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ABSTRAK 

 

Pengenalpastian spesies bakau menggunakan pendekatan tradisional telah 

biasa dibangunkan dan dikaji. Disebabkan kos yang tinggi dalam kerja lapangan dan 

kesulitan dalam menilai kawasan dataran lumpur di ekosistem bakau menggunakan 

cara konvensional, maka teknik penderiaan jauh digunakan secara meluas untuk 

mengkaji spesies bakau sama ada di peringkat skala atau daun. Dalam kajian ini, dua 

kaedah penderiaan jauh telah dijalankan untuk mengenal pasti dan membezakan 

spesies bakau di Hutan Simpan Kuala Sepetang, Perak, Malaysia. Kaedah pertama 

membangunkan satu algoritma berdasarkan permukaan pantulan spesies untuk 

memetakan spesis bakau mengunakan data resolusi tinggi pesawat udara tanpa 

pemandu (UAV). Imej-imej pesawat udara diperolehi menerusi saluran tiga jalur 

(biru, hijau dan inframerah dekat) dari indeks perbezaan normal tumbuhan (NDVI) 

kamera yang dipasang pada UAV. Pantulan atas atmosfera dijana dari imej mozek 

pesawat udara yang merangkumi keseluruhan tapak kajian dengan keluasan tanah 

sebanyak 50.12 ha. Taburan bagi lima spesies bakau telah berjaya dipetakan 

menggunakan nilai pantulan yang dijana. Plot berselerak antara ramalan dan 

permukaan piksel memberikan korelasi yang tinggi (R
2
 = 0.873) dengan sisihan 

piawai 0.476 (kurang daripada satu spesies per piksel). Hasil kajian ini juga 

menunjukkan bahawa teknik yang diterbit boleh dipercayai dan menghasilkan 

keputusan yang baik dengan kejituan yang tinggi (85%). Kaedah kedua 

menggunakan analisis statistik untuk menganalisi data pantulan bagi spesies bakau. 



 

xvii 

Analisis varians (ANOVA) dan analisis diskriminan linear (LDA) telah digunakan 

pada data pantulan spektrum. LDA telah mendapati panjang gelombang berpengaruh 

yang boleh digunakan untuk membezakan sampel daun di antara enam spesies 

bakau. Dua puluh enam panjang gelombang penting (p < 0.05) diperoleh di kawasan 

spektrum inframerah dekat (VNIR), inframerah gelombang pendek I (SWIR I) dan 

inframerah gelombang pendek II (SWIR II). Enam belas fungsi diskriminan telah 

dijana menggunakan dua puluh enam gelombang berpengaruh. Julat skor bagi setiap 

spesies bakau dalam fungsi diskriminan telah ditentukan dengan menggunakan 

spektrum pantulan. Sementara itu, perbezaan antara kombinasi fungsi diskriminan 

dibandingkan bagi memilih fungsi yang paling sesuai untuk mengelaskan spesies 

bakau. Perbandingan tersebut memberikan kejituan terbaik apabila sebelas fungsi 

dipilih untuk pengelasan spesies bakau. Oleh itu, julat skor awal yang dicadang telah 

digunakan untuk meramalkan daun bakau yang tidak diketahui dengan menggunakan 

sebelas fungsi diskriminan. Keputusan akhir menunjukkan bahawa walaupun 

kejituan pengelasan yang dicapai adalah lebih rendah dalam meramal spesies bakau 

tertentu tetapi algoritma ini masih boleh menentukan spesies bakau dengan betul bagi 

sampel daun bakau yang tidak diketahui di kawasan kajian pada peringkat daun. 

Pada amnya, keputusan yang didapati jelas menunjukkan bahawa kedua-dua kaedah 

penderiaan jauh yang digunakan berjaya membezakan spesies bakau di Hutan 

Simpan Kuala Sepetang, Perak, Malaysia dan objektif kajian ini telah dicapai. 
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SURFACE REFLECTANCE AND DISCRIMINANT ANALYSIS FOR 

MAPPING OF MANGROVE SPECIES IN KUALA SEPETANG 

MANGROVE FOREST RESERVE, PERAK  

ABSTRACT 

 The identification of mangrove species by using traditional approach has 

been commonly developed and studied. Due to the high cost of field work and the 

difficulty in assessing the mudflat areas of mangrove ecosystem with conventional 

methods, remote sensing techniques have been widely used to examine mangrove 

species at either the scale level or leaf level. In this study, two remote sensing 

methods have been utilized to identify and discriminate the mangrove species in the 

Kuala Sepetang Mangrove Forest Reserve, Perak, Malaysia. The first method is to 

develop an algorithm that was based on species’ surface reflectance to map the 

mangrove species by using high-resolution CropCam Unmanned Aerial Vehicle 

(UAV) data. The airborne images were acquired through the three band channels 

(blue, green and near-infrared) of the Normalized Difference Vegetation Index 

(NDVI) camera that was mounted on the CropCam UAV. The Top of Atmosphere 

(TOA) reflectance was retrieved from the mosaicked airborne image, which covered 

the entire study site with an area of 50.12 ha. The distributions of five mangrove 

species were successfully mapped by using the retrieved reflectance values. The 

scatter plot between the predictions and ground pixels revealed a high correlation 

(R
2
=0.873) with Root Mean Square Error (RMSE) of 0.476 (less than one species per 

pixel). The results also indicated that the developed technique was reliable and 

produced good results with high accuracy of 85%. The second method used 

statistical analysis to analyze the hyperspectral reflectance data of the mangrove 

species. Analysis of Variance (ANOVA) and Linear Discriminant Analysis (LDA) 
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tests were applied on the reflectance spectra data. The LDA determined the 

influential wavelength, which could be used to distinguish the leaf samples among 

the six mangrove species. Twenty-six significant wavelengths (p<0.05) were 

obtained in the Very Near Infrared (VNIR), Short Wavelength Infrared I (SWIR I) 

and Short Wavelength Infrared II (SWIR II) spectral regions. Sixteen discriminant 

functions were generated by using the 26 influential wavelengths. The score range of 

each mangrove species in discriminant functions was determined by using the 

reflectance spectra. Meanwhile, different combinations of discriminant functions 

were compared to determine the most suitable function to classify the mangrove 

species. The comparison produced the best accuracy when 11 functions were chosen 

for the mangrove species classification. Therefore, the score range that was 

established earlier was used to predict the unknown mangrove leaves by using the 11 

discriminant functions. The final results showed that even the attained classification 

accuracy was lower when identifying certain mangrove species, but the 11 

discriminant functions could still determine the correct mangrove species of an 

unknown mangrove leaf sample from the study area at the leaf scale. Overall, these 

results clearly indicate that the two remote sensing methods that were applied could 

successfully discriminate five mangrove species in the Kuala Sepetang Mangrove 

Forest Reserve, Perak, Malaysia and accomplished the objective of this research.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Mangrove forests are unique ecosystems that provide a variety of ecological 

functions along sheltered coastal areas, river estuaries and seashore areas (Jensen et 

al., 2007). They usually grow in intertidal coastal habitats with brackish water in 

highly saline and oxygen-depleted soil environments, with special prop root systems 

known as pneumatophores. Mangroves are an assemblage of tropical and sub-

tropical halophytes (salt tolerant plants), coastal vegetation that lives in tropical and 

subtropical climates (Aheto et al., 2011; Heumann, 2011). A total of 75% of the 

world’s tropical coastlines are covered by mangrove ecosystems (Vaiphasa et al., 

2006). The global distribution of mangrove cover is roughly approximately 170,000 

km
2
, covering up to 112 countries in tropical regions (Aizpuru et al., 2000). 

Appendix A provides the current and past extents of mangrove cover estimation from 

1980 to 2005. According to the FAO (2006), Asia is the continent with the largest 

extent of mangroves (roughly 6 million ha) and has five of the top ten countries with 

the largest mangrove distribution. 

 The biological, environmental, ecological and economic values of mangroves 

are firmly established. Mangroves are known to be the most productive coastal 

ecosystems, both providing food chains for marine life and its associated community 

and acting as a breeding ground or habitat for various types of life, such as birds, 

reptiles, sponges, insects, shrimps and mammals (Holguin et al., 2001; Nagelkerken 

et al., 2008). Additionally, mangrove forests play an important role in serving as a 

natural barrier that protects inland and coastal regions from tidal waves, storms, 
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flooding, erosion and tsunamis (Liu et al., 2007; Alongi, 2008; Spalding et al., 2010). 

In addition, mangroves act as filters that purify polluted coastal areas, treat sewage 

trapping and absorb heavy metals and nutrients in soil (FAO, 2007). 

 Furthermore, mangroves play a growing role globally in the carbon cycle and 

the reduction of greenhouse gases, such as carbon dioxide (CO2), by acting as the 

very efficient coastal carbon sink (Nellemann et al., 2009; Trumper et al., 2009). 

Moreover, various forestry products that are made from mangroves, such as timber, 

charcoal and firewood, contribute to the economic development of a country. Some 

mangrove species such as Ceriops Tagal, Bruguiera Gymnorrhiza and Aegiceras 

Corniculatum can even be used as medicine to cure certain diseases or disorders 

(Ray, 2014). Undoubtedly, the valuable of this type of ecosystem is vital for human 

life, flora and fauna. Hence, mangroves should be preserved for future generations to 

enjoy the beauty and benefits of these unique forests. 

 Based on statistics from the World Bank (2010), the total land area of 

Peninsular Malaysia is approximately 328,550 km
2
. The forest area in Peninsular 

Malaysia covers approximately 204,560 km
2
 (62.3%). This forest area includes land 

that comprises natural or planted trees that are greater than 5 m but excludes trees in 

agricultural fields, urban areas and gardens. Mangrove forests in P. Malaysia are 

mainly concentrated along the western coastal region. The mangrove swamps in 

these western coastal areas are usually located at lower elevations compared to the 

mangrove cover in the eastern and southern coastal areas. Most of the states in P. 

Malaysia contain mangrove cover, with the largest mangrove swamps located in the 

Matang Mangrove Forest Reserve, Perak. 

 Due to the selfishness of developers and human anthropogenic activity, these 

mangrove forests are threatened and have experienced a serious decline from year to 
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year. In Southeast Asia, almost 12% of the total mangrove forest cover was cleared 

from 1975 to 2005. Mangroves are usually cleared for aquaculture (shrimp farming), 

agriculture, urban development and excessive logging (FAO, 2007; Giri et al., 2008). 

In addition, the prolonged exposure of nitrogen and phosphorous in mangrove 

ecosystems can weaken roots, which will ultimately result in mortality and leaf loss 

(Holguin et al., 2006; Reef et al., 2010; Vovides et al., 2011). Globally, mangrove 

coverage has been declining by approximately 2% per year from 1980 to 1990 and 

by 1% per year from 1990 to 2000 (Wilkie and Fortuna, 2003). 

 Information regarding mangrove distribution and growth should be updated 

regularly to preserve and conserve mangrove forests. The observation and 

monitoring of the distribution and dynamics of mangroves is central to a wide range 

of scientific investigations that are conducted in both terrestrial and marine 

ecosystems. Conventional methods such as ground surveys and field visits to 

mangrove swamps are more reliable and accurate but are also time consuming and 

costly. In addition, this traditional approach to monitoring forests usually requires a 

great deal of time and cannot keep up to date with the latest extent or changes in 

conditions of mangrove forests within a short time period. In such circumstances, 

remote sensing techniques, which are cheaper and more time-efficient, can be 

utilized in forestry applications to monitor mangrove ecosystems. Recent 

advancements in remote sensing data availability, image-processing methodologies, 

computing and information technology, and human resource development have 

provided an opportunity to observe and monitor mangroves from local to global 

scales on a regular basis. The spectral and spatial resolution and availability of 

remote sensing data have improved, making it possible to observe and monitor 

mangroves with unprecedented spatial and thematic detail. Furthermore, remote 
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sensing techniques, along with Geographic Information Systems (GIS), can provide 

new tools for rapid and advanced forest monitoring and management. Satellite 

imagery is one resource that is available in remote sensing that enables humans to 

view land, water and forest scenes on the Earth’s surface without accessing the field 

site. 

 

1.2 Remote Sensing 

Remote sensing is a method that uses scientific technology to acquire and gather 

useful information about an object or matter on the Earth’s surface without having 

any direct physical contact with the object (James et al., 2010). Remote sensing can 

measure the reflected, emitted and transmitted energy from an object. Aircraft and 

satellites are the common vehicles through which remote sensing methods are 

conducted. The sensors from satellites collect reflected or emitted electromagnetic 

radiation from the target for analysis (Lewis and Clack, 2005). Remote sensing 

techniques are particularly important tools for providing input to numerous 

applications. Hyperspectral remote sensing is performed for forestry and vegetation 

(monitoring of ecosystems, vegetation mapping), coastal preservation (oil pollution 

detection, water quality assessment), agriculture (crop mapping or yields), 

atmospheric studies (greenhouse gases, air pollution) and geological applications 

(mineral identification and mapping) (HyperTeach, 2005). 

 Electromagnetic (EM) energy refers to a form of energy that is released into 

the atmosphere and propagates in a wave-like pattern at the speed of light (3x10
8
 

m/s).The electromagnetic spectrum is the continuum of all types of EM radiation, 

whose wavelengths range from kilometers to nanometers. Each portion of the EM 

spectrum ranges from short wavelengths (gamma ray) to long wavelengths (radio 
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waves), as illustrated in Appendix B. Different types of EM radiation interact with 

matter in different ways and produce different outputs in various applications.   

 In remote sensing, the ultraviolet (UV) portion is widely used for geological 

studies in the detection of matter on the Earth’s surface, primarily rocks and 

minerals. Rocks and minerals will glow and fluoresce when illuminated with 

ultraviolet radiation. As these shorter wavelengths are easily scattered by the 

atmosphere, few remote sensing applications are conducted with ultraviolet light 

(Geog474, 1999). 

 Visible light is light that our eyes can sense and detect. These visible 

wavelengths range from 400 nm (violet colour) to 700 nm (red colour). Blue, green 

and red are the primary colours in the visible spectrum. Although the sunlight that we 

see is a homogenous colour, this light is actually composed of different wavelengths 

of EM radiation, primarily including UV, visible and infrared light along the EM 

spectrum. Visible light consist of seven colours (red, orange, yellow, green, blue, 

indigo and purple), which can be observed clearly when sunlight is passed through a 

prism (Natural Resource Canada, 2015). 

 Another portion of the spectrum is the infrared (IR) region, which covers 

wavelengths from 0.7 µm to 100 µm. The infrared region is divided into 2 parts: 

reflected IR (0.7 µm to 3.0 µm) and thermal IR (3.0 µm to 100 µm). The reflected IR 

region is widely used for remote sensing purposes, similar to visible radiation. The 

thermal IR region has different properties from visible and reflected IR light: it is 

actually a form of heat energy that is emitted from the Earth’s surface and is used to 

detect forest fires and heat loss from buildings (Prakash, 2000). 

 The last portion of the spectrum is the microwave region, which ranges from 

1 mm to 1 m. This portion of the spectrum has been receiving attention in remote 
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sensing as it has the ability to penetrate clouds or haze and is very suitable for 

weather forecasting. The shorter wavelengths in the microwave region have the same 

properties as thermal IR. The longer wavelengths in the microwave region are 

generally utilized in radio broadcasting (Natural Resource Canada, 2015). 

 Two types of sensors are available in remote sensing studies: active and 

passive sensors. Active sensors supply their own light source toward the target that is 

being examined, and the reflected energy from the target is measured by the sensor. 

Examples of active sensors include laser scanners and radar. Passive sensors measure 

the reflected energy from a target using naturally available light sources, such as the 

Sun. Passive sensor systems cannot obtain measurements during the night, when the 

Sun does not illuminate the Earth, unless the amount of energy that is emitted 

(thermal infrared) by the target is large enough to be recorded. The advantage of 

active sensors is their ability to measure and record reflected energy at anytime, 

independent of the light source. Examples of passive sensors include film 

photography and radiometers. 

 

1.3 Vegetation Spectroscopy  

Vegetation is a constituent of Earth’s surface, and their biophysical and biochemical 

properties are important in a large variety of agricultural and ecological applications 

(Houborg et al., 2007).  Spectroscopy refers to the study of the interactions between 

radiation and matter and involves the study of reflected, absorbed and transmitted 

light from matter (solid, liquid or gas) as a function of wavelength. Optical remote 

sensing has been developed from multispectral sensing to hyperspectral sensing, 

which consists of hundreds of narrow spectral bands. These spectral bands have the 

potential to measure specific vegetation variables and parameters that cannot be 
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studied with conventional multispectral sensors. With the invention of vegetation 

spectroscopy (hyperspectral sensors), the quantity and quality of vegetation studies 

improved significantly compared to studies that used multispectral sensors.  The high 

resolution of hyperspectral data is crucial for providing high-quality information 

regarding the health, biomass, biochemical and biophysical properties of vegetation 

(Green et al., 1998; Asner et al., 2000; Mutanga et al., 2004; Zarco-Tejada et al., 

2005).  

 

1.4 Problem Statement 

Tsunamis are defined as unusually high tidal waves that are triggered by earthquakes. 

Tsunamis are a natural disaster that can cause wide spread destruction and seriously 

impact coastal areas. In 2004, Penang State in Malaysia was stricken by a tsunami 

wave. The Penang Inshore Fishermen Welfare Association reported that fewer lives 

were lost and less damage was caused by the tsunami in coastal regions that were 

protected by mangrove forests. These mangrove trees in coastal regions act as a 

buffer zone to dissipate and impede tsunami waves, thus reducing their impact. 

Undoubtedly, the importance of mangrove ecosystems as a protective belt during 

tsunamis cannot be ignored. Malaysia’s mangroves forests have rapidly diminished 

over the past decade and continue to decline at an alarming rate. The average 

declining rate of these mangrove forests is approximately 1% per year as reported by 

the Food and Agriculture Organization (FAO, 2007). To protect this valuable 

ecosystem, conservation efforts must be conducted by all parties to monitor the past 

and current extent of mangrove cover in a country and maintain up-to-date mangrove 

distribution information. 
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 Historically, research has focused on mangrove ecosystems in terms of the 

biophysical, biochemical or biological properties of mangrove plants. Common 

studies of mangrove ecosystems usually include the mapping, monitoring, 

identification and discrimination of mangrove trees. Traditional mangrove studies 

have involved fieldwork or field surveys to the site to detect and monitor these 

mangrove ecosystems, but this approach is time consuming and costly. Field surveys 

for mangrove studies become complicated when the mangrove swamp area is 

difficult to penetrate and access. In such circumstances, remote sensing techniques 

can be an effective tool to study mangrove ecosystems.  

Various satellite data can be used for mangrove studies and mapping, but the 

mapping of mangrove species may be unsatisfactory if low-resolution satellite 

imagery is used. In addition, some satellite imagery may contain abundant cloud 

cover, fog and haze, especially when the scene is obtained from the equatorial line 

region. To overcome this problem, low-cost and high-resolution Unmanned Aerial 

Vehicle (UAV) data were used in this study to map mangrove species on a local 

scale. 

Previous studies have shown that measurements of hyperspectral leaf 

reflectance can be used to distinguish mangrove species (Kamaruzaman and 

Kasawani, 2007; Wang and Sousa, 2009; Zhang et al., 2014). The ideal wavebands 

for mangrove species classification are identified and highlighted in their studies. In 

this study, significant wavebands were identified for determine the mangrove species 

fraction based on scores that were obtained from discriminant functions.  
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1.5 Research Objectives 

This research has several aims and objectives: 

1. To develop an algorithm that uses the surface reflectance to map mangrove 

species. 

2. To verify the reliability and accuracy of the individual mangrove species 

map.  

3. To determine the significant wavelengths that can be used to distinguish the 

examined mangrove species using statistical analysis. 

4. To discriminate mangrove species based on the obtained scores from 

discriminant functions using reflectance spectral data. 

 

1.6 Scope of Study 

This research focused on techniques that were used to discriminate the dominant six 

mangrove species in Kuala Sepetang Mangrove Forest Reserve which is confined in 

the Educational Forest of Matang Mangrove Forest Reserve (MMFR). The first 

method used high-resolution CropCam UAV airborne data that were acquired from 

field visits to map mangrove species. The retrieved surface reflectance was used to 

map the distribution of the examined mangrove species. The second method used the 

reflectance spectral data of healthy mangrove leaves, which were measured with a 

spectroradiometer, to determine the significant wavelengths that can separate 

mangrove species. The results of a statistical approach were applied to test the 

mangrove species that were investigated in this study. Finally, the produced map and 

results were verified using ground data.  
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1.7 Novelty of Study 

This study mainly involved the utilization of low-cost, relatively cheap and newly 

emerged high-resolution CropCam Unmanned Aerial Vehicle (UAV) technology 

(compared to satellite data) over mangrove forests to map mangrove species. UAV 

technique has been used by Hassan et al. (2011) over Penang Island, Malaysia for 

land cover mapping with RGB camera sensor consist of blue, green, and red band. 

However in this study, a three-band (blue, green, and NIR) camera sensor was used 

to acquire airborne images to map the individual mangrove species at the Kuala 

Sepetang Mangrove Forest Reserve. Moreover, this study focused on the statistical 

data analysis of hyperspectral leaf reflectance from six mangrove species in the study 

area  and to discriminate these species based on generated discriminant functions.  

 

1.8 Structure of the Thesis 

This thesis comprises seven chapters, with summaries of each chapter briefly 

discussed below. Chapter 1 provides an overview of this study, including the 

background of mangrove forests, remote sensing and vegetation spectroscopy. 

Chapter 2 discusses the literature regarding mangrove mapping at the generic or 

species level using different remote sensing methods. This chapter also discusses the 

mangrove mapping and classification techniques that have been utilized in Malaysia. 

Chapter 3 introduces the CropCam UAV system (background, platform, sensor, 

camera, setup and configuration, applications) and spectroradiometer system that are 

used in this study. Chapter 4 describes the study area, materials, image processing 
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procedure and software that were used. This study’s methodology is also highlighted 

in this chapter. Chapter 5 focuses on the obtained results and includes the data 

analysis, interpretation and discussion of the airborne UAV data. Moreover, this 

chapter describes the procedure that was used to validate the mapping accuracy. 

Chapter 6 concentrates on the analysis, interpretation, discussion and validation 

results of the statistical analysis, which used hyperspectral data. Finally, the 

conclusions of this study and discussion regarding future works are presented in 

Chapter 7.   
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CHAPTER 2 

LITERATURE REVIEW 

  

2.1 Literature Review 

Mangrove is an ecological term that refers to shrubs or trees that exist in highly 

saline soil and brackish water conditions along sheltered coastal region (Lee and 

Yeh, 2009). Their special prop and tough root systems (pneumatophores) help them 

to survive in harsh saltwater or mudflat environments. Mangroves can be found in 

tropical and subtropical climates around the world (Jensen et al., 2007). Almost 75% 

of the world’s tropical coastlines are covered by mangroves (Spalding et al., 1997). 

Mangrove trees provide food to marine life and its corresponding community and 

serve as natural barriers that protect shoreline areas from erosion, tidal waves, floods, 

typhoons and tsunamis (Liu et al., 2007; Howari et al., 2009). Additionally, profits 

from mangrove forestry products, such as timber, firewood and charcoal, contribute 

to national economics. Therefore, the importance of mangroves is recognizable 

worldwide because of their vital environmental, economic, ecological and biological 

value (Mitsch et al., 2002). 

Conventional field surveying methods for monitoring mangrove areas are 

costly, time-consuming and labor-intensive (Lee and Yeh, 2009). An accurate, fast 

and cost-reasonable technique is required to effectively monitor temporal changes in 

mangrove ecosystems (Green et al., 1998; Liu et al., 2007). Thanks to the 

development of remote sensing technology, remote sensing data have been widely 
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used as superior tools in many areas, such as land cover and land use, geology, 

vegetation and water quality mapping, land surface temperature retrieval and long-

term environmental change management (Green et al., 1996; Coulibaly and Goita, 

2006; Tan et al., 2010).  

Recently, the uncontrolled deforestation of mangrove forests for the irrational 

development of urban areas or aquaculture by humans has led to dramatic declines in 

mangrove trees.  By 1990, 30% of the mangrove forests in Malaysia have been lost, 

and this decrease is predicted to continue at a rate of 1% per year (Gong and Ong, 

1990). To efficiently manage and monitor mangrove ecosystems, researchers have 

attempted, utilized and invented various remote sensing methods to extract 

information on mangroves from high-spatial-resolution multispectral and 

hyperspectral satellite data and airborne data (Jusoff, 2006; Jensen et al., 2007). 

Initially, artificial interpretations based on aerial photos were used to survey 

mangrove forests. Prior to 1990, Landsat and SPOT satellite imageries (which 

consist of panchromatic and multispectral bands) were employed by researchers in 

mangrove studies (Zhang et al., 2005). With the invention of new generation sensors 

(hyperspectral sensor) that possess higher spatial and spectral resolutions, finer 

mangrove studies (mangrove species differentiation) are more reliable and precise 

(Wang and Sousa, 2004; Vaiphasa et al., 2005; Neukermans, 2008). 

 

2.1.1 Mangrove Mapping at the Generic Level 

Green et al. (1998) proposed five different methodologies to separate mangrove and 

non-mangrove vegetation in the Turks and Caicos Islands. Landsat TM, SPOT XS 

and CASI data were classified with these five techniques, namely, Visual 

Interpretation, Vegetation Index, Unsupervised Classification, Supervised 
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Classification, PCA and Band Ratios. However, all the classifications from SPOT 

XS data could not satisfactorily distinguish between mangrove and non-mangrove 

areas for these eastern Caribbean islands because of the very low overall accuracy 

(35-57%) and no obvious differences between τ coefficients. The classification 

accuracy for the CASI data was higher than that of the Landsat TM data for these 

five methods, which meant the former could discriminate more mangrove classes. In 

conclusion, PCA with band ratio combination classification of Landsat and CASI 

data was more reliable for discriminating between mangrove and non-mangrove 

areas and among different mangrove types. 

Gao (1999) used the Maximum Likelihood Classifier to map the mangrove 

forest in Western Waitemata Harbour, Auckland, New Zealand. He used SPOT XS 

and Landsat TM imagery to map the mangrove forest into lush and stunted classes. 

The mapping accuracy that was obtained from 30 m Landsat TM data was 95% for 

lush mangroves and 87.5% for stunted mangroves. The accuracy level was lower 

when using 20-m SPOT XS data, specifically, 77.5% for lush mangroves and 67.5% 

for stunted mangroves. Both accuracy levels improved to 80% when the 10-m PAN 

band was fused with the SPOT XS data for the mapping. These studies concluded 

that spatial resolutions that were finer than 30 m tended to be suitable for mangrove 

mapping in the study area. 

Nayak and Bahuguna (2001) focused on the use of remote sensing to monitor 

the extent of mangroves along India’s coastline. High-resolution Indian Remote 

Sensing (IRS) data (23-m multispectral data fused with 5.8-m panchromatic data) 

have been used to monitor mangroves and other coastal vegetation. In the same year, 

Held et al. (2001) investigated the usage of handheld spectrometer, airborne and 

hyperspectral satellite data for mangrove forest mapping in Australia. Compact 
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Airborne Spectrographic Imager (CASI) and Hyperspectral Mapper (HyMap) data 

were simultaneously collected from the Earth Observing-1 (EO-1) Hyperion (30 

meter resolution, 220 bands) satellite, which bypassed the rainforest near Cape 

Tribulation in the far north of Queensland, Australia.  

Wang et al. (2004) applied a combination of object-based and pixel-based 

classification to Very High Resolution (VHR) IKONOS imagery to map mangrove 

canopies at Punta Galeta on the Caribbean coast of Panama. Three distinct image 

processing approaches were examined: Maximum Likelihood Classification (pixel-

based), Nearest Neighbor (NN) classification (object-based) and a hybrid 

classification that incorporated pixel and object-based approaches known as 

Maximum Likelihood Classification Nearest Neighbor (MLCNN). A new approach 

was established to maximize the Bhattacharya Distance (BH) by choosing an optimal 

scale parameter in the segmentation stage during the object-based classification to 

increase the mapping accuracies. Among the three methods, the MLCNN results had 

the best overall classification accuracy (91.4%) in differentiating between red, black, 

and white mangrove canopies and other non-mangrove cover. 

An algorithm was developed by Nuarsa et al. (2005) for mangrove 

classification at Benoa Bay, Province of Bali. The two formulae, which were 

produced from the regression analysis of the digital numbers of Landsat ETM+ data 

were CE1= (0.663*Band 3) + (0.155*Band 4) - (1.4*Band 5) + 0.995 and CE2 = 

(36*Band 4) + (6*Band 5) + Band 3. If the CE1 value lies between -31.439 and 

0.888 and CE2 is equal to or higher than 2000, then the object will be recognized as a 

mangrove. 

Emch and Peterson (2006) quantified the temporal changes in mangrove 

forests in Sundarbans in southwestern Bangladesh (1989-2000) using Landsat TM 
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imagery. Maximum Likelihood Classification (MLC), Normalized Differential 

Vegetation Index (NDVI) and subpixel classification were performed on Landsat TM 

data to monitor the mangrove cover. The traditional classifier, MLC, cannot 

effectively detect fine differences in mixed-water forest environments, whereas both 

NDVI and the subpixel classification algorithm reveal the spatial distribution 

changes in mangrove forest cover. 

Conchedda et al. (2008) examined an object-based method that was used to 

map and monitor the extent of mangroves at Low Casamance, Senegal. This object-

based approach was performed on SPOT XS data to map the land cover in the mangrove 

ecosystem. The temporal changes in the mangrove ecosystem over two decades (1986-

2006) were evaluated and analyzed. The high user’s accuracy for the mangroves (97.1%) 

implies that the classification between other land cover classes and mangroves was 

distinguishable with an estimation area of 76,550 ha in 2006. This paper concluded that 

the 20-m spatial resolution of SPOT imagery was appropriate in mangrove mapping and 

the object-based approach was able to provide a precise update for the mangrove extent 

in the study site. 

 Lee and Yeh (2009) applied distinct remote sensing methods to study the shifting 

of mangrove vegetation from 1995-2004 in the Danshui River estuary in Taipei, Taiwan. 

This paper assessed and compared the different spatial resolution of satellite data 

(Landsat, SPOT, and QuickBird) with a series of aerial imagery as a reference to 

evaluate the shifting of mangrove communities. Mangrove areas were extracted via a 

two-stage analytical process. First, the NDVI approach was adopted to acquire the 

distribution of the vegetation cover. Second, MLC was performed on the NDVI’s image 

to classify the mangrove and non-mangrove areas. The analytical results demonstrated 

that this two-stage analysis, which compared the changes in mangroves with time 
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without high-resolution imagery, was a feasible technique for discriminating between 

mangrove areas and vegetation cover. 

An unsupervised classification technique (ISODATA clustering) was 

conducted on 61 Landsat images from the year 2000 that were acquired from the 

Global Land Survey to map the spatial distribution and aerial extent of the 

mangroves in the Philippines (Long and Giri, 2011). According to this statistical 

analysis, the mangrove distribution in the Philippines in the year 2000 occupied a 

total area of 256,185 ha with a kappa coefficient of 0.926 and overall classification 

accuracy of 96.6%.  

Kongwongjan et al. (2012) used five different vegetation indices, including 

Normalized Different Vegetation Index (NDVI), Simple Ration (SR), Soil Adjusted 

Vegetation Index (SAVI), Perpendicular Vegetation Index (PVI) and Triangular 

Vegetation Index (TVI), to distinguish mangrove areas in the Pa Khlok sub-district, 

Phuket, Thailand. The Maximum Likelihood Classifier was performed on 15-m 

resolution THEOS imagery from 2010 to classify mangrove and non-mangrove areas. 

The results indicated that a higher overall classification accuracy was obtained using the 

four original THEOS spectral bands combined with SR vegetation indices (92.38%) 

instead of using only individual vegetation indices. 

The latest paper by Elmahdy and Mohamed (2013) mapped and monitored 

changes in the mangrove areas at Abu Dhabi, UAE using Landsat ETM+. The fuzzy 

logic algorithm was applied on multi-temporal Landsat data because this method can 

classify mixed pixels. Mangroves were discriminated and mapped with Landsat images 

at different density levels (low, medium and high). In the monitoring period from 1990 

to 2006, the results from the fuzzy logic classifier indicated only slight changes in the 

mangrove ecosystem. Despite the low spatial resolution of the Landsat data in the 
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mapping and monitoring of mangroves, the fuzzy logic method still provided reliable 

mapping accuracy for mangrove studies.   

 

2.1.2 Mangrove Mapping at the Species Level 

Mangrove studies have been widely reported by researchers all around the world 

because of the vital role of mangrove trees. To better understanding of extent, species 

composition and biophysical properties of mangrove ecosystems, additional details 

regarding mangrove ecosystems must be examined. In addition to general mangrove 

mapping, one challenging task is to accurately distinguish and map mangrove species 

using multispectral or hyperspectral satellite data. Abundant research projects have 

mapped mangroves at the species level, but the outcomes of some of these studies are 

neither satisfactory nor conclusive.  

 Vaiphasa et al. (2005) attempted to use laboratory measurements (spectral 

information) on distinct mangrove canopy leaves to distinguish the mangrove species 

at Sawi Bay, Thailand. The spectral responses of 16 tropical mangrove species that 

were collected from the study area were measured with a spectrometer under 

laboratory conditions. One-way ANOVA analysis was performed on the various 

mangrove spectra, and the results indicated that all 16 mangrove species were 

significantly different at most spectral location (p < 0.05). In addition, the spectral 

separability between all pairs of mangrove species was computed using the Jeffries-

Matusita (J-M) distance. These J-M distances illustrated that each pair of mangroves, 

except for pairs of Rhizophoraceae members, are spectrally distinct. In conclusion, 

this paper offered an approach for mangrove species discrimination (except for the 

Rhizophoraceae family) that used statistical and J-M distance analysis. 
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 Neukermans et al. (2008) presented an automated fuzzy per-pixel 

classification to map mangrove species. High-spatial-resolution multispectral 

QuickBird satellite imagery that was acquired in 2002 was used to map four 

dominant mangrove species, specifically, Avicennia marina (A. marina), Ceriops 

tagal (C. tagal), Rhizophora mucronata (R. mucronata) and Sonneratia alba (S. 

alba), in Gazi Bay, Kenya. The overall accuracy (OA) for mapping the four 

mangrove species was 73% for this classification, and the mangrove stand maps were 

compared with visual delineations, which were performed by a specialist interpreter. 

The correspondence OA reached 86%. This research’s results showed that QuickBird 

imagery could be used to separate dominant mangroves at the species scale. 

Further studies have used the hyperspectral leaf reflectance of mangroves to 

show that mangrove species can be discriminated at the 780, 790, 800, 1480, 1530 

and 1550 nm wavebands (Wang and Sousa, 2009). The reflectance values of 

Avicennia germinans (A. germinans), Laguncularia racemosa (L. racemosa) and 

Rhizophora mangle (R. mangle) mangrove leaves along the Caribbean coast of 

Panama were collected and measured with a high-resolution spectrometer. One-way 

ANOVA analysis was performed on the mean reflectance data across mangrove 

species to determine the bands that exhibited obvious differences (p value < 0.01). 

The selected bands were used in Linear Discriminant Analysis (LDA) to classify the 

three types of mangrove species. Although the spectral discrimination of mangroves 

was possible using leaf reflectance measurements, distinguishing mangrove canopies 

of different species requires hyperspectral data from satellites or airborne sensors. 

Kovacs et al. (2010) assessed the mangroves on the estuarine islands of 

Mabala and Yélitono in Guinea, West Africa and mapped the mangrove species to 

four classes using a remote sensing approach and field survey data. The four 
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mangrove classes that were distinguished from IKONONS satellite imagery using an 

ISODATA unsupervised classification are tall red mangroves Rhizophora racemosa 

(R. racemosa), medium red mangroves (R. racemosa), dwarf red mangroves (R. 

mangle and R. harisonii), and black mangroves Avicennia germinans (A. germinans). 

In addition, an LAI map of the mangrove islands at Mabala and Yélitono was 

estimated. 

In the year 2011, a comparative study between pixel-based and object-based 

approaches for mapping mangrove species using hyperspectral data were reported 

(Kamal and Phinn, 2011). CASI-2 data at the mouth of the Brisbane River in 

southeastern Queensland, Australia were used to separate mangroves at the species 

scale. Three image processing methods, namely, the Spectral Angel Mapper (SAM) 

and Linear Spectral Unmixing (LSU) from pixel-based classification and multi-scale 

segmentation from object-based classification, were applied on CASI-2 imagery for 

the mapping process and analysis. For each method, three mangrove species, namely, 

A. marina, Rhizophora stylosa (R. stylosa) and Ceriops australis (C. australis), were 

discriminated from salt marshes and water bodies. Among the three methods, object-

based mapping, which merges a rule-based and nearest neighbor classification 

approach, achieved the best results with an overall accuracy of 76% and Kappa 

coefficient of 0.67 for mangrove mapping at the species level.  

An article by Koedsin and Vaiphasa (2013) studies the capability of EO-1 

Hyperion hyperspectral data, which have 30-m spatial resolution, to discriminate the 

mangrove species at the Pak Phanang mangrove forest, Thailand. Five different 

mangrove species were classified, including A. alba, A. marina, Bruguiera parviflora 

(B. parviflora), Rhizhophora apiculata (R. apiculata) and R. mucronata, which have 

very similar spectral characteristics. The Spectral Angle Mapper (SAM) technique 
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was integrated with Genetic Band Selection and the Sequential Forward Selection 

(SFS) algorithm, and the overall classification accuracy improved from 86% to 87% 

and 92%, respectively. The article results anticipated that the methodology that was 

used in this research can serve as an alternative method for detailed mangrove 

species mapping. 

 Muhammad and Waqar (2013) investigated the capability of hyperspectral 

data to discriminate mangrove species on the coast of the Arabian Sea along Karachi. 

Hyperion imagery that was acquired in 2012 was used to identify and map the two 

mangrove types: A. marina (White Mangroves) and A. germinans (Black 

Mangroves). The end members were extracted from the output of Minimum Noise 

Fraction (MNF) and Pixel Purity Index (PPI), which were visualized in n-

dimensions. Well-distributed clusters in the n-dimension scatter plot were selected as 

inputs for classification purposes. The techniques that were used to classify the 

mangrove species included the Spectral Angle Mapper (SAM), Spectral Feature 

Fitting (SFF) and Spectral Information Diversion (SID). Among these three 

techniques, SID provided the best results, even though some areas still contained 

incorrect classifications between water and mangrove types. 

 In the year 2014, a study compares the accuracy of mangrove species maps 

derived from two different layer combinations of WoldView-2 images with those 

generated using high resolution aerial photographs captures by an UltraCamD 

camera over Rapid Creek coastal mangrove forest, Darwin, Australia were reported 

(Heenkenda et al., 2014). Mangrove areas were then further classified into species 

using a support vector machine algorithm with best-fit parameters.  Overall 

classification accuracy for the WorldView-2 data within the visible range was 89%.  
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2.1.3 Mangrove Species Studies in Malaysia 

Research on mangrove studies has become common for the purposes of mangrove 

management and conservation. Abundant research, as mentioned in sections 2.2.1 

and 2.2.2, has used various methods to study, map and monitor mangrove 

ecosystems. Many approaches and new algorithms have also been developed to 

create more advanced, rapid and accurate methods to study the details of mangrove 

species. 

Kanniah et al. (2005) introduced a Linear Mixture Model (LMM) that was 

applied on IKONOS satellite imagery to study the mangrove forest at Sungai 

Belungkor, Johor, Malaysia. Three mangrove species, namely, R. apiculata, R. 

mucronata and Xylocarpus granatum (X. granatum), were mapped. The 

classification steps that used the LMM included preprocessing, endmember selection, 

the inversion of the LMM and accuracy assessment. Accuracy assessment was 

performed according to the fraction between pixels that were estimated from the 

LMM and those that were collected from the study site. The obtained correlation 

coefficient was ~0.8 for the endmember R. apiculata and ~0.6 for R. mucronata and 

X. granatum.The accuracy assessment showed that the LMM performed very well 

compared to the pixel-based Maximum Likelihood and Minimum Distance to Mean 

techniques. 

Research that was conducted in Tok Bali, Kelantan and Setiu, Terengganu by 

Kamaruzaman and Kasawani (2007) distinguished five mangrove species using 

imaging spectrometry. The significant wavelengths to separate the mangrove species 
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were determined by canonical stepwise discriminant analysis, and Student’s t-test 

was used to test the significant differences between mangrove species at the two 

locations. The five mangrove species under investigation were R. apiculata, 

Bruguiera cylindrica (B. cylindrica), A. alba, Heritiera littoralis (H. littoralis) and 

Hibiscus tiliaceus (H. tiliaceus). At both locations, 15 significant wavelengths were 

found that could separate the five mangrove species. The t-test indicated that no 

obvious differences were observed between the mangroves’ spectra reflectance at 

both study areas. This research demonstrated that each mangrove species at Tok Bali 

and Setiu could be distinguished using their unique spectral reflectance. 

Liu et al. (2007) classified the mangroves at the Matang Mangrove Forest 

Reserve (MMFR) in Malaysia using different classifiers (object-based and pixel-

based classification) and different textural features. Six mangrove forests that were 

detected in the MMFR included Avicennia forest, transitional new forest, B. 

cylindrica forest, B. parviflora forest, Rhizophora forest and dryland. Different 

window kernel sizes were selected in the pixel-based classification, namely 3x3, 5x5, 

and 7x7 for SPOT XS and 5x5, 9x9, and 13x13 for SPOT PAN, to compute the 

images’ textural features. Two different segmentation levels corresponding to scale 

factors of 11.8 and 17.0 were selected to extract the textural features of SPOT fused 

images in object-based classification. Then, second-order textural features 

(comprising homogeneity, energy and entropy) were mixed into the extracted 

spectral feature image. Nearest Neighbor (NN), Maximum Likelihood, and Support 

Vector Machine (SVM) classifiers were used in this classification. The object-based 

classification provided better accuracy compared to the pixel-based classification. 

The accuracy of the NN classifier, which has been ordinarily used in object-based 

classification, was lower than that of the Maximum Likelihood and SVM classifiers. 
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These studies indicated that the integration of second-order textural features with 

different classifier could not enhance the accuracy of the object-based or pixel-based 

classification. 

UPM-APSB’s AISA airborne hyperspectral imaging sensor, was assessed by 

Jusoff (2008) to establish a geospatial database for mangrove species and find the 

effective wavelength regions that could distinguish the mangrove species at the Port 

Klang mangrove forest along the Klang River, Selangor. A total of nine mangrove 

species were identified: R. apiculata, R. mucronata, R. stylosa, B. parviflora, 

Bruguiera gymnorhiza (B. gymnorhiza), B. cylindrica, S. alba, Sonneratia caseolaris 

(S. caseolaris) and Avicennia officials (A. officials). The results from this study 

showed that the mangrove species could be easily determined and distinguished in 

the near-infrared (NIR) wavelength region (700 to 900 nm) compared to the visible 

wavelength region. 

Kasawani et al. (2010) used soil-based vegetation indices to distinguish and 

map the mangrove species in the Kelantan Delta, Peninsular Malaysia. These soil-

based vegetation indices, including the Perpendicular Vegetation Index (PVI), Soil-

Adjusted Vegetation Index (SAVI), Optimized Soil-Adjusted Vegetation Index 

(OSAVI), Transformed Soil-Adjusted Vegetation Index (TSAVI) and Modified Soil-

Adjusted Vegetation Index (MSAVI), were applied to Landsat TM images to 

eliminate the soil background. A total of five mangrove classes, specifically, 

Avicennia-Sonneratia, Avicennia, Acanthus-Sonneratia, Mixed Acrostichum and 

Mixed Sonneratia, were mapped via unsupervised classification. The accuracy 

ranged from 70% to 79% among the five mapping indices, and the SAVI method 

produced the best results, with a 79% classification accuracy when identifying the 

four mangrove classes. 
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