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LENGKUNG PERALIHAN KUBIK SAID-BALL DAN PENGGUNAANNYA 

DALAM REKA BENTUK GEAR BINTANG 

 

ABSTRAK 

 

Tidak dinafikan, gear adalah merupakan antara elemen yang paling banyak 

digunakan dalam pemesinan dan industri. Kajian lepas telah menunjukkan bahawa 

lengkung berbentuk involut adalah profil yang sering digunakan di dalam mereka 

bentuk gigi gear bintang, yang dibangunkan berdasarkan teori-teori penghampiran 

seperti penghampiran Chebyshev dan kaedah menyurih titik. Walau bagaimanapun, 

kaedah yang digunakan ini tidak jitu dan hanya menumpukan kepada konsep-konsep 

penghampiran sahaja. Pengurangan bunyi gear dan kekuatan gigi gear sentiasa 

menjadi tumpuan kajian dan eksperimen terutamanya dengan pengubahsuaian bentuk 

gigi atau profilnya. Oleh itu, kajian ini adalah untuk mereka bentuk lengkung 

peralihan S dan C dengan menggunakan lengkung kubik Said-Ball berdasarkan 

templet bulatan bagi kes ketiga dan kelima dengan beberapa pembuktian matematik. 

Salah satu objektif kajian ini adalah untuk menyiasat keupayaan model lengkung 

berbentuk S dan C dalam mengurangkan tahap bunyi atau bising melalui eksperimen 

akustik. Dalam kajian ini, gear bintang dipilih sebagai kajian kes kerana ia adalah 

gear asas dan hakikatnya ia mudah untuk dibina dan dibuat. Berdasarkan eksperimen 

dan simulasi yang dijalankan, keputusan menunjukkan bahawa dengan menggunakan 

lengkung kubik Said-Ball, teori-teori bagi lengkung peralihan S dan C telah berjaya 

dibangunkan. Lengkung-lengkung ini telah terbukti secara matematik, dengan 

menggunakan ujian terbitan kedua, ujian kelekukan dan teorem Kneser. Ia juga 

mendedahkan bahawa lengkung peralihan S dan C telah berjaya digunakan dalam 
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mereka bentuk gigi gear bintang. Ini membuktikan juga bahawa model pepejal bagi 

gear bintang dapat dibangunkan melalui penggunaan berintegrasi antara perisian 

matematik dan CAD. Apabila diukur melalui analisis statik linear, analisis kelesuan 

dan DE, kebolehan reka bentuk yang dicadangkan beserta bahan, AISI 304, 

menunjukkan bahawa polinomial Newton interpolasi peringkat pertama boleh 

digunakan sebagai peramal kelesuan bagi semua model reka bentuk. Kaedah reka 

bentuk gigi baru iaitu lengkung-lengkung berbentuk C dan S adalah kaedah yang 

boleh diterima pakai di dalam mereka bentuk gigi gear bintang di mana kedua-dua 

kaedah ini telah membentangkan DE yang lebih besar daripada 85% keberkesanan 

reka bentuk. Semua model juga telah berjaya diukur melalui analisis dinamik dan 

akustik. Model berbentuk C telah terbukti mempunyai sesaran yang paling rendah 

berbanding model peralihan S dan EM. Dengan menggunakan model ini, kebisingan 

gear atau bunyinya terbukti boleh dikurangkan secara konsisten. Model berbentuk C 

juga lebih dipercayai daripada model-model lain yang menepati PS. Pengubahsuaian 

profil gigi terbukti sebagai faktor utama dalam mengurangkan kebisingan gear atau 

bunyi secara signifikan dan konsisten. Sumbangan kajian ini akan memberi manfaat 

kepada pereka atau pembuat dalam mereka bentuk profil gear bintang di mana 

lengkung yang disebutkan di atas boleh digunakan sebagai kaedah alternatif bagi 

profil gear ini. Untuk penyelidikan masa depan, keupayaan lengkung peralihan C 

boleh lagi diterokai dalam mereka bentuk model-model aerodinamik contohnya, 

kereta, kereta api berkelajuan tinggi, peluru dan lain-lain. Kajian mengenai reka 

bentuk gear juga boleh diteruskan lagi dengan jenis gear yang lain seperti gear heliks 

herringbone. 
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SAID-BALL CUBIC TRANSITION CURVE AND ITS APPLICATION TO 

SPUR GEAR DESIGN 

 

ABSTRACT 

 

Undoubtedly, gears are some of the most widely used elements in consumer 

and industrial machineries. Past studies have shown that an involute curve is the 

most common profile used in designing the spur gear tooth, developed based on the 

approximation theories such as Chebyshev approximation and the tracing points 

method. However, these employed methods are not accurate (or inexact) and only 

focusing on the approximation concepts. Gear noise reduction and tooth strength are 

continually being the focus of exploration and experimentation particularly the 

modification of the tooth shape or tooth profile. Therefore, this study is to design the 

S and C-shaped transition curves using Said-Ball cubic curve based on the third and 

fifth cases of circle to circle templates with some mathematical proofs. One of the 

objectives is to investigate the capability of this proposed S and C-shaped model in 

reducing sound or noise level through an acoustic experiment. In this study, spur gear 

is chosen as a case model due to its fundamental gear and the fact that it is simple to 

construct and manufacture. Based on the conducted experiment and simulation, 

results show that by using Said-Ball cubic curve, the theories of S and C-shaped 

transition curves have successfully developed. These curves have been 

mathematically proven, by using the concavity and second derivative tests and also 

Kneser’s theorem. It is also revealed that S and C-shaped transition curves can be 

applied successfully in designing spur gear tooth. This proves that the solid model of 

spur gear can also be developed through the integrated use of mathematical and CAD 
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software. When measured through linear static analysis, fatigue analysis and DE, the 

applicability of the proposed design and the material, AISI 304 shows that First-order 

Newton interpolating polynomial can be employed as a fatigue predictor for all 

design models. The new teeth design methods, S and C-shaped curves are the 

acceptable methods in designing the spur gear teeth where both methods have 

presented DE greater than 85% of the design effectiveness. All models have also 

been successfully measured via dynamic and acoustic response analyses. C-shaped 

model has been proven to have the lowest displacement when compared to S-shaped 

(transition) and EM models. By utilizing this model, it is proven that gear noise or 

sound can be reduced consistently. C-shaped model is more reliable than other 

models in accordance to PS. It is proven that tooth profile modification is the main 

factor in reducing sound or noise in a very significant and consistent way. The 

contribution of this study will be beneficial to the designers or manufacturers in 

designing the spur gear profiles where the above-mentioned curves can be applied as 

an alternate method of these profiles. For future research, the capability of C 

transition curve can be further explored in designing aerodynamic models for 

example, car, high-speed train, bullet etc. Study on gear design can also be further 

explored on other type of gears such as helical herringbone gear. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 History of CAGD 

 

Lately, Computer-Aided Geometric Design (CAGD) plays a major role in the 

world of design. CAGD or in another term called, Geometric Modelling is a research 

field geared toward the development and representation of freeform curves, surfaces 

or volumes (Làvička, 2011). CAGD is a new field, originally created to bring some 

great benefits of computers to industries such as automotive, aerospace, shipbuilding 

or in various applications. Historically, CAGD emerged in the middle of 1970s. 

Barnhill and Riesenfeld (1974) can be claimed as the early pioneers in this field as 

they have organized a conference on this field which was held at the University of 

Utah, USA, in 1974. The main objective of this conference was primarily to discuss 

the aspect of CAGD that has attracted a great number of international researchers 

around Europe and USA to participate, for the first time, in this conference.  

 

Today, CAGD becomes a sovereign discipline in its own right (Làvička, 

2011). After the success of this first conference, research findings from the 

conference have been produced in various forms including the first textbook on 

CAGD entitled “Computational Geometry for Design and Manufacture” by Faux and 

Pratt (1988) and also first journal published focusing on the field of CAGD (Figure 

1.1). Both publications have been used as the major references for many students and 
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young researchers who want to understand further or to study CAGD. Earlier, de 

Casteljau (1959) and Coons (1964) have constructed the fundamental aspects of 

CAGD before a conference which was related to the use of CAGD in automotive 

industries was organized by a French man, Bézier, in 1971 (Farin, 2002). 

 
(a)                                   (b) 

 
Figure 1.1: (a) The cover of the first journal on CAGD published by Barnhill and 

Boehm in 1984 (Farin, 1992); (b) is an illustration of “Uccello’s Chalice”  
used for the cover (Talbot, 2006) 

 
 

CAGD deals with mathematical expressions to control the shapes when 

designing curves and surfaces. Several essential mathematical concepts are fully 

utilized in this control such as geometry, vector, coordinate system and some basic 

knowledge of calculus. Shapes or profiles are typically produced by related 

parametric equations (functions). Abstractly, a parametric equation can be defined as 

a method to determine the relationship amongst equations or functions using 

independent variables (parameters) (Thomas et al., 1988). One of the most common 

functions that is always used in this field is Bézier function, normally in cubic but 

can be represented either in quadratic or in any degree. As for an intention of 

smoothness or visually pleasant curves and surfaces, the idea of continuity is then 

applied. 
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Hence, control points (in coordinate form) are highly needed to design curves 

or surfaces completely. Rockwood and Chambers (1996) explained that control 

points are points in two or more dimensions, which can define the behaviour of the 

resulting curve. Figure 1.2 shows a generated curve using four control points with the 

incorporation of cubic Bézier function and GC1 continuity (Sarfraz, 2008). 

Hazewinkel (1997) concludes that GC1 continuity can be classified as tangent (G1) 

continuity. This GC1 continuity has been utilized in designing an airplane wing 

(Brakhage and Lamby, 2005). 

 
Figure 1.2: An example of curve design with  

GC1 continuity 
 
 

Nth-order parametric continuity )( nC  with kn ,...,3 ,2 ,1 ,0=  are the well-known 

smoothness properties in shape preserving or in interpolation problem. Figure 1.3 

depicts the use of C1 continuity in preserving a shape between curves. These 

concepts of CAGD will be further discussed in chapter 2. 
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(a) 

 
(b) 

 
Figure 1.3: Both curves apply C1 continuity, (a) non-positivity 

and (b) positivity preserving 
 
 

1.2  Early Applications 

 

Over the past decades, CAGD has been expanded rapidly in the fields of 

automobile, aircraft, aerospace or in ship industries. Nowacki (2000) found that the 

ship’s ribs, introduced during Roman Empire in 13th century, were the earliest 

geometry application in free-form shapes. Several curves, such as splines have been 

recorded in these ribs. The revolution is then continued by Liming (1944) and Coon 

(1947) who proposed conic construction in aeronautics manufacture (aircraft) design. 

Farin (1992) defined the conic as a perspective projection of a parabola in Euclidean 

three space into a plane. Figure 1.4 depicts these conics in aircraft. 

 
Figure 1.4: Conics as represented in cockpit development 

(Liming, 1944) 
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(Rockwood and Chambers, 1996; Prince, 1996). In 2012, Life of Pi is the latest film 

that applies this legacy technique successfully (Figure 1.6). Several concepts have 

been applied in the film for instance; geometric shapes and computational method 

which are strongly connected to this field. The applicability of CAGD will be 

continuously used throughout this study such as in spur gear design. 

 
Figure 1.6: The making of tiger in the film of ‘Life of Pi’ 

(http://99designs.com/designer-blog/2013/02/15/oscars-best-visual-effects/,  
accessed 20 March 2013) 

 
 

1.3  Problem Statement 

 

Gears are some of the most widely used elements in both applications such as 

in consumer and industrial machineries. The family of gears also includes spur, 

helical, rack and pinion, worm and bevel (Figure 1.7). In this study, spur gear is 

chosen as the case model due to its fundamental gear and the fact that it is simple to 

construct and manufacture. Babu and Tsegaw (2009); Yoon (1993); Bradford and 

Guillet (1943) and Higuchi et al. (2007) have identified an involute curve (Figure 

1.8) as the most common profiles used in designing the spur gear tooth. This curve is 

developed based on the approximation theories such as Chebyshev approximation 

(Higuchi and Gofuku, 2007) and the tracing points method (Margalit, 2005; Reyes et 

al., 2008). However, these employed methods are not accurate (or inexact) and only 

focus on the approximation concepts (Babu and Tsegaw, 2009). Furthermore, the 
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gear noise reduction and tooth strength are continually viewed as the main issues for 

consideration, with emphasis on the tooth shape (profile) modification (Yoon, 1993; 

Sweeney, 1995; Sankar et al., 2010; Åkerblom, 2001; Beghini et al., 2006). 

 
                    (a)                               (b)                                     (c) 

 
Figure 1.7: The illustration of the family of gears: (a) rack and pinion, (b) spur 

and (c) helical (www.gearsandstuff.com, accessed 20 March 2013) 
 

 
Figure 1.8: Generation of an involute curve 
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1.4 Significance of the Study 

 

This study will be a significant endeavour on the construction of the 

parametric (or known as an exact) curve theories namely, S and C-shaped transition 

curves with some related mathematical proofs. This study will also be beneficial to 

the designers or manufacturers in designing the spur gear profiles where the above-

mentioned curves can be applied as an alternative method of these profiles. In 

addition, the shape of these profiles is preserved exactly over the curvature continuity 

(G2 continuity). 

 

The applicability of the proposed designs is now measured using linear static, 

fatigue, normal modes, frequency and transient analyses with the material selected is 

Stainless Steel Grade 304 (AISI 304). These analyses covered all static and dynamic 

behaviour. At present, first-order Newton interpolating polynomial is used as a 

fatigue predictor to predict the fatigue mode in the design. Continuously, acoustic 

analysis is also carried out through the related experiment to perceive the sound or 

noise level in the proposed design with the material (AISI 304) remained. The 

comparison is made between the proposed and existing designs in all analyses. This 

study uses design efficiency (DE), probabilistic simulation (PS) and coefficient of 

variation (CV) as the lens of either the proposed designs are acceptable or otherwise 

by setting and computing the benchmark improvements and the design consistency 

amongst all models.  
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This study provides future recommendations on the function used in 

designing the curves, the use of integrated software as a significant technique and 

also to explore new applications. 

 

1.5 Research Objectives  

 

The objectives of this thesis are: 

a. To study the characteristics of the circle to circle templates together with the 

applied function, Said-Ball cubic curve. 

b. To design the S and C-shaped transition curves in accordance to the third and 

fifth cases of circle to circle templates and Said-Ball cubic curve with some 

mathematical proofs. 

c. To apply the S and C-shaped transition curves in spur gear design. 

d. To analyze the proposed and existing models using appropriate engineering 

analyses such as linear static, fatigue and frequency analyses. 

e. To find out the sound or noise level of the proposed and existing models 

throughout an acoustic experiment. 

f. To validate between the proposed and existing models using DE, PS and CV. 
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1.6 Thesis Organization 

 

This thesis begins by introducing the history of CAGD, its first ideas and 

involvements, contribution of this field, the early applications of CAGD technique 

and concept in various areas or industries. Chapter 1 also focuses on the explanation 

on the problem statement, significance of the study, research objectives and thesis 

organization. 

 

Chapter 2 reviews the differential geometry of the curves, which will be 

extensively used throughout this study. The present review deals with parameterized 

and plane curves, degree of smoothness (continuity) and also some notations and 

convections. Cubic Bézier curve in Bernstein form representation will be discussed 

followed by the discussion on the introduction of transition and spiral curves. 

Methods of designing these curves will be touched such as straight line to circle, 

circle to circle with an S-shaped transition and circle to circle with C-shaped spiral. 

The application of this curve design in highway and railway designs or in path 

planning will also be described in details. Chapter 2 also focuses on the investigation 

of gears by exploring its history, terminology and classification. The general 

description of spur gears is then discussed together with current curve that has been 

applied in design process. Finally, a brief overview of fabrication tools such as 

turning and wire-cut machines will be done. 

 

Theory development will be the focus of discussion in chapter 3. It consists 

of a review of Said-Ball cubic curve and its curve characteristics and the designing of 

S and C-transition curves. A method of designing these curves will be dictated by the 
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circle to circle templates (as described in chapter 2). Relatively, S and C-shaped 

curves will be analyzed by examining their curvature profiles and will be concluded 

with mathematical proofs.  

 

Chapter 4 further elaborates the use of S and C-transition curves in designing 

spur gear tooth profiles. These tooth profiles will be converted into spur gear solid 

models using the integrated software, Wolfram Mathematica 7.0 and CATIA V5. 

Meanwhile, the existing model is also explained in this chapter. 

 

By using structural response analysis, chapter 5 focuses on the evaluation of 

outcomes resulting from chapter 4. One of common schemes used is static strength 

analysis with the tool, FEA. FEA includes CAD model, meshing process with several 

conditions such as displacement, boundary and loading needed in this tool. This 

scheme will determine the stress distributions and safety factor amongst the models. 

In addition, fatigue analysis will be highlighted in this chapter and finally, the 

computation of DE in all spur gear models will be discussed and shown. 

 

Chapter 6 discusses the measurement of spur gear models by using the 

dynamic and acoustic response analyses. Dynamic response comprises of the 

schemes of normal modes, frequency and transient response analyses with the 

influence of the damping factor. These schemes will to find out for instance; natural 

frequency, displacement and stress distributions in real-time computing or in 

frequency domain amongst the models. Simultaneously, this analysis will be 

completed by using a simulation method. Conversely, the noise or sound levels of the 

models are evaluated experimentally. An experiment on the gear acoustics is initially 
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intended to study the effect of tooth shape (profile) amongst the proposed and 

existing models. This experiment involves fabrication of spur gear (model) and 

experimental setup as well as fundamental features which are mostly applied in this 

analysis. This chapter ends by briefly discussing the results obtained throughout the 

presentation of PS and CV. An approximate normal distribution is the method of 

representing PS. 

 

Chapter 7 discusses and summarizes the findings and highlights suggestions 

for further study. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Introduction to Differential Geometry of Curve 

 

Differential Geometry (DG) or known as the mathematical disciplines are the 

most fundamental properties in CAGD with its concentration on the shape of the 

objects (curves and surfaces). The disciplines for instance, calculus and linear 

algebra have been identified as a main contributor to DG. Since the 18th and 19th 

centuries, DG has been developed using such a theory of curves and surfaces in 

Euclidean (real vector) space (Schlichtkrull, 2011). Euler (1707-1783), Monge 

(1746-1818) and Gauss (1777-1855) are the early mathematicians involved in 

expanding this theory. For example, modern theory of plane curves is developed by 

Euler while in the year 1825, Gauss contributed his work on DG of surfaces (Schoen, 

2011). Schoen (2011) also explained that DG always begins with the plane curves.  

 

Plane curve is basically a special curve or profile (two-dimensional) situated 

along the plane (Lawrence, 1972). It can also be defined parametrically, explicitly or 

implicitly such as in (2.2)-(2.4) below. In general, a standard notation of this curve is 

depicted as 

2),(: ℜ→baz                                                     (2.1) 

with ),( ba  an open interval (Mare, 2012). Plane curves may visualize in closed or 

open region (Figure 2.1). Closed region means the curve is without endpoints 
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(enclosed area), whereas vice versa in open curve (Berger and Prior, 2006). On top of 

that, equation (2.2) below shows that the parametric form in a set of Cartesian 

coordinates with the relationships between dependent and independent variables, as 

mentioned previously in chapter 1. Hence, the form expressed as 

)),(),(()( tytxtz =                                                   (2.2) 

where )(txx =  and )(tyy =  with t  is in the real interval (non-negative) either open 

or closed range for instance, ]1,0[∈t  while an explicit form is represented by  

).(xgy =                                                         (2.3) 

It can be seen clearly that both forms, parametric and explicit have the same 

structures regarding their representation types. Accordingly, the following property 

(2.4) controls an implicit appearance. In addition, explicit and implicit functions are 

also identified as the non-parametric forms: 

.0),( =yxf                                                       (2.4) 

 
            (a)                                                  (b) 

 
Figure 2.1: The example of (a) open and (b) closed curves 

 
 

Every form has its own advantage and strength which depends on the 

application used (Du and Qin, 2007). However, the degree of freedom (DOF) (or a 

set of independent parameters) can be increased once the parametric form (curve) is 

employed (Martinsson et al., 2007). This advantage is highly desired in controlling 
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such shapes. Agarwal (2013) in his work clarified that the smooth curves can be 

generated using this form. Thus, it is mostly preferred in representing the plane 

curves such as in CAD or in geometric modelling. Alpers (2006) also described that 

the flexible CAD model will be constructed together with the model modifications 

can be changed easily and rapidly after applying this parametric form. Presently, one 

of the parametric forms is 

),sin,cos()( trtrtz =                                               (2.5) 

where trtx cos)( =  and trty sin)( = with r as the radius. Equation (2.5) will 

produce a closed curve as a circle. Conversely, this curve can also be generated 

implicitly using 

.0),( 222 =−+= ryxyxf                                         (2.6) 

The simple closed curve (circle) using (2.5) or (2.6) is displayed with r equals to 2 as 

shown in Figure 2.2. 

 
Figure 2.2: A circle defined parametrically and implicitly 

 
 

Relatively, the represented forms (definition) are always delivered along with 

some general notations and convections. These rules (calculus and linear algebra) are 
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useful in DG and to generate the smooth plane curve. Consider the Euclidean system 

consisting of the vectors, >=< yx AA ,A  and ., >=< yx BBB  The dot and cross 

products of these vectors are symbolized as, BA•  and ,^ BA respectively. Hence, 

these products can be expanded to (Juhász, 1998; Artin, 1957) 

,)sin(^

,)cos(

xyyx

yyxx

BABA

BABA

−==

+==•

θ

θ

BABA

BABA
                          (2.7) 

and where, θ  (or angle) is normally measured in anti-clockwise direction. Let )(tz be 

as defined in (2.2), thus its velocity (tangent) will be denoted by )(tz ′  and followed 

by the norm (speed) equivalents to 

,))(())(()( 22 tytxtz ′+′=′                                      (2.8) 

Equation (2.8) is essentially associated to compute the arc length of a curve as 

depicted by 

.)()( dttztS
b

a
∫ ′=                                                    (2.9) 

Jia (2014) and Hagen et al. (1995) claimed that the curve is regular (smooth) 

if the parametric form is employed and .0)( ≠′ tz  In addition, these velocities and 

speeds are fully dependent on this form. Due to 0)( ≠′ tz  consequently, the studies 

such as by Hoschek and Lasser (1993) and Faux and Pratt (1988) have discovered 

the existence of curvature along the curve (the regular characteristic will begin to 

form). Curvature can be prescribed as a local measure (set of measurement) of the 

curve shape (Sullivan, 2008). This is the best approach of describing the curves 

which are said to be entirely beautiful (Margalit, 2005). It is also agreed by Struik 

(1931) who said that the curvature is the major property in DG. 
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Initially, this curvature theorized through mathematicians such as Aristotle 

(384-322 BC) and Proclus (412-485 C.E.) are the Greeks developed the notations of 

curvature through classical Geek curves while Pergaeus (ca. 262 BC-ca. 190 BC) in 

his significant works about the proposed method to identify the radius of curvature 

and the integration between conic section and normal line (Margalit, 2005). Hence, 

the study of curvature is then indispensable since this exploration. Fermat (1601-

1665) and Descartes (1596-1650) expanded theory of curvature with some algebraic 

equations whereas Newton (1642-1727) in his remarkable contribution to conclude 

that the curvature is inversely proportional to the radius in all circles: 

.1)(
r

t =κ                                                     (2.10) 

This relationship is mainly used as the basis form in constructing smoothness 

of the curve namely, second order geometric (G2) continuity. The shapes in CAGD 

or in CAD are the current studies which apply this continuity. Euler (1707-1783) has 

mentioned that the parameterized curves should be lens to DG. He was responsible to 

modify the definition of curvature by including the tangent concept (Kline, 1972). 

These mathematicians are known as the father of DG. Hence, curvature, )(tκ  and its 

derivative have been referred to as 

.
)(

)()^()(
3tz

tztzt
′

′′′
=κ                                               (2.11) 

,
)(

)()(
5tz

tt
′

=′ φκ                                                  (2.12) 

where 

)}.()()}{()^({3)}()^({)()( 2 tztztztztztzdt
dtzt ′′•′′′′−′′′′=φ  
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Equation (2.12) is engaged as an indicator to recognize the plane curve either spiral 

or transition feature if certain conditions have been fulfilled (will be further 

discussed in chapter 3). An aesthetic (the concept of beauty and interactive) 

appearance amongst the curves can be found once this recognition is truly finished 

(Jacobsen et al., 2006). Due to the order derivatives which are applied in (2.12), as 

explained by Costa (2002) that the curve will be produced smoothly. Besides, Lin 

(2009) has confirmed that the order derivatives give an influence to the shape of 

curves becomes smoother and visually pleasing. After knowing these several 

theories, the descriptions of this chapter will be continued on cubic Bézier curve. 

 

2.2  Cubic Bézier Curve 

 

Cubic Bézier Curve (CBC) is a well-known form in the fields of CAGD, 

CAD and Geometric Modelling. Walton and Meek (1999 and 2001) described that 

CBC is frequently chosen as a function due to the properties such as one of the 

parametric curves (classification); the lowest degree polynomial to permit the 

inflection points (related to curvature extrema and stability reason); have the 

geometric and numerical properties that satisfy CBC suitable for use in CAGD or in 

CAD (flexibility) and ease to handle and implement when compare to other degree. 

 

Historically, Bézier representation is used as the basis form in CBC. This 

representation has been introduced to the world by Bézier (1910-1999) and de 

Casteljau (1930-1999), the French engineers to overcome the problems in 

representing and preserving smooth curves and surfaces in automobile company 

(Farin, 2002). For example, Citroën and Renault use this curve completely. 
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Throughout their life, Bézier (1910-1999) and de Casteljau (1930-1999) are also 

known as the pioneers in many areas such as solid, geometric and physical 

modelling. In general, Bézier curve of degree n  can be depicted as 

∑ ∈=
=

n

i
nii ttBPtZ

0
,   ]1,0[  ),()(                               (2.13) 

where  iP are defined as the control points and; 

    
otherwise     
0   

  
,0

,)1(
!)!(

!
)(,

nitt
iin

n
tB

iin

ni
≤≤

⎪⎩

⎪
⎨
⎧ −

−=
−

         (2.14) 

as the Bernstein polynomials or the Bernstein basis functions of degree n  (Qian et 

al., 2011). These polynomials are indispensable as the core of Bézier curves and have 

different form when compared with the rational Bézier curves. Statistically, 

!)!(
!

iin
n
−

 or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
n

 is also classified as the binomial coefficients (Sury et al., 2004). 

Farouki (2012) in his review describes several properties of Bernstein polynomials: 

a. Symmetry 

The basis functions, )1()( ,, tBtB ninin −=−  for ni ,...,0=  (mirroring). 

b. Non-Negativity (Positivity) 

The basis functions, 0)(, ≥tB ni  in all ].1,0[∈t  

c. Partition of Unity 

The total of binomial expansion, ∑ =
=

n

i
ni tB

0
, 1)( for ].1,0[∈t  

d. Recurrence Relation (de Casteljau’s algorithm) 

For example, the basis polynomial of degree 1+n  can be produced using the  

basis polynomial of degree n  where 

)()()1()( ,1,1, ttBtBttB ninini −+ +−=  since ].1,0[∈t  
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Sánchez-Reyes and Chacón (2005) state the basic properties of Bézier curves as 

follows: 

a. Endpoint interpolation expressed as 

0)0( PZ =  & nPZ =)1(  

b. Geometric continuity (Tangent) for instance, 

)()0( 01 PPnZ −=′  & )()1( 1−−=′ nn PPnZ  

c. Convex hull (Polygon) 

This property always exists in the control points of Bézier curve. It is also 

crucial for numerical stability. 

d. Invariant under affine transformations (Geometric mappings)  

This property engages with any blending of translations, reflections, stretches 

or rotations (original form remains) such that 

∑∑ ≡
==

n

i
nii

n

i
nii tBPtBP

0
,

0
, )())(( γγ  

e. Variation diminishing (VD) 

This property has verified that a Bézier curve alternates less than its control 

polygon (point) due to the influence of the segments. Moreover, VD is widely 

applied in the algorithms for example, intersection and fairness. 

 

These properties are well-suited for interactive design environments and are 

especially useful in path planning (Ho and Liu, 2009). Figure 2.3 shows the 

terminology of Bézier curve. 
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Figure 2.3: The art of Bézier curve (red colour) (Novin, 2007) 

 
 

If n = 3, (2.13) and (2.14) become 

)()()()()( 3,333,223,113,00 tBPtBPtBPtBPtZ +++=                 (2.15) 

where 

.)(   ),1(3)(

,)1(3)(      ,)1()(

3
3,3

2
3,2

2
3,1

3
3,0

ttBtttB

tttBttB

=−=

−=−=
                          (2.16) 

Both equations are characterized as CBC. CBC consists of four control points 

symbolized by P0, P1, P2 and P3 while the visualization of Bernstein functions (2.16) 

is displayed in Figure 2.4. The exploration of this chapter will be continued by 

introducing the most common types of parametric curves, namely transition and 

spiral curves. 
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Figure 2.4: Cubic Bernstein basis functions in 2D plot 

 
 

2.3  Transition and Spiral Curves 

 

Shen et al. (2013) explicate that transition curve is a segment with varied 

radius, gradually increasing or decreasing. This increment happens during the 

connection between two curves with different radius for instance, circular arc (curve) 

and tangent track (straight line). The idea of connecting curves is utilized to enable 

the gradual change (smooth) amongst the curvature and its acceleration or speed 

(Lindahl, 2001). Therefore, this idea becomes crucial since it has been widely used in 

civil and transportation engineering particularly; in highway or in railway design 

(Figure 2.5). 
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Figure 2.5: The example of road design using transition  

curves (Myers, 2001) 
 
 

In contrast, spiral curve defines as a plane curve with the curvature varies 

monotonically either increasing or decreasing (only in one sign) (Kurnosenko, 2009; 

Leyton, 1987). Since the denominator in (2.12) is always positive, thus monotonic 

curvature (MC) must satisfy the following spiral condition (SC) such as 

⎩
⎨
⎧

<′
>′

=
 decreasing is MC means 0)( If 

increasing is MC means 0)( If
SC

t
t

κ
κ

                         (2.17) 

Clothoid or also known as Euler or cornu spiral is one of the basic spirals which has 

the curvature changes linearly with its arc-length (Figure 2.6) (Yates, 1974). This 

review shows that the curvature and arc length have the same identity (identical) 

since the clothoid has its own function.  

 
Figure 2.6: Relationship between curvature and arc length in clothoid 

(Séquin, 2005) 
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However, in real situation, this curvature plot (Figure 2.6) might be difficult 

to achieve when using Bézier curve. The clothoid function is formulated with the use 

of parametric form and Fresnel integral (Abramowitz and Stegun, 1964; Meek and 

Walton, 2004) where 

0   ,
)(
)(

)( ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= t

ty
tx

tH β                                         (2.18) 

and β is the scaling factor, the Fresnel integrals are 

. ]
2

cos[)(  and  ]
2

sin[)(
0

2

0

2
duutyduutx

tt
∫=∫=

ππ
 

Some scholars believed that spiral curves can be recognized as aesthetic 

curves (Ziatdinov et al., 2013; Harary and Tal, 2012; Yoshida and Saito, 2006). 

Besides, several researchers also figured out that transition and spiral curves contain 

an equivalence relation for example, geometric smoothness has been used effectively 

to design these curves and both are highly useful for the same engineering fields 

(Levien, 2008; Perco, 2006; Kimia et al., 2003). Nevertheless, spiral curve requires 

some extensions on its curvature profile (to ensure either MC or not). 

 

2.4 Introduction to Clothoid Templates 

 

Clothoid or circle to circle templates have been introduced to the world by 

Baass (1984). These templates are firstly utilized in highway design to obtain two 

major outcomes for instance, to enhance the quality, comfortable and safe driving to 

the users as well as to design more natural alignments such as in highways that are 

suitable for its surrounding area while traditional approaches consist of straight line 

and circular arc (also known as horizontal alignment) (Figure 2.7) are difficult to 

achieve these outcomes (Baass, 1984). 




