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SKEMA LELARAN PADAT PERINGKAT TINGGI EMPAT TITIK BAGI 

PENYELESAIAN PERSAMAAN HELMHOLTZ  

 

ABSTRAK 

 

Teknik-teknik yang lebih baik diperoleh daripada beza terhingga dalam grid piawai 

dan grid putaran telah dibangunkan sejak beberapa tahun kebelakangan ini dalam 

menyelesaikan sistem linear yang terhasil daripada pendiskretan persamaan pembezaan separa 

(PDEs). Selain itu, satu sistem dengan peringkat kejituan yang lebih tinggi boleh dihasilkan 

daripada pendiskretan skema beza terhingga dengan menggunakan satu skim padat dengan 

kejituan peringkat empat yang dihasilkan daripada beza memusat dengan kejituan peringkat 

kedua. Dengan menggunakan beza terhingga padat ini, satu skim titik putaran dengan kejituan 

peringkat empat bagi persamaan Helmholtz dua dimensi (2D) yang baru terbentuk. Skim 

peringkat empat dalam grid piawai dan grid putaran boleh dikembangkan menjadi skim 

kumpulan ataupun sistem yang berperingkat empat. Sehubungan itu, kaedah multigrid 

berskala-multi digabungkan dengan ekstrapolasi Richardson diperkenalkan oleh Zhang [18] 

untuk menyelesaikan persamaan Poisson 2D. Dengan menggabungkan skim/sistem peringkat 

empat dan kaedah multigrid berskala-multi dengan ekstrapolasi Richardson dalam 

penyelesaian persamaan Helmholtz 2D, kejituan penyelesaian yang dianggarkan boleh 

diperbaik sehingga peringkat enam, dan walaupun dengan saiz grid yang lebih besar, kadar 

penumpuan dengan menggunakan kaedah lelaran ini adalah lebih cepat juga. Ujikaji berangka 

dijalankan pada skim putaran yang digabungkan dengan kaedah multigrid berskala-multi dan 

ekstrapolasi Richardson, dan hasilnya dibandingkan dengan kaedah-kaedah titik/kumpulan 

yang sedia ada dengan tatacara multigrid. Keputusan menunjukkan peningkatan dalam kadar 

penumpuan dan kecekapan lelaran skim yang baru digubal. 

 



xii 

 

FOUR POINT HIGH ORDER COMPACT ITERATIVE SCHEMES FOR THE  

SOLUTION OF THE HELMHOLTZ EQUATION 

 

ABSTRACT 

 

 Improved techniques derived from the standard and rotated finite difference operators 

have been developed over the last few years in solving linear systems that arise from the 

discretization of various partial differential equations (PDEs) [14]. Furthermore, a higher order 

system can be generated from discretization of the finite difference scheme by using the fourth 

order compact scheme generated from the second order central difference. By using compact 

finite differences, new standard and rotated point schemes with fourth order accuracy for the 

two-dimensional (2D) Helmholtz equation are formulated in this thesis. The fourth order point 

schemes in both standard and rotated grids can be further applied to formulate a fourth order 

system to be used as group iterative method in their respective grid. On the other hand, the 

multiscale multigrid method combined with Richardson’s extrapolation is first introduced by 

Zhang [18] to solve the 2D Poisson equation. By combining all the fourth order schemes, 

multiscale multigrid method and Richardson’s extrapolation in the solution of the 2D 

Helmholtz equation, the order of accuracy of the approximation can be improved up to sixth 

order, and with larger mesh size, the convergence rate of these iterative methods is faster as 

well. Numerical experiments are conducted on all the schemes combined with multiscale 

multigrid method and Richardson’s extrapolation, and the results are compared with existing 

point and group methods solved by using the multigrid method. The results show the 

improvements in the convergence rate and the efficiency of the newly formulated iterative 

schemes/systems.
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CHAPTER 1 

PRELIMINARIES 

 

1.1 Introduction 

Most physical phenomena or engineering simulations, such as heat or fluid flow, human brain 

medical imaging, and global climate change, can be represented by mathematical formulation 

in the form of partial differential equations (PDEs). By considering finite difference 

approximations, a continuous problem in the form of a PDE can be changed into a discrete 

problem. The arising linear system, can be solved by using numerical methods. Numerical 

method, particularly the iterative methods, is a common place today to solve those scientific 

and engineering problems of great complexity, due to the high-speed computers that can solve 

the repeated arithmetic operations without getting tired and where the approximate answer is 

obtained from a sequence of improved estimates. Over the years, in order to solve the PDEs, 

mathematicians and engineers have strived to develop efficient and scalable algorithms that 

are more efficient or faster in terms of execution time, and at the same time, there is increasing 

demand for higher resolution simulations [15]. 

The simplest finite difference approximation was derived by Euler and was then 

developed and applied by different scientists, from one-dimensional to higher systems, in their 

computational algorithms. The finite difference methods are easier to implement and higher 

order accuracy can be obtained by deriving higher order compact difference schemes [5], [18]. 

On the other hand, the algebraic solution of finite differences is usually point-wise. It is 

extended to group-wise by Evans and Biggins, who introduce the Explicit Group (EG) method 

[13]. To reduce the computational complexity during the iterative process and thus shorten the 

execution time with comparable order of accuracy, instead of considering the formulation in 

the standard grid (also known as the full-sweep approach), Abdullah [2] introduces the 

formulation of stencils and systems in the rotated grid. The four-point Explicit Decoupled 

Group (EDG) (also known as the half-sweep approach) and Modified EG (MEG) (also known 



2 

 

as the quarter-sweep approach) methods are introduced by Abdullah [2], and Abdullah & 

Othman [3] respectively, to solve the two-dimensional (2D) Poisson equation. By using the 

half-sweep approach, Akhir et al [6] obtained second-order approximations for the 2D 

Helmholtz equation, by using the Gauss Seidel method, and proved that this approach is faster 

than that of the full-sweep approach. 

Multigrid method is a well-known iterative method to efficiently solve the resulting 

sparse linear systems arising from the finite difference discretizations, and is able to accelerate 

convergence and improve accuracy of the algebraic solution [4], [5], [10], [16]. Zhang solves 

the 2D Poisson and Convection Diffusion equations by introducing multiscale multigrid 

method combined with Richardson extrapolation and operator based interpolation, to improve 

the order of accuracy of the approximations [18].  

In this thesis, the concept of the stencil formulation derived from the compact finite 

differences will be applied in both the standard and rotated grids, point- and group-wise. 

Several newly-formulated point- or group-wise fourth-order schemes will be applied to the 

multiscale multigrid method. This technique will yield approximations on two grids with 

different scales. Upon applying Richardson’s extrapolation, approximations accurate up to the 

sixth order will be obtained. 

 

 

Figure 1.1: The continuous 2D solution domain. 
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1.2 Research Scope – Two-Dimensional Helmholtz Equation 

The research scope is focused on the 2D elliptic equation, specifically the Helmholtz equation 

in the general form given by 

 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑘2𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω   (1.1) 

where Ω is a unit square solution domain Ω = [0,1] × [0,1], with suitable Dirichlet boundary 

conditions defined on the boundary 𝜕Ω, and satisfying the exact solution 𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) 

for each point (𝑥, 𝑦) ∈ ∂Ω. The exact solution 𝑢(𝑥, 𝑦) and the forcing function 𝑓(𝑥, 𝑦) are 

assumed to be sufficiently smooth and have the necessary continuous partial derivatives up to 

certain orders. The solution domain Ω is discretized uniformly in the 𝑥 and 𝑦 directions. The 

subinterval distance is denoted as ℎ = 1/𝑛, where 𝑛 is the number of uniform intervals along 

the 𝑥- and 𝑦-axes. The 2D mesh points are (𝑥𝑖, 𝑦𝑗) with 𝑥𝑖 = 𝑖ℎ and 𝑦𝑗 = 𝑗ℎ, 0 ≤ 𝑖, 𝑗 ≤ 𝑛. 

The number of internal mesh points is given by 𝑚2, where 𝑚 = 𝑛 − 1. The solutions of 𝑚2 

internal mesh points (𝑥, 𝑦) of Eq. (1.1) can be approximated by various finite difference 

schemes in several ways, see Figure 1.1, as well as §3.1 and §4.1 for the standard and rotated 

grids respectively.  

All the existing methods in both standard and rotated grid, namely the standard five- 

and nine-point stencil, EG 𝑂(ℎ2), rotated five-point stencil and EDG 𝑂(ℎ2), see Algorithms 

3.1, 3.2, 3.3 and 4.1 respectively, as well as the newly formulated schemes, i.e. the EG 𝑂(ℎ4), 

rotated nine-point stencil, EDG 𝑂(ℎ2) and EDG 𝑂(ℎ4), see Algorithms 3.4, 4.2, 4.3 and 4.4 

respectively, will be run by using multigrid method, see Algorithm 2.1. The schemes of fourth-

order accuracy, namely the standard nine-point stencil, rotated nine-point stencil, EG 𝑂(ℎ4) 

and EDG 𝑂(ℎ4) will be further applied with multiscale multigrid method combined with 

Richardson’s extrapolation and operator based interpolation, see Algorithms 2.2 and 2.3, to 

retrieve sixth order accurate solution, which is the ultimate result desired in this research.  



4 

 

All the algorithms will be implemented by using C++ and run individually in different 

grid sizes of 8, 16, 32, 64 and 128. Note that, for all the four group methods, i.e. the EG and 

EDG of second and fourth order, there will always be grouped points and ungrouped points, 

see §2.1. Naturally, the grouped points will be solved by using the respective methods, but for 

the ungrouped points, point method will be used to tackle them. On the other hand, for all the 

methods in the rotated grid, there will be only certain points involved in the iterative process. 

The rest of the points will be solved by using direct solutions. In other words, the solution will 

be computed by using the standard five-point formula, see Algorithms 4.1, 4.2, 4.3 and 4.4.  

Throughout the experiment, four important parameters are used to determine if the 

result obtained is satisfactory or not, i.e. the number of iterations, execution time, error and 

order of accuracy. The details of the parameters used will be elaborated in Chapter 5.  

A summary of the research scope is given in Table 2.1 below. Altogether there will 

be a total of 8 different schemes, applied to 2 different methods. The respective expected order 

of accuracy of the approximations obtained and the algorithm to refer to are stated. 

 

Table 2.1: Summary of the research scope. 

Grid rotation Point/Group Scheme Method Order Algorithm  Remark 

Standard 

Point 

Five-point MG 2 3.1 / 2.1 Existing 

Nine-point 
MG 4 3.2 / 2.1 Existing 

MMG 6 3.2 / 2.2 / 2.3 New 

Group 

EG 𝑂(ℎ2) MG 2 3.3 / 2.1 Existing 

EG 𝑂(ℎ4) 
MG 4 3.4 / 2.1 New 

MMG 6 3.4 / 2.2 / 2.3 New 

Rotated 

Point 

Five-point MG 2 4.1 / 2.1 Existing 

Nine-point 
MG 4 4.2 / 2.1 New 

MMG 6 4.2 / 2.2 / 2.3 New 

Group 

EDG 𝑂(ℎ2) MG 2 4.3 / 2.1 Existing 

EDG 𝑂(ℎ4) 
MG 4 4.4 / 2.1 New 

MMG 6 4.4 / 2.2 / 2.3 New 
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1.3 Problem Statement and Research Objective 

The existing point- and group-wise schemes, in both standard and rotated grid are usually 

accurate up to fourth order, and the computational complexity increases with the stencils 

involved. Therefore, the main objectives of this research are:- 

 To formulate the fourth-order four-point EG method, the fourth-order rotated nine-

point stencil, and the fourth-order four-point EDG method in solving the 2D 

Helmholtz equation. 

 To examine the application of multigrid method on all the stencils compared to that 

of multiscale multigrid method combined with Richardson’s extrapolation on all the 

fourth order methods to obtain approximations up to sixth order. 

 To compare the point- and group-wise methods in both standard and rotated grid, in 

terms of execution time and order of accuracy. 

 To analyse the computational complexity of the developed methods. 

 

1.4 Thesis Organization 

The outline of this thesis is organized in the following way. Chapter 1 gives a brief idea on the 

overall concept for the thesis, including the research scope covering the 2D Helmholtz 

equation, as well as the research objective. 

Chapter 2 covers the study on the system of linear equations and their solution. From 

these studies, we know that for large enough solution domain Ωℎ , iterative solutions are 

suitable and more economic compared to direct solutions. The literature review of iterative 

methods used, such as Gauss Seidel, multigrid and multiscale multigrid method will be 

discussed. 
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The formulation of the finite differences in the standard grid, the standard five- and 

nine-point stencil as well as the EG 𝑂(ℎ2) method for the 2D Helmholtz equation is widely 

known. From these, the detailed description on deriving the compact finite difference scheme 

and the EG 𝑂(ℎ4) method will be given in Chapter 3. The implementation of each scheme 

will be given in algorithm form, and the details, such as the different restriction and 

interpolation operator used will be described with reason. 

Chapter 4 is similar to Chapter 3, but gives information about the rotated grid. Since 

it is slightly newer than the standard grid, the derivation of the rotated finite differences will 

be elaborated, stencil and system formation, as well as the implementation of the methods, 

especially those newly-formulated methods, namely the rotated nine-point stencil, EDG 

𝑂(ℎ2)  and EDG 𝑂(ℎ4)  method, which will be presented in §4.2, §4.3, §4.4 and §4.5 

respectively. 

In Chapter 5, the experimental results and analysis in terms of computational 

complexity of all the algorithms mentioned in Chapter 3 and 4 will be presented. The 

approximations obtained by different methods used will be compared and discussed.  

Conclusions and remarks will be made in Chapter 6 from the analysis and some 

suggestions for future work on the samples studied will be considered. 
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CHAPTER 2 

ITERATIVE METHODS 

 

Most of the problems of elliptic PDEs will produce a large and sparse coefficient matrix when 

the partial derivatives are approximated using finite difference. To be exact, the application of 

the of the equations to each internal mesh points will result in a large and sparse system of 

linear algebraic equations as follow 

 𝐴𝑢 = 𝑓         (2.1) 

where 𝐴 and 𝑓 are a square nonsingular matrix with a column matrix, respectively, and 𝑢 is a 

column matrix. Relatively, the matrix 𝐴  becomes sparser when the number of equations 

increases. Thus iterative methods, which attempt to solve a problem by finding successive 

approximations to the solution starting from an initial guess, can be employed due to its 

efficiency in terms of computer memory requirements. They can be programmed to take 

advantage of the zeros in the coefficient matrix, are self-correcting in nature, and their very 

structure easily permits modifications such as under- and over-relaxation. To be useful the 

iteration must converge, but it is not considered to be effective unless the convergence is rapid. 

The level of accuracy of the approximate solution is pre-determined. 

The purpose of this first half of this chapter is to give a literature review of the basic 

iterative methods (e.g. Jacobi, Gauss Seidel, SOR, multigrid method), which also fall naturally 

into two categories, point and group. A short description about the group method as an 

extension to the point iterative method is given in §2.1. The type of iterative methods discussed 

are the Gauss Seidel and multigrid methods, in which the multigrid method is presented in 

§2.2. Then in §2.3, the multiscale multigrid method introduced by Zhang [18] will be reviewed. 

Note that iterative methods are called relaxation (or smoothing) methods if they are used for 

the purpose of error smoothing in multigrid, see §2.2.1. 
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2.1 Point and Group Iterative Methods in the Standard and Rotated Grid  

Point iterative methods are characterized by the explicit nature of calculation in which, at any 

one time only a single equation of the linear system is treated in each successive approximation. 

In other words, it intends to find the solution point-by-point in each iteration. For example, the 

formulations of point methods in the standard grid are called the standard five- and nine-point 

stencil, see Chapter 3; while that in the rotated grid are called the rotated five- and nine-point 

stencil, see Chapter 4. 

An extension from the point iterative methods is the group iterative methods. The 

motivation in a group iterative method is to group a certain number of individual equations 

(points) and treat each group implicitly, i.e. similar to the way a single point is treated in the 

point iterative methods. In other words, it computes the solution of several linear systems in 

each iteration simultaneously. Since the value of the points around the block is used to 

calculate the value of the points inside the block, then the number of iterations using group 

iterative method is reduced, compared to that of the point iterative method. Despite the faster 

convergence rate, its computational complexity increases, as the number of points in a block 

is too large, which result in the increased number of arithmetic operations, and thus the 

execution time is high. This is why only the four-point group is considered. Given 𝑛 number 

of discrete grid, where 𝑚 = 𝑛 − 1, such that the discrete grid consists of 𝑚2 interior points. 

Then the number of four-point-groups in the grid Ω is given as 𝑁 = ⌊
𝑚

2
⌋
2
. For example, if the 

grid size 𝑛 = 8, there will be 9 groups, see Figure 2.1,  

 𝑁 = ⌊
8−1

2
⌋
2

= ⌊
7

2
⌋
2

= 32 = 9 groups 

The group iterative methods in the standard grid are called EG method [13], while that in the 

rotated grid are called EDG method [2], [6], [12]. Note that even number of 𝑛 will produce 

ungrouped points, see Figure 2.1. 
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2.2 Multigrid Method 

Instead of using the basic iterative methods (e.g. Jacobi, Gauss Seidel or SOR method), the 

multigrid method is opted, because it is one of the fastest iterative methods, and most effective 

in solving a system of linear equations [4], [5], [15], [16], [17]. The basic concept of a 

multigrid method consists of the smoother and coarse grid correction, and it iterates on a 

successively coarser grids until the convergence is reached. The smoother is the specific 

iterative method used to smooth high frequency error; while the coarse grid principle is 

motivated where a smoothed error term is well approximated in a coarse grid, uses information 

from the coarse grids to approximate low frequency error. In fact, a coarse grid procedure is 

substantially less expensive (fewer grid points) than a fine grid procedure. Both smoothing 

and coarse grid principles will be combined, where the steps involved are restriction, 

smoothing and interpolation, which will be performed in between one complete cycle of a 

recursive multigrid algorithm to improve the approximation. In general, a multigrid algorithm 

consists of the smoother, residual computation, restriction, coarsest level processing, and 

interpolation. 

 

 

Figure 2.1: Number of four-point groups in a solution domain. 
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2.2.1 Smoother 

The smoother as a component in a multigrid algorithm, see §2.2.6, is the chosen iterative 

method, which is applied to discrete elliptic problems, see Chapter 3 and Chapter 4, to smooth 

the errors or residuals in order to accelerate convergence of any approximation.  

 The errors usually consist of two components, i.e. the smooth errors at low frequency, 

and the oscillating errors at high frequency. After several iterations, the oscillating errors can 

be reduced, but the smooth errors remain. The smooth errors in the fine grid Ωℎ can be seen 

more oscillating in the coarse grid. So, the smooth errors (which are less efficient with 

iterations in the fine grid) is expected to decrease rapidly if the iterations are performed in the 

coarse grid. This is the main reason why multigrid is used to improve the efficiency of the 

basic iterative algorithms (e.g. Gauss Seidel, SOR) [16]. 

The chosen method as the error smoother is the Gauss Seidel method, where the 

solution at each point (𝑖, 𝑗) is improved in each iteration by using the latest approximations. 

The residual must be smoothed before it is transferred to the coarser grid Ω2ℎ. This is because 

the residual transferring process from the fine grid to the coarser grid will cause low frequency 

errors that will couple with the high frequency errors, and thus result in slower convergence 

of the point/group iterative method. This happens because the problem is changed from the 

finer to the coarser grid where an approximation is obtained with lower cost due to decreased 

number of grid points. The low frequency error is the error at the finer grid. Using the multigrid 

method, the high frequency error is smoothed in the fine grid, while the low frequency error 

is injected and smoothed at the coarser grid. The smoothed errors are interpolated back to the 

coarser grid before the grid correction operation is performed. The selection of smoothing 

scheme is important to ensure the errors are smoothed properly before transferring to the 

coarser grid, and vice versa [17]. 



11 

 

In a complete V-cycle multigrid, see Algorithm 2.1, the only difference between point 

and group-wise scheme is only at each smoothing process, where the interior points of each 

hierarchical grid are treated either point-wise or group-wise. 

 

2.2.2 Residual Computation 

The residual equation plays an important role in the multigrid concept [17]. Consider the 

system of linear equations obtained from the discretization of the Helmholtz equation, written 

in matrix form as Eq. (2.1), can be approximated by a sequence of system of linear equations 

in the discrete form 

 𝐴𝑖𝑢𝑖 = 𝑓𝑖, (𝑥, 𝑦) ∈ Ω𝑖 

where 𝑖 = ℎ, 2ℎ, 4ℎ,… , 2𝑑ℎ. Here, we are only interested in getting the approximation 𝑣ℎ at 

the fine grid, while the smoothed errors in the coarse grid will be used to improve the 

approximation.  

There are two important measurements for 𝑣ℎ  as an approximation to the exact 

solution 𝑢ℎ. One of them is the error of estimate, defined as 

 𝑒ℎ = 𝑢ℎ − 𝑣ℎ        (2.2.1) 

The error is also a vector. The size of an error vector is a standard measurement of any vector 

norm. The norm used for this purpose in this thesis is the maximum norm 

 ‖𝑒‖∞ = max
𝑖≥1,𝑗≤𝑛

|𝑒𝑖,𝑗|,       (2.2.2) 

Since the exact solution 𝑢 is usually known, the error 𝑒 is also accessible. However, in Ωℎ, the 

residual 𝑟, that represents how 𝑣 approximates 𝑢, is given by 

 𝑟ℎ = 𝑓ℎ − 𝐴ℎ𝑣ℎ  
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Rearranging it, we have 

 𝐴𝑣 = 𝑓 − 𝑟  

 𝐴𝑢 − 𝐴𝑣 = 𝑓 − (𝑓 − 𝑟)   (from the original equation 𝐴𝑢 = 𝑓) 

 𝐴ℎ(𝑢ℎ − 𝑣ℎ) = 𝑟  

 𝐴ℎ𝑒ℎ = 𝑟ℎ        (2.2.3) 

Eq. (2.2.3) is known as the residual equation. Both Eq. (2.1) and Eq. (2.2.3) have the same 

form. Eq. (2.2.3) connects the error and residual parameters, while Eq. (2.1) connects the 

approximation and the one value of a given function. As a result of these similarities, any 

conditions imposed on Eq. (2.1) can be applied to Eq. (2.2.3). Eq. (2.2.3) will be used 

extensively, especially in coarse grid correction step, where the residual must be computed at 

each level before it can be restricted to the coarser grid. 

 

2.2.3 Restriction  

The main purpose of this process is to assign values from the fine grid Ωℎ to the coarse grid 

Ω2ℎ. At each level of the solution domain, the residual 𝑟 is calculated and transferred to the 

iterative points in the coarser grid Ω2ℎ, by using a restriction operator defined as 𝑅ℎ
2ℎ: Ωℎ →

Ω2ℎ. The new residual is then defined as 𝑟2ℎ = 𝑅ℎ
2ℎ𝑟ℎ in the new grid, where 𝑟ℎ ∈ Ωℎ and 

𝑟2ℎ ∈ Ω2ℎ. A new system of linear equations 𝐴2ℎ𝑒2ℎ = 𝑟2ℎ is formed in Ω2ℎ, where 𝑒2ℎ is 

the error value to be searched and will be smoothed by the Gauss Seidel method, see §2.2.1 

and §2.2.2. Each residual must be smoothed properly before transferring to Ω2ℎ. This process 

is continued until the coarsest grid, where the equation formed is solved to obtain the error 

approximate value, see §2.2.4. 

The different methods in Chapter 3 and Chapter 4 will require different restriction and 

interpolation operators to ensure the grid transfer, from the fine grid Ωℎ to the coarse grid Ω2ℎ, 
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or vice versa, can be performed more efficiently. There are two types of restriction operators 

(see Appendix A), namely the full-weighted (FW) and the half-weighted (HW) [17]. 

In stencil notation, the FW restriction operator used in the standard grid (see §3.3 and 

§3.5) is given as 

 𝑅ℎ
2ℎ =

1

16
[
1 2 1
2 4 2
1 2 1

]       (2.2.4) 

while that for the rotated grid (see §4.3 and §4.5) is given as 

 𝑅ℎ
2ℎ =

1

16

[
 
 
 
 
0 0 1 0 0
0 2 0 2 0
1 0 4 0 1
0 2 0 2 0
0 0 1 0 0]

 
 
 
 

      (2.2.5) 

The FW restriction operator is higher in accuracy, but the computational complexity is also 

relatively higher (and thus the longer execution time). When the accuracy is the priority, this 

operator will be opted. 

On the other hand, the accuracy of the HW operator is good, and the execution time 

required is shorter compared to FW due to the lower computational complexity. In stencil 

notation, for the standard grid (see §3.2 and §3.4) 

 𝑅ℎ
2ℎ =

1

8
[
0 1 0
1 4 1
0 1 0

]       (2.2.6) 

and for the rotated grid (see §4.2 and §4.4) 

 𝑅ℎ
2ℎ =

1

8
[
1 0 1
0 4 0
1 0 1

]       (2.2.7) 

 



14 

 

2.2.4 Coarsest Level Processing 

The system in the coarsest level must be solved exactly. In ideal cases, the coarsest grid 

consists of one grid point. If the system is small enough, a single (or, more generally a few) 

sweeps of a direct method or some relaxation/smoothing methods (if it has sufficiently good 

convergence properties) may serve as a solver. Any other method may be chosen as well, as 

long as the process does not add significantly to the work count. 

 

2.2.5 Interpolation  

The interpolation, also known as the reverse grid transfer operation, transfers the smoothed 

residuals/errors 𝑒2ℎ from the coarse grid Ω2ℎ to the fine grid Ωℎ within a V-cycle multigrid, 

see Algorithm 2.1, by using linear displacement and bilinear interpolation, where the 

interpolation operator is denoted as 𝑃2ℎ
ℎ : Ω2ℎ → Ωℎ. In other words, a grid function 𝑢2ℎ ∈ Ω2ℎ 

gets interpolated to 𝑢ℎ: = 𝑃2ℎ
ℎ 𝑢2ℎ, where 𝑢ℎ ∈ Ωℎ [17].  

 For the algorithms in the standard grid, see Chapter 3, since all the interior points are 

involved in the iteration, the derivation of the bilinear interpolation can be obtained when the 

stencil entries correspond to weights in a distribution process. Each interior points in the coarse 

grid will make contribution to the neighbouring points in the fine grid, as follow:-  

 𝑣2𝑖,2𝑗
ℎ = 𝑣𝑖,𝑗

2ℎ   for 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑐 − 1 

 𝑣2𝑖+1,2𝑗
ℎ =

1

2
(𝑣𝑖,𝑗

2ℎ + 𝑣𝑖+1,𝑗
2ℎ ) for 0 ≤ 𝑖 ≤ 𝑛𝑐 − 1; 1 ≤ 𝑗 ≤ 𝑛𝑐 − 1   

 𝑣2𝑖,2𝑗+1
ℎ =

1

2
(𝑣𝑖,𝑗

2ℎ + 𝑣𝑖,𝑗+1
2ℎ ) for 1 ≤ 𝑖 ≤ 𝑛𝑐 − 1; 0 ≤ 𝑗 ≤ 𝑛𝑐 − 1 (2.2.8) 

 𝑣2𝑖+1,2𝑗+1
ℎ =

1

4
(𝑣𝑖+1,𝑗

ℎ + 𝑣𝑖−1,𝑗
ℎ + 𝑣𝑖,𝑗+1

ℎ + 𝑣𝑖,𝑗−1
ℎ )     

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑐 − 1 

where 𝑛𝑐 is the grid size of the coarser grid Ω2ℎ. 
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 As for the algorithms in the rotated grid, see Chapter 4, based on Figure 4.3, only the 

○ (and ● for some case) points are involved in the iteration, and thus the reverse-transfer 

process. To reverse-transfer the smoothed errors and values of the ○ (and ● for some case) 

points calculated, the linear displacement used to transfer the ○ (and ● for some case) points 

from the coarser grid Ω2ℎ to the finer grid Ωℎ is as follow:- 

 𝑣2𝑖,2𝑗
ℎ = 𝑣𝑖,𝑗

2ℎ  for 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑐 − 1 both even or both odd  

and the bilinear interpolation is given by 

 𝑣2𝑖+2,2𝑗
ℎ =

1

2
(𝑣𝑖,𝑗

2ℎ + 𝑣𝑖+2,𝑗
2ℎ )      (2.2.9) 

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑐 − 2 both even or both odd  

𝑣2𝑖,2𝑗+2
ℎ =

1

2
(𝑣𝑖,𝑗

2ℎ + 𝑣𝑖,𝑗+2
2ℎ )       

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑐 − 2 both even or both odd  

𝑣𝑖,𝑗
ℎ =

1

4
(𝑣𝑖+1,𝑗+1

ℎ + 𝑣𝑖+1,𝑗−1
ℎ + 𝑣𝑖−1,𝑗+1

ℎ + 𝑣𝑖−1,𝑗−1
ℎ )    

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑐 − 1 odd   

where 𝑛𝑐 is the grid size of the coarser grid Ω2ℎ. 

 Note that, due to the fact that the focus of this research is on the derivation of 

approximation with higher order accuracy, there is another method of interpolation used in 

this thesis, which is called the bicubic interpolation [18], see §2.3.2.  
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2.2.6 Multigrid Algorithm 

Multigrid method operates in a sequence of solution domains with different sizes. The solution 

domain Ωℎ is discretized and approximated in a sequence of discrete grids, starting from the 

finest grid Ωℎ  to a sequence of coarser grids Ω2ℎ , Ω4ℎ , … , Ω2(𝑑−1)ℎ  until the coarsest grid 

, Ω2𝑑ℎ, finally go back to Ωℎ. This is a cycle, and 𝑑 indicates the depth. The grid Ωℎ is known 

as the fine grid, while the remaining discrete grids are known as a sequence of coarse grids.  

In a V-cycle multigrid, the iterations are performed where the approximation 𝑣ℎ is 

smoothed by using the appointed initial value by the smoothing scheme, see §2.2.1. Then the 

residual, see §2.2.2, is calculated and transferred to Ω2ℎ using a specific restriction operator, 

see §2.2.3. Every time the residual is transferred to the coarser grid, error smoothing is 

performed to obtain better approximations, and this process is continued until the coarsest grid, 

where the residual equation is solved directly, see §2.2.4. The reverse transfer process is 

performed by using interpolation, see §2.2.5, followed by the grid correction process, where 

the old approximation 𝑣ℎ is added with the smoothed error value 𝑒ℎ to obtain the latest error 

value. The smoothing operation is performed on the previously corrected approximation to get 

a new approximation, and one V-cycle is completed. This iteration is repeated until the 

convergence criteria are met, see Algorithm 2.1. 

 

Algorithm 2.1: A V-Cycle Multigrid algorithm. 

1. Pre-smooth 𝐴ℎ𝑣ℎ = 𝑓ℎ in the finest domain using the desired stencil. 

2. Compute the residual 𝑟ℎ ← 𝑓ℎ–𝐴ℎ𝑣ℎ and set 𝑒2ℎ ← 0. 

3. Restrict 𝑟2ℎ ← 𝑅ℎ
2ℎ𝑟ℎ. 

4. If coarsest grid, solve directly 𝐴2ℎ𝑒2ℎ = 𝑟2ℎ. Otherwise, go back to step 1. 

5. Improve the error and transfer back to the fine grid using interpolation and grid 

correction 𝑣ℎ ← 𝑣ℎ + 𝑃2ℎ
ℎ 𝑒2ℎ. 

6. Post-smooth 𝐴ℎ𝑣ℎ = 𝑓ℎ using the desired stencil. 
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2.3 Multiscale Multigrid Method Combined with Richardson’s Extrapolation and 

Operator Based Interpolation 

Zhang [18] developed the multiscale multigrid method and combined it with Richardson’s 

Extrapolation and some high order interpolation to obtain a sixth order approximation for the 

2D Poisson equation. This method, described in §2.3.1, and shown in Figure 2.2, will be 

applied by using only the fourth order stencils/systems in the standard and rotated grid, see 

Chapter 3 and Chapter 4. 

 

2.3.1 Multiscale Multigrid Method 

The multiscale multigrid method, similar to the full multigrid method, is used to elevate the 

order of accuracy of the computed solution. The major advantage of this method is that it has 

an optimal computational cost similar to that of a full multigrid, and can bring us the converged 

fourth order solutions on two grids with different scales, see Figure 2.2. The gray circle 

indicates the unconverged solution 𝑢4ℎ ∈ Ω4ℎ , and the black circles are the fourth order 

converged solutions 𝑢2ℎ ∈ Ω2ℎ and 𝑢ℎ ∈ Ωℎ. The solid lines going downwards and upwards 

represent the restriction and interpolation process respectively. Note that the interpolation 

within V-cycles is the bilinear interpolation. After each V-cycle, bicubic interpolation, see 

§2.3.2, is used to interpolate the points to a finer grid, which is shown in the figure as double 

lines.  

Unlike the full multigrid method in which the process starts from the coarsest grid, the 

multiscale multigrid method is initiated by running one or two cycles of V-cycle to get a better 

approximation, then the interpolated coarse grid solution is used as the initial guess for the 

fine-grid V-cycle. Therefore, relative to the full multigrid method, this algorithm will need 

fewer number of multigrid cycles than running the V-cycle on Ωℎ and Ω2ℎ separately to get 

the converged fourth order solutions 𝑢ℎ and 𝑢2ℎ.  
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By solving any fourth-order scheme (in the standard or rotated grid, or point or group 

method), upon completing Algorithm 2.2, two sets of fourth-order converged solutions will be 

obtained, and applied with the Richardson extrapolation technique, see §4.3.1, to compute a 

sixth order accurate solution  𝑢̃𝑖,𝑗
2ℎ on Ω2ℎ. Finally, the operator based interpolation, see §4.3.2, 

will be combined to make the remaining points in the fine grid to be all converged to sixth 

order. 

 

Algorithm 2.2: Multiscale multigrid method 

1. Run the V-Cycle multigrid on Ω4ℎ to get an approximate solution 𝑢4ℎ. 

2. Use bicubic interpolation Eq. (2.3.1) to interpolate 𝑢4ℎ to Ω2ℎ, 𝑢2ℎ = 𝑃4ℎ
2ℎ𝑢4ℎ. 

3. Relax 𝐿2ℎ𝑢2ℎ = 𝑓2ℎ, and use 𝑢2ℎ as the initial guess to run the V-Cycle multigrid on 

Ω2ℎ until it converges. Now, the converged fourth order solution 𝑢2ℎ will be obtained. 

4. Use bicubic interpolation Eq. (2.3.1) to interpolate 𝑢2ℎ to Ωℎ, 𝑢ℎ = 𝑃2ℎ
ℎ 𝑢2ℎ. 

5. Relax on 𝐿ℎ𝑢ℎ = 𝑓ℎ, and use 𝑢ℎ as the initial guess to run the V-Cycle multigrid on 

Ωℎ until it converges. Now, the converged fourth order solution 𝑢ℎ will be obtained. 

 

 

Figure 2.2: Representation of the multiscale multigrid method. 

V-Cycle for the 4ℎ grid 

Ω8ℎ 

Ω4ℎ 

Ω2ℎ 

Ωℎ 

V-Cycle for the 2ℎ grid V-Cycle for the fine ℎ grid 

Bicubic interpolation 

Restriction/Interpolation Unconverged solution 𝑢4ℎ ∈ Ω4ℎ 

4th order converged solutions 
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2.3.2 Bicubic Interpolation  

The bilinear method takes the closest four diagonal points, and averages their values to produce 

the approximation for the middle point. Bicubic interpolation, in contrast, takes not only the 

four closest diagonal points, but their closest points as well, for a total of 16 points. Since this 

method makes use of more data, its results are generally smoother, thus it is opted in this 

research which focus on derivation of high order accuracy approximation, specifically during 

the multiscale multigrid method, see Algorithm 2.2. The bicubic interpolation [18] from the 

coarser grid Ω2ℎ to the finer grid Ωℎ is given as follows: 

𝑣2𝑖,2𝑗
ℎ = 𝑣𝑖,𝑗

2ℎ     

𝑣2𝑖+1,2𝑗
ℎ =

1

16
(9𝑣𝑖,𝑗

2ℎ + 9𝑣𝑖+1,𝑗
2ℎ − 𝑣𝑖+2,𝑗

2ℎ − 𝑣𝑖−1,𝑗
2ℎ )   

𝑣2𝑖,2𝑗+1
ℎ =

1

16
(9𝑣𝑖,𝑗

2ℎ + 9𝑣𝑖,𝑗+1
2ℎ − 𝑣𝑖,𝑗+2

2ℎ − 𝑣𝑖,𝑗−1
2ℎ )   

𝑣2𝑖+1,2𝑗+1
ℎ =

1

24
(9𝑣𝑖,𝑗

2ℎ + 9𝑣𝑖+1,𝑗
2ℎ + 9𝑣𝑖,𝑗+1

2ℎ + 9𝑣𝑖+1,𝑗+1
2ℎ − 𝑣𝑖−1,𝑗−1

2ℎ   (2.3.1) 

−𝑣𝑖−1,𝑗
2ℎ − 𝑣𝑖−1,𝑗+1

2ℎ − 𝑣𝑖−1,𝑗+2
2ℎ − 𝑣𝑖,𝑗−1

2ℎ − 𝑣𝑖,𝑗+2
2ℎ − 𝑣𝑖+1,𝑗−1

2ℎ   

−𝑣𝑖+1,𝑗+2
2ℎ − 𝑣𝑖+2,𝑗−1

2ℎ − 𝑣𝑖+2,𝑗
2ℎ − 𝑣𝑖+2,𝑗+1

2ℎ − 𝑣𝑖+2,𝑗+2
2ℎ )  

For the points at the boundary, 

 𝑣1,2𝑗
ℎ =

1

17
(9𝑣0,𝑗

2ℎ + 9𝑣1,𝑗
2ℎ − 𝑣2,𝑗

2ℎ) 

 𝑣2𝑛𝑐−1,2𝑗
ℎ =

1

17
(9𝑣𝑛𝑐−1,𝑗

2ℎ + 9𝑣𝑛𝑐,𝑗
2ℎ − 𝑣𝑛𝑐−2,𝑗

2ℎ ) 

 𝑣2𝑖,1
ℎ =

1

17
(9𝑣𝑖,0

2ℎ + 9𝑣𝑖,1
2ℎ − 𝑣𝑖,2

2ℎ) 

 𝑣2𝑖,2𝑛𝑐−1
ℎ =

1

17
(9𝑣𝑖,𝑛𝑐−1

2ℎ + 9𝑣𝑖,𝑛𝑐

2ℎ − 𝑣𝑖,𝑛𝑐−2
2ℎ ) 

 𝑣2𝑖+1,1
ℎ =

1

4
(𝑣𝑖,0

2ℎ + 𝑣𝑖+1,0
2ℎ + 𝑣𝑖,1

2ℎ + 𝑣𝑖+1,1
2ℎ )   
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 𝑣2𝑖+1,2𝑛𝑐−1
ℎ =

1

4
(𝑣𝑖,𝑛𝑐−1

2ℎ + 𝑣𝑖+1,𝑛𝑐−1
2ℎ + 𝑣𝑖,𝑛𝑐

2ℎ + 𝑣𝑖+1,𝑛𝑐

2ℎ )  

 𝑣1,2𝑗+1
ℎ =

1

4
(𝑣0,𝑗

2ℎ + 𝑣0,𝑗+1
2ℎ + 𝑣1,𝑗

2ℎ + 𝑣1,𝑗+1
2ℎ )   

 𝑣2𝑛𝑐−1,2𝑗+1
ℎ =

1

4
(𝑣𝑛𝑐−1,𝑗

2ℎ + 𝑣𝑛𝑐−1,𝑗+1
2ℎ + 𝑣𝑛𝑐,𝑗

2ℎ + 𝑣𝑛𝑐,𝑗+1
2ℎ ) 

where 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑐 − 1, and 𝑛𝑐 is the grid size of the coarser grid Ω2ℎ.  

 

2.3.3 Richardson’s Extrapolation 

After obtaining the converged approximation at the coarse and fine grid, Richardson’s 

extrapolation will be considered, where the general form can be written as 

 𝑢̃𝑖,𝑗
2ℎ =

2𝑝𝑢2𝑖,2𝑗
ℎ −𝑢𝑖,𝑗

2ℎ

2𝑝−1
      

where 𝑝 is the order of accuracy of the different stencil/system used. After the extrapolation, 

the order of accuracy will be increased to 𝑝 + 2. For example, if a five-point stencil is used, 

then 𝑝 = 2. Since the approximation correct up to the sixth order is desired, this step is only 

applied together with all the fourth order methods, including the point and group methods in 

both the standard and rotated grids, as a comparison in different aspects. At this point, two sets 

of approximation converged to fourth order, i.e. at the fine and coarse grid will be obtained, 

and 𝑝 = 4. Therefore, the Richardson extrapolation formula used is 

 𝑢̃𝑖,𝑗
2ℎ =

16𝑢2𝑖,2𝑗
ℎ −𝑢𝑖,𝑗

2ℎ

15
       (2.3.2) 

The grid points which are involved in the iterative process at both the finest grid Ωℎ and coarse 

grid Ω2ℎ will be applied with Eq. (2.3.2), and directly interpolated for only once as  𝑢̃2𝑖,2𝑗
ℎ =

𝑢̃𝑖,𝑗
2ℎ  and it keeps the sixth order accuracy. For the remaining points, the operator based 

interpolation scheme is used. 
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2.3.4 Operator Based Interpolation 

A mesh refinement interpolation strategy is used to interpolate the sixth order accurate solution 

from Ω2ℎ to Ωℎ. The 2D grid points is divided into four groups (even, even), (odd, odd), (even, 

odd), and (odd, even), see Figure 2.3. After Richardson’s extrapolation, the (even, even) 

indexed grid points on Ωℎ will be directly interpolated as  𝑢2𝑖,2𝑗
ℎ = 𝑢𝑖,𝑗

2ℎ, i.e. the  (even, even)  

points are not involved in the iteration. For the remaining grid points, the operator based 

interpolation scheme is applied with the most current approximations, including the sixth order 

(even, even) points, to improve and achieve the sixth order accuracy. The operator based 

interpolation scheme is an iterative procedure. To establish the relationship between the values 

of the approximation at the (odd, odd), (even, odd), and (odd, even) grid points by using the 

sixth order approximation at the (even, even) points, some fourth order schemes will be used. 

The iteration will continue until the 2-norm of the correction vector is reduced to below a 

certain tolerance, see Algorithm 2.3.  

 

Algorithm 2.3: Operator based interpolation iteration combined with the Richardson 

extrapolation technique. 

1. Update every (even, even) grid point on Ωℎ. 

By using the fourth order converged approximations in the coarse and fine grid, 

i.e. 𝑢̃𝑖,𝑗
2ℎ,𝑘

 and 𝑢̃2𝑖,2𝑗
ℎ,𝑘

, we first compute 𝑢̃𝑖,𝑗
2ℎ,𝑘+1

 by Eq. (2.3.2). This set of sixth 

order approximation will be directly interpolated to obtain 𝑢̃2𝑖,2𝑗
ℎ,𝑘+1

. 

2. Update every (odd, odd) grid point on Ωℎ by using a fourth order scheme. 

3. Update every (odd, even) grid point on Ωℎ by using a fourth order scheme. 

4. Update every (even, odd) grid point on Ωℎ by using a fourth order scheme. 

5. Check the convergence. If not converged, repeat the iteration (i.e. go to step 2). 
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Figure 2.3: Illustration of the operator based interpolation scheme for a 5 × 5 fine grid. 
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CHAPTER 3 

STANDARD GRID 

 

The study on system of linear equations and their solution are described briefly in Chapter 2. 

From these studies, we know that for large enough Ωℎ, iterative solutions are suitable and more 

economic compared to direct solutions.  

Consequently, Chapter 3 consists of the formulation of stencil and system as well as 

the implementation of the algorithms in the standard grid, where §3.1 gives the finite 

differences in the standard grid, and details will be given in the formulation of the fourth order 

compact (FOC) scheme which is generated from the second order central differences. Then, 

the formulation of the five- and nine-point stencil of order 𝑂(ℎ2) and 𝑂(ℎ4) respectively, 

which are the result of discretization of the 2D Helmholtz Eq. (1.1), are given in §3.2 and §3.3 

respectively. Note that instead of the standard nine-point stencil, the FOC scheme is applied 

to the derivatives, therefore the nine-point stencil is called the compact nine-point scheme. 

The implementation of the algorithm is given in their respective subsections. Then, §3.4 and 

§3.5 is on the formulation of system of group methods, derived from the five- and nine-point 

stencils, respectively. The second- and fourth-order system derived are called the EG method, 

denoted as EG (ℎ2) and EG 𝑂(ℎ4) respectively. The compact nine-point stencil and the EG 

𝑂(ℎ4)  method, both of fourth order accurate, will be applied together with multiscale 

multigrid method combined with Richardson’s extrapolation. 

By applying the newly formulated EG 𝑂(ℎ4) with multiscale multigrid method with 

Richardson’s extrapolation and operator based interpolation, sixth order approximations will 

be obtained, within the shortest execution time, relative to the point method in the standard 

grid. 
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3.1 Finite Differences for the Standard Grid 

The finite difference of the standard grid is well-known, and thus, we will skip the elaboration 

in deriving them, but simply listing down some that we will use. 

 𝛿𝑥
2𝑢𝑖,𝑗 = 𝑢𝑥𝑥 =

1

ℎ2 (𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)    (3.1.1) 

Eq. (3.1.1) is the central difference approximation for the standard grid in the 𝑥-direction, with 

truncation error 𝑂(ℎ2). Note that, the notation 𝑂(ℎ𝑘) represents the truncation error of this 

approximation, where it is read (the term of) order ℎ  with the power 𝑘 , denotes terms 

containing 𝑘th order and higher powers of ℎ, and can be interpreted to mean that, when ℎ is 

small enough, the term behaves essentially like a constant times ℎ𝑘. From [8], by using Taylor 

series expansion, we have 

 𝛿𝑥
2𝑢𝑖,𝑗 = 𝑢𝑥𝑥 +

ℎ2

12
𝑢𝑥𝑥𝑥𝑥 +

ℎ4

360
𝑢𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑂(ℎ6) 

  = (1 +
ℎ2

12
𝜕𝑥

2) 𝑢𝑥𝑥 + 𝑂(ℎ4) 

  = (1 +
ℎ2

12
𝛿𝑥

2)𝑢𝑥𝑥 + 𝑂(ℎ4) where 𝑓𝑥𝑥 = 𝛿𝑥
2𝑓 + 𝑂(ℎ2) 

 ⟹ 𝑢𝑥𝑥 = (1 +
ℎ2

12
𝛿𝑥

2)
−1

𝛿𝑥
2𝑢𝑖,𝑗      (3.1.2) 

Eq. (3.1.2) is known as the fourth order compact (FOC) approximation. By using the same 

concept, the equations of 𝑢 in the 𝑦-direction can be obtained, where 

 𝛿𝑦
2𝑢𝑖,𝑗 = 𝑢𝑦𝑦 =

1

ℎ2 (𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1)    (3.1.3) 

is the central difference for the second order derivatives, with truncation error 𝑂(ℎ2); and 

 𝑢𝑦𝑦 = (1 +
ℎ2

12
𝛿𝑦

2)
−1

𝛿𝑦
2𝑢𝑖,𝑗      (3.1.4) 

is the FOC approximation for the second order derivatives, with truncation error 𝑂(ℎ4). 




