM. The peaks were produced at 

different potentials (-0.13 V and 0.1 V vs RHE) and showed different reaction orders 

indicating that different products were produced. 

The pH influences the thermodynamic of the electroreduction of the nitrate and 

nitrite. In acidic pH, neutralization process take place thus increasing the rate of reaction 

in the surface of the electrode. However, at basic pH, with the environment  already rich 

with OH
-
 species, the addition OH

-
 species generated will passivate the diffusion of 

NO3
- 
to the electrode surface thus reducing the rate of reduction. 

In an alkaline medium, most of the electrochemical reduction mechanisms lead 

to the formation of nitrite and ammonia especially on the nickel, lead, zinc and iron 

electrode (Li and Chambers 1988). Similarly, when using copper electrode, there are 

several important electrochemical reactions involving the nitrate reduction that can be 

portrayed as follows (Reyter et al., 2006): 

NO3
-
 + H2O + 2e

-
             NO2

-
 + 2OH

-
      (2.1) 

NO3
-
 + 3H2O + 5e

-
           1/2N2 + 6OH

-
      (2.2) 

NO2
-
 + 5H2O + 6e

-
           NH3 + 7OH

-
      (2.3) 

NO2
-
 + 4H2O + 4e

-
           NH2OH + 5OH

-
      (2.4) 
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2NO2
-
 + 4H2O + 6e

-
            N2 + 8OH

-
      (2.5) 

2NO2
-
 + 3H2O + 4e

-
            N2O + 6OH

-
      (2.6) 

NO2
-
 + H2O + e

-
           NO + 2OH

-
       (2.7) 

N2O + 5H2O + 4e
-
             2NH2OH + 4OH

-
      (2.8) 

2H2O + 2e
-
           H2 + 2OH

-
 (side reaction)      (2.9) 

 Reyter et al, (2008a) outlined that at negative overpotential (-1200 mV), 

hydroxylamine is produced via Eq. 2.4 using copper electrode. The charge transfer here 

was quasi-reversible. This is followed by a irreversible six electrons transfer to ammonia 

as in Eq. 2.3. The unstable hydroxylamine is immediately reduced to ammonia as it is 

not detected in the prolonged electrolysis samples. 

 In contrast, Badea (2009) found that the electrochemical reduction of nitrate in 

the alkaline medium follows a three charge transfer steps at specific potentials 

corresponds to the formation of nitrite, nitrogen and ammonia. At the more positive 

potential, nitrogen evolution is more predominant at low cathodic overpotential while 

ammonia at the high cathodic overpotential following the scheme below: 

NO3
-
            NO2

-
             (1/2) N2    E° = (-1230 mV)  (2.10) 

NO3
-                 

NO2
-
          NH3     E° = (-1400 mV)  (2.11) 

The first step for the electroreduction process consists of the reversible chemical 

reaction which is followed by the irreversible charge transfer from NO3
-
 to NO2

-
 in 

accordance to Nicholson-Shain scheme (case IV). The reversible chemical reaction is 
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the adsorption of nitrate onto the copper electrode. The second charge transfer followed 

case VIII of Nicholson-Shain scheme where catalytic chemical reaction and irreversible 

charge transfer were involved (Nicholson and Shain, 1964). The dimerisation of NO
-
 

intermediate leads to formation of N2O2
2-

 which then generates the N2O species via 

chemical reaction. Finally N2 is produced via irreversible charge transfer mechanism at -

1230 mV. All the reactions were shown in Eq 2.12 to 2.16 below: 

2(NO2
-
)ads + 2H2O +4e

-
           2(NO

-
)ads + 4OH

-
     (2.12) 

2(NO
-
)ads              (N2O2

2-
)ads        (2.13) 

(N2O2
2-

)ads +H2O  
rds

        (N2O)ads + OH
-
      (2.14) 

(N2O)ads + H2O + 2e
-
            N2 + 2OH

-
      (2.15) 

2NO2
-
 + 5H2O + 6e

-
            N2 + 10OH

-
      (2.16) 

At the more negative overpotentials, the evolution of H2 influences the generation of 

final product into ammonium where again chemical reaction precedes the irreversible 

charge transfer (Eq. 2.17 and 2.18). 

(N2O2
2-

)ads + 2H2O  
rds

       (H2N2O2)ads + 2OH
-
     (2.17) 

(H2N2O2)ads + 8H2O + 8e
-
            2NH4OH + 8OH

-
     (2.18) 

 Hasnat et al. (2011) discussed that in a neutral medium (0.5 M KCl), the 

mechanism of nitrite reduction follows a two-step charge transfer. The formation of NO 

adlayer on the surface of electrode in the first step (Eq. 2.7) precedes the production of 
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either hydroxylamine or ammonia. Around four electrons transfer was involved in the 

second charge transfer that either reaction 2.2 or 2.3 might take place: 

NO + 4H2O + 5e
-
            NH3 + 5OH

- 
     (2.19) 

NO + 3H2O + 3e
-
            NH2OH + 3OH

-
      (2.20) 

The rate constant and order of reaction in other working environments were tabulated in 

Table 2.1. 

2.3  Electrode Reliability in the Alkaline Medium 

Copper exhibits a better electrocatalytic capacity on reducing nitrate to nitrite as 

an intermediate product and ammonia as the final product in a weakly alkaline solution. 

Comparatively, lower reduction activity was observed for the Ni, graphite and Pt 

electrodes.  Although similar behavior with Cu was observed on Ni, a different 

mechanism and electrocatalytic activity was noticed on the graphite and Pt electrode 

(Bouzek et al., 2001). Afshari and Deghaniann (2009) summarized that the smaller 

crystal size influenced the corrosion of electrode material (Fe) in alkaline medium. This 

is due to the high density of nucleation sites of the passive film which decreases the 

corrosion rates. Luo et al. (2010) reported that the three major copper corrosion 

reactions taking place were as follows: 

2Cu + 2OH
-
                 Cu2O + H2O + 2e

-
      (2.20) 
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Table 2.1 Kinetic data from various studies involving nitrate and nitrite reduction 

  reaction 

Electrode 

composition 

Medium Mechanism Rate 

constant 

Order of 

Reaction 

References 

Sn85Cu15 0.1 M 

K2SO4 

NO3
-
      

NO2
-
 

NO2
-
       

NH3 

NO2
-
       N2 

4.9×10
-4 

s
-1 

1.76×10
-5 

s
-1 

7.66×10
-3

 s
-1 

- Polatides and 

Kyriacou, 

(2005) 

Ag KCl NO3
-
      

NO2
-
 

NO2
-
       

NH3 

35.1×10
-3

 

min
-1 

6.5×10
-3

 

min
-1 

1
st
 

1
st
 

Saiful Alam et 

al., (2012) 

Pt(110) HClO4 NO3
-
      

Product 

- 1
st
 Taguchi and 

Feliu, (2008) 

Cu45Tl55 10 mM 

NaOH 

NO3
-
      

NO2
-
 

NO2
-
      

Product 

- 0.72 

0.69 

Casella and 

Gatta, (2004) 

Pd-Rh NaNO3 NO3
-
      

NO2
- 

39.1×10
-3

 

min
-1 

- Hasnat et al. 

(2010a) 

Ag-Pd 

Ag-Pt-Pd 

KNO3 NO3
-
      

NO2
-
 

25.1×10
-3

 

min
-1 

84.3×10
-3

 

min
-1

 

- Hasnat et al. 

(2011) 

 

Pd 

Pt-Pd, Ni-Pd, 

Ag-Pd, Cu-Pd 

Rh-Pd 

NaNO2 NO3
-
/ NO2

-
      

NH3 

2.3×10
-3

 

min
-1

 

8.1×10
-3

 

min
-1

 

 

21.1×10
-3

 

min
-1

 

 

 Hasnat et al. 

(2009) 

Sn 0.1 M 

K2SO4 

NO3
-
      

NO2
-
/ NH3/ 

N2 

104×10
-3

 

min
-1

 

1
st
 Katsounaros et 

al. (2006) 
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Cu2O + 2OH
-
               2CuO + H2O + 2e

-
      (2.21) 

Cu2O + 2OH
-                     

2Cu(OH)2 + 2e
-
      (2.22) 

 The corrosion of copper based electrodes in alkaline medium involves complex 

chemistry. Kang et al. (2002) reported that the Cu(OH) species was observed over the 

entire potential region before the formation of Cu2O on the anodic scan therefore 

confirming the species plays an important role in the dissolution of copper electrode. At 

the higher pH, formation of Cu(OH)2 is prevalent than CuO which is thermodynamically 

preferred. It is also noted that light influences the overall reduction of oxidized copper. 

In fact, both Cu(OH)2 and Cu2O species directly reduced to Cu as follows (Mayer and 

Muller 1992): 

2CuO + H2O + 2e
-                  

2Cu2O + 2OH
-
      (2.23) 

Cu2O + H2O
- 
+ 2e

-                  
2Cu + 2OH

-
      (2.24) 

Cu(OH)2 + 2e
-                   

Cu + 2OH
-
       (2.25) 

The addition of corrosion inhibitor is vital to impede the rate of dissolution of 

electrode material in the course of experiment. Phytic acid is a naturally occurring plant 

antioxidant which is known for suppressing the oxidation process in iron based 

biological processes. The availability of OH
-
 radical species causes the damaging effect 

on the iron catalyzed reactions which is prevented by phytic acid (Graf and Eaton 1990). 

This made Notoya et al. (1995), investigate the effect of phytic acid and its salt as 

inhibitor of copper corrosion in potable water. Phytic salts which are also known as 

inositol hexaphosphate (IP6) inhibit the pitting corrosion on copper tubing that carries 

water. Cu2O is mainly formed when phytic salts were used as inhibitor thus retarding the 
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formation of the main corrosion product, CuO. Wang and He (2012) showed that the 

copper inhibition efficiency by IP6 depends on the NaOH concentration. Although the 

inhibitor IP6 promotes the formation of Cu2O passive layer, further oxidation into CuO 

species was inhibited. 

The mechanism of corrosion inhibition by IP6 on the metal surface was by self- 

assembled monolayer (SAMs) method. The interaction between the IP6 and oxide of 

copper produces Cux-IP6 which will be detached and exposes the inner Cu2O layer. 

Therefore double protection is viable in the presence of IP6. Furthermore the detachment 

of Cux-IP6 layer produces the self cleaning process by removing some oxide species on 

the surface of the copper (Yang et al., 2005). 

2.4 Influence of Electrode Potentials on the NRR 

 Reyter et al. (2008a, b) stated that reduction of nitrate leads to formation of many 

intermediate products such as nitrite, hydrazine, hydroxylamine, ammonia, nitrogen and 

other oxygen based nitrogen species. However, the main reduction product was 

ammonia especially at very negative over potentials and nitrites at more positive over 

potentials. Hasnat et al. (2010a & 2011) stated that the nitrate reduction on cathode 

sometimes hindered at the negative potentials that contribute to hydrogen gas evolutions 

which hindered the adsorption of the nitrate ion on the electrode surface. The reduction 

rate of nitrate (k1) was decreased at more negative potentials where the rate of removal 

of nitrite (k2) increases (Fig. 2.1) with selectivity towards ammonia is prevalent.  
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Figure 2.1 Schematic diagram of the nitrate and nitrite reduction pathways in  

  various electrochemical systems (adapted from Pronkin et al., 2007). 
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