UNIVERSITI SAINS MALAYSIA

First Semester Examination Academic Session 2006/2007

October/November 2006

EEE 542 – INDUSTRIALS POWER ELECTRONICS

Duration: 3 hours

Please check that this examination paper consists of FOUR pages of printed material before you begin the examination.

This paper contains SIX questions.

<u>Instructions:</u> Answer FIVE (5) questions. If a candidate answer more than five questions, only the first five answered will be examined and awarded marks.

Answer to any question must start on a new page.

Distribution of marks for each question is given accordingly.

All questions must be answered in English.

1.	Design a single phase full wave rectifier for 2 quadrant operation with R and L
	load. In your design avoid using the freewheeling diode.

- (i) Skecth the output voltage waveform for α =30°
- (ii) Determine the circuit's efficiency at α =30°
- (iii) Value of α if $V_{dc}/V_m = 0.6$, where V_m is the maximum dc voltage
- (iv) What is the maximum efficiency of the circuit.

(100%)

- 2. Design a 3 phase full wave rectifier (bridge topology), with highly inductive load using 3 phase supply.
 - (i) Sketch the output voltage waveform for α =90°
 - (ii) Determine the value of V_{dc} and V_{rms} at $\alpha = 90^{\circ}$
 - (iii) The maximum efficiency of the circuit
 - (iv) What is the advantage of this circuit compared to the half wave rectifier? (100%)
- 3. For 3 phase half wave ac controller Y connected with R load :
 - (i) Draw the complete design of this controller assumed that the loads are balanced.
 - (ii) Determine the voltage output waveforms for α =30° at load B.
 - (iii) Derive the rms volume of output voltage in term of $\alpha = 30^{\circ}$.

(100%)

4. (a) What are the performance parameters of inverter circuit.

(20%)

- (b) Explain in detail the operation of a single-phase bridge inverter with inductive load from a dc source:
 - (i) Sketch the complete design and explains the operation.
 - (ii) The output voltage and current waveforms
 - (iii) The output voltage (rms value)

(40%)

(c) For question 4b, if the circuit has an RLC with R=10 Ω , L=30mH, C=100 μ F, f_o=50 Hz and dc input voltage V_s=240 V. Express the instantaneous load current in Fourier series.

(40%)

5. Explain how a 3 phase inverter is constructed from a single dc supply. Describe in detail the concept apply in your design. How could you generate a nearly sinusoidal output waveform.

(100%)

6. (a) What are the advantages and disadvantages of a Boost regulator.

(20%)