OCEAN COLOUR REMOTE SENSING OF CASE
2 WATERS USING AN OPTIMISED
NEURAL NETWORK

SAUMI SYAHREZA

UNIVERSITI SAINS MALAYSIA

2016



OCEAN COLOUR REMOTE SENSING OF CASE
2 WATERS USING AN OPTIMISED
NEURAL NETWORK

by

SAUMI SYAHREZA

Thesis submitted in fulfilment of the requirements
for the degree of
Doctor of Philosophy

MARCH 2016



ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious

Most Merciful First and foremost, | give all praises and adoration to Allah
SWT for granting me good health, patience, and wisdom to complete this study. I
pray for peace and for a blessing on all His noble Prophets and Messenger, and in
particular on the last of them all, the blessed Prophet Muhammad SAW.

I am highly grateful to my supervisors, Professor Mohd Zubir Mat Jafri and
Associate Professor Lim Hwee San from School of Physics, Universiti Sains
Malaysia, for their consistent guidance, time devotion, and supports throughout my
study. | have been honoured to carry out this work under their instructions. Their
passion in education and borderless academic has enabled me to accomplish this
project and establish of my scientific expertise.

Also, | am grateful to the members of our research group Messrs.” Rifhan,
Haidar, Sinan, Ahmed Nazri, Beh, Tan, E.K Makamah. All your contributions to this
work are highly appreciated.

I would also like to thank all staff (administrative, academic, laboratory,
technical and technical) and students from School of Physics, Universiti Sains
Malaysia, especially the staff of Engineering Physics and Geophysics Laboratory for
their cooperation and assistance during the field work, Messrs. Yaakob Othman and
Shahil Ahmad Khosani. Also, other members of the academic staff of the School of
Physics, Associate Professor Dr. Khiruddin Abdullah, Dr. Md. Noordin Abu Bakar
and Dr. Ahmad Fairuz Bin Omar. My appreciations also come to Dr. R. Richter of
DLR - German Aerospace Centre, Weslling, Germany for ATCOR 2/3 software used

in this research. Too many whom | cannot mention one by one in this limited space.



| say thank you. I also particularly grateful for all the financial support and
discussions I received from (1) DIKTI Scholarship-Batch 3, Ministry of Education,
Indonesia; (2) Research University-Postgraduate Research Grant Scheme (RU-
PRGS) USM, Grant number: 1001/PFIZ1K/8442020; (3) BBNAD assistant, Aceh
Government, Indonesia; (4) PORSEC and INCOIS for the opportunity to attend the
workshop and conference on active microwave and ocean colour remote sensing at
Kochi, Kerala-India; (5) GISTDA-ISPRS Student Consortium, AARS, and Burapha
University, for attended the 8th Summer School 2012 on “Advance Remote Sensing
for Coastal Zone Monitoring and Disaster Management” at Thailand; (6) Yangtze
Environmental Specimen Bank-Tongji University for attended the training and
conference on regional pollution and environmental changes at Shanghai, China.

My deepest appreciations go to my family for their understanding, support
and encouragements, My Mother, my dearest wife (dr. Rina), my lovely boy (Naufal)
and my siblings, my elder sister Elfiana, S.Kep, Adi, S.T and Budi, S.T. | also
appreciate all the support and contributions of my colleagues in place of work; Dr. M
Syukri Surbakti, Dr. Nazli, M.Si, T. Khairuman, M.Si, and Nasrullah Zaini, M.Sc.
May Allah reward you in the manifold for your contributions. Also, very special
thanks to all my friends whom | cannot mention one by one in this limited space.
Finally, | particularly thank the Syiah Kuala University, Aceh for the grant to pursue

my doctoral program.

SAUMI SYAHREZA
2015



TABLES OF CONTENTS

Page

ACKNOWLEDGEMENTS i
TABLES OF CONTENTS iv
LIST OF TABLE viii
LIST OF FIGURES Xi
LIST OF SYMBOL XV
LIST OF ABBREVIATION Xvii
ABSTRAK Xviii
ABSTRACT XX
CHAPTER-INTRODUCTION 1
1.1 Research background 1
1.1.1 Coastal ocean colour 2
1.1.2 Case 1 and Case 2 waters 3
1.1.3 Case 2 ocean colour algorithms 5
1.1.4 Case studies 7

1.2 Research problems 7
1.3 Research objectives 9
14 Research scopes 10
1.5 Research novelties 11
1.6 Outline of the thesis 12
CHAPTER 2-LITERATURE REVIEW 14
2.1 Introduction 14
2.2 Ocean colour 14
2.3 Optical oceanography 16
2.3.1 Inherent optical properties 17
2.3.2 Apparent optical properties 20

2.4 Optical constituents of the ocean 23
2.5 Statistical techniques 24
25.1 Input variables selection 25

2.6 Algorithms for Case 2 waters 29
2.6.1 Empirical model 29



2.6.2
2.6.3
2.7
2.8

Optical model

Neural network model

Review the algorithms of Case 2
Summary

CHAPTER 3-METHODOLOGY

3.1

3.2
3.2.1
3.2.1

3.3
3.3.1
3.3.2
3.3.3
3.34
3.35
3.3.6
3.3.7
3.3.8
3.3.9
34.1
3.4.2
3.4.3
344
3.4.6
3.4.7

3.5

CHAPTER 4-DERIVING OCEAN COLOUR PRODUCTS USING

4.1

4.2

4.3
4.3.1
4.3.2

4.4
44.1

Introduction

Study areas

Penang coastal

Kelantan coastal

Materials and methods

Hardware

Software

Fieldwork in Penang coastal
Fieldwork in Kelantan coastal
Ocean colour remote sensing data
Simulated remote sensing data
Multitemporal data
Pre-processing steps

Extraction of remote sensing data
Empirical algorithms

Optical algorithm

Neural network algorithm

Development of the optimised NN models

Calibration and evaluation
Procedures and flow chart
Summary

EMPIRICAL ALGORITHMS
Introduction

Regression analysis

Simple linear regression model
SLR model for Landsat TM
SLR model for AVNIR-2

Multivariate linear regression model

MVLR model for Landsat TM

32
36
42
43

45
45
45
45
48
50
50
50
51
54
59
61
62
62
65
66
68
69
76
80
80
84

85
85
85
88
88
93
98
98



4.4.2
4.5

451

452
4.6

MVLR model for AVNIR-2

Multitemporal study

Ocean colour from multitemporal Landsat TM
Ocean colour from multitemporal AVNIR-2
Summary

CHAPTER 5-SPECTRA SIGNATURES OF CASE 2 WATERS

5.1

5.2
5.2.1

5.3
5.3.1
5.3.2

5.4
54.1
5.4.2
5.4.3

5.5
5.5.1
5.5.2

5.6

5.7

5.8

CHAPTER 6-DERIVING OCEAN COLOUR PEODUTCS USING

6.1

6.2
6.2.1
6.2.2
6.2.3
6.2.4

6.3
6.3.1
6.3.2

AND THE ALGORITHM USING SIMULATED
SATELLITE DATA

Introduction

Field spectra measurement

Spectral signature in the coastal area of Kelantan
Empirical algorithms using hyperspectral data
SLR regression analysis

MVLR analysis using in-situ spectral data
Water clarity estimation using simulated satellite data
Regression analysis using simulated Landsat TM
Regression analysis from simulated AVNIR-2
Best SLR model using simulated data

MVLR analysis using simulated satellite data
MVLR model from simulated Landsat TM
MVLR model from simulated AVNIR-2

Optical model from simulated satellite data
CA-NN model from simulated satellite data
Summary

MODEL BASED APPROACHES
Introduction

Optical model

OM for Landsat-TM

OM for AVNIR-2

OM using multitemporal Landsat TM
OM using multitemporal AVNIR-2
Optimised NN model

NN model based on CA for Landsat TM
NN model based on CA for AVNIR-2

Vi

100
101
101
105
108

109
109
109
109
112
112
114
116
116
117
117
118
118
119
120
121
123

125
125
126
126
127
129
131
133
133
136



6.4 Optimised NN model using multitemporal satellite data
6.4.1 CA-NN model for Landsat TM
6.4.2 PCA-NN model for Landsat TM
6.4.3 CA-NN model for AVNIR-2
6.4.4 PCA-NN for AVNIR-2
6.5 Implementing the retrieval algorithm on imagery data
6.6 Summary

CHAPTER 7-CONCLUSION AND FUTURE RESEARCH
7.1 Conclusion
7.2 Future research

REFERENCES
APPENDIX A

APPENDIX B

APPENDIX C

LIST OF PUBLICATIONS

vii

139
139
141
144
146
150
154

156
156
158

159
174
178
181
185



Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.
Table 4.1.
Table 4.2.
Table 4.3.
Table 4.4.
Table 4.5.
Table 4.6.

Table 4.7.

Table 4.8.

Table 4.9.

Table 4.10.

Table 5.1
Table 5.2

Table 5.3.

LIST OF TABLE

The statistics describing the variation of Landsat TM
reflectance values and Csand C¢ measured on 02 February
1999, 22 March 1999, 20 January 2000 and 30 July 2000 in
the coastal area of Penang.

The statistics describing the variation of AVNIR-2
reflectance values and Cs and C., measured on May 2,
2010 and March 20, 2011 in the coastal area of Penang.

The summary of Landsat TM satellite data used in the
study.

The summary of AVNIR-2 satellite data used in the study.
Wavelengths of TM bands used in this study.

The SLR model for Cs and Cgy using Landsat TM.
Wavelengths of ALOS/AVNIR-2 bands used in this study.
The SLR model for Csand Cg using AVNIR-2.

The MVLR model for Csand Cg, based on Landsat TM.
The MVLR model for Csand Cgp based on AVNIR-2.

Correlation (r?) between Cs and Cgy with independent TM
wavebands 1 to 4 (R4ss— Rs30) and five waveband ratios.

The MVLR model based on multitemporal Landsat TM
data (1999/2000) for the prediction of Cs and Cgp.

Correlation (R®) between Cs and Cgy with independent
AVNIR-2 wavebands 1 to 4(R4s0 — Rszs) and five waveband
ratios.

MVLR model based on multitemporal AVNIR-2 data
(2009/2010) for the prediction of Cs and Ccp.

SLR models for retrieving TURB and SDD (m).
MVLR model for retrieving TURB and SDD.

R? between TURB, SDD and Simulated TM Bands.

viii

Page

52

53

59
60
92
93
93
98
99

100

102

103

105

107
113
115

116



Table 5.4.

Table 5.5.

Table 5.6.

Table 5.7.

Table 5.8.

Table 6.1.

Table 6.2.

Table 6.3.

Table 6.4.

Table 6.5.

Table 6.6.

Table 6.7.

Table 6.8.

Table 6.9.

Table 6.10.

Table 6.11.

Table 6.12.

Table 6.13.

Table 6.14.

R? between TURB, SDD and Simulated TM Bands.

SLR models using simulated satellite data for TURB and
SDD.

MVLR model using simulated satellite for TURB and SDD.

The summary of optical TURB and SDD algorithms from
Landsat TM.

Scheme of various input AVNIR-2 band reflectances with
CA for the Cs and Cqp, estimation.

The summary of optical Csand C., model from Landsat TM
bands based on less multicollinearity (VIF<"10).

The summary of optical Csand C, model from Landsat TM
bands 1-3.

The summary of optical Cs and Ccy model from AVNIR-2
bands based on less multicollinearity (VIF<"10).

The summary of optical Cs and Ccy model from AVNIR-2
bands.

The OM based from field based multitemporal Landsat TM
data (1999/2000) for the prediction of Cs and Cgp.

The OM based from field based multitemporal AVNIR-2
data (2009/2010) for the prediction of Cs and Cgp.

The CA results on four dates Landsat TM data.

Scheme of various input TM-band reflectances with CA for
the Cs and Ccn estimation.

The CA results on two dates AVNIR-2 data.

Scheme of various input AV band reflectances with CA for
the Cs and Cgp estimation.

Coefficient of correlation (r) matrix of multitemporal
Landsat TM bands reflectance.

Coefficient of correlation (r) matrix of multitemporal
Landsat TM bands reflectance after PCA transformation.

Eigenvectors and Eigenvalues of the variance-covariance
matrix.

Scheme of various input data from CA for the Cs and Cgy
prediction.

117

118

120

121

122

126

127

128

128

129

131

134

135

137

138

140

141

142

143



Table 6.15.

Table 6.16.

Table 6.17.

Table 6.18.

Table A.1.

Table A.2.

Table A.3.

Table C.1.

Tabel C.2:

Table C.3.

Table C.4.

The CA results on two dates AVNIR-2 data.

Coefficient of correlation (r) matrix of multitemporal
Landsat TM bands reflectance before and after PCA
transformation.

Eigenvectors and Eigenvalues of the variance-covariance
matrix.

Scheme of various input data from CA for the Cs and Cgp
prediction.

Sea truth data collected in the Penang coastal area during
the Landsat TM overpasses on February 02, 1999, March
22,1999, January 22, 2000 and July 30, 2000.

Sea truth data collected in the Penang coastal area during
the AVNIR-2 overpasses on May 02, 2010 and March 20,
2011.

Sea truth data collected in the Kelantan coastal waters on
November 10, 2011

Correlation (R?) of independent band and derivative band
indices with Cs and Cp, on February 02, 1999.

Correlation (R?) of independent band and derivative band
indices with Csand Ccn on March 22, 1999.

Correlation (R?) of independent band and derivative band
indices with Csand Cgp, on January 20, 2000.

Correlation (R?) of independent band and derivative band
indices with Cs and C¢p, on July 30, 2000.

146

147

147

148

174

176

177

181

182

183

184



Figure 2.1.

Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.

Figure 2.6.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 3.8.

LIST OF FIGURES

Ocean hue is due to the phenomenon of the absorption and
scattering of sunlight.

The geometry used to define inherent optical properties.
Illustration of irradiance reflectance.

Illustration of remote sensing reflectance.

Structure of nonlinear model of a neuron.

Activation functions are shown: (a) Threshold function, (b)
linear function, and (c) sigmoid function for the varying
slope parameter o.

Location of the first study area, where the position of the
Penang coastal waters is located on the northwest part of
Peninsular Malaysia. View of Penang map uses THEOS
band 1-3.

Location of the second study area, where the position of the
Kelantan coastal waters is located in northeaster part of
West Malaysia.

The sampling distributions, triangles of green and orange
show the sites of the sample which were collected
concurrently with Landsat TM and AVNIR-2 overpasses,
respectively.

Illustration of how Secchi disk water

determined.

clarity was

In situ reflectance spectra, (a) optimization procedure-
position detector over the Spectralon panel, (b) R
measurement procedure-position detector above sea surface,
redrawn from.

Distribution of in-situ measurements (green triangle)
including SDD, water sample collection, and spectral
reflectance measurement in the coastal area of Kelantan.

Spectral range of simulated satellite instruments, Landsat
TM and AVNIR-2, redrawn from.

Schematic overview of the iterative tuning ATCOR-2/3
method.

Xi

Page

15
18
22
23

40

41

46

48

54

56

57

58

61

65



Figure 3.9.

Figure 3.10.

Figure 3.11.

Figure 3.12,

Figure 3.13.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

Schematic overview of input variable selection methods for
optical algorithms.

A NN diagram in this study.

Illustration example of schematic diagram of the input and
for type 2 output (Cs and Ccpj) of a NN model.

Flow chart diagram illustrating the process of NN model
using by back propagation algorithm.

Schematic overview of the methodology applied in this
study.

Scatter plots of in-situ multi-dates Cs versus Cgy
simultaneously with Landsat TM satellite overpasses; (a)
February 2, 1999, (b) March 22, 1999 and (c) January 20,
2010.

Scatter plots of in-situ multi-dates Cs versus Cgpy
concentration simultaneously with AVNIR-2 satellite
overpasses; (a) May 2, 2010, (b) March 20, 2011.

The Landsat TM scene-derived target spectra of vegetation
(yellow) and clear water/deep water (white) compared to
library spectra of clear water and vegetation (green).

Landsat TM ATCOR-2/3 corrected reflectance spectra in
the coastal area of Penang on February 2, 1999(a), March
22,1999(b), January 20, 2000(c) and July 30, 2000(d). Each
reflectances based on data selected randomly from corrected
images from among pixels representing specific Cs and Cgp
concentration.  Note the 6 band is illustrated only, it is not
indicated a real band.

The AVNIR-2 scene-derived target spectra of vegetation
and clear water/deep sea (white) compared to library spectra
of clear water and vegetation (green).

AVNIR-2 corrected surface reflectance spectra for the
Penang coastal area under different Cs (49.88-175.40 mg/L)
and Cgn (3.06-15.50 pg/L) in the period of May 2, 2010 (a)
and March 20, 2011(b). Each reflectances based on data
selected randomly from correcting images.

Cs retrieved result using multitemporal Landsat TM data
based on the MVLR model in the coastal area of Penang.

Ccni retrieved result using multitemporal Landsat TM data
based on the MVLR model in the coastal area of Penang.

Xii

69
72

79

75

82

86

87

89

90

94

95

104

104



Figure 4.9.

Figure 4.10.

Figure 5.1.

Figure 5.2

Figure 5.3

Figure 5.4.

Figure 5.5.

Figure 6.1.

Figure 6.2.

Figure 6.3.

Figure 6.4.

Figure 6.5.

Figure 6.6.

The Cs retrieved result using multitemporal AVNIR-2 data
based on the MVLR model in the coastal area of Penang.

The Cgy retrieved result using multitemporal AVNIR-2 data
based on MVLR model in the coastal area of Penang.

Six classes of water reflectance spectra R(A) measures
above the surface under different TURB (4-42 NTU) and
different SDD (0.43-1.20 m) during the Kelantan study on
November 10, 2011. In-situ reflectance change (increasing
from the bottom up).

The r curve between the in-situ water surface reflectance
and ocean colour products (TURB and SDD) at different
wavelengths in November 2011.

Relationship between above surface TURB and SDD during
the Kelantan study in October 2011.

Comparison results from OM and CA-NN model (a) for
TURB and (b) for SDD (b) using simulated Landsat TM.

Comparison results from OM and CA-NN model (a) for
TURB and (b) for SDD using simulated AVNIR-2 data.

Figure Scatter plot and correlation trend lines between C;
estimated from multitemporal OM of Landsat TM data
against Cs measured in the field on four dates (February 2,
1999 to July 30, 2000).

Scatter plot and correlation trend lines between Cg
estimated from multitemporal OM of Landsat TM data
against C¢n measured in the field on four dates (February 2,
1999 to July 30, 2000).

Scatter plot and correlation trend lines between surface
water Cs estimated from multitemporal OR algorithm of
AVNIR-2 data against Cs; measured in the field on two dates
(February 5, 2010 and March 20, 2011).

Scatter plot and correlation trend lines between surface
water Cp estimated from multitemporal OM of AVNIR-2
data against Ccy measured in the field on two dates
(February 5, 2010 and March 20, 2011).

Example of Cs in January 20, 2000 for RMSE and R® as a
function of the number of hidden layer node.

Example of C; on May 02, 2010 for RMSE and R® as a
function of the number of hidden layer node.

Xiii

107

108

111

112

113

123

123

130

130

132

132

136

138



Figure 6.7.

Figure 6.8.

Figure 6.9.

Figure 6.10.

Figure 6.11.

Figure 6.12,

Figure 6.13.

Figure 6.14.

Scatter plot and correlation trend lines between Cs estimated
from PCA-NN; model using multitemporal Landsat TM and
Cs measured in the field: (a) during training, and (b) during
validation of PCA-NN; model.

Scatter plot and correlation trend lines between Cg
estimated from PCA-NN; model using multitemporal
Landsat TM and Cg, measured in the field: (a) during
training, and (b) during validation of a PCA-NN; model.

Scatter plot and correlation trend lines between surface
water Cs estimated from CA-NN; model using
multitemporal AVNIR-2 and C; measured in the field: (a)
during training, and (b) during validation of CA-NN; model.

Scatter plot and correlation trend lines between surface
water Cgn estimated from CA-NN; model using
multitemporal AVNIR-2 and C., measured in the field: (a)
during training, and (b) during validation of CA-NN; model.

Examples of the spatial distributions of Cs in the coastal
area of Penang using (a) OM and (b) PCA-NN; model from
Landsat TM Imagery on January 20, 2000.

Examples of the spatial distributions of C, in the coastal
area of Penang using (a) OM and (b) PCA-NN; model from
landsat TM imagery on January 20, 2000.

An example of the spatial distributions of Cs in the coastal
area of Penang using (@) OM and (b) CA-NN; model from
AVNIR-2 imagery on May 02, 2010.

An example of the spatial distributions of C¢ in the coastal

area of Penang using (a) OM and (b) CA-NN; model from
AVNIR-2 imagery on May 02, 2010.

Xiv

144

144

149

149

151

152

153

154



Symbols

ao, 0k, 0 and S
BO.1)

B, L)

p

p ()

5

o

7%
AQ

AA
AV

LIST OF SYMBOL

Descriptions

The coefficients derived from regression analysis
Solid angle

Spectral volume scattering function
Internal Fresnel reflectance

Spectra reflectance

Air-water Fresnel reflection

Slope

Angle

Spectral radiant intensity

Area

Volume of water

Thickness of water

Volume of water

Incident power-absorb

Incident power

Incident power- scatter

Incident power- transmit

Spectral radiant power

Scattered out of the beam at an angle v
Specific absorption of phytoplankton
Specific absorption of suspended matter
Specific absorption of yellow substance
Activation potential

Absorption coefficient of phytoplankton
Absorption coefficient of suspended matter
Absorption coefficient of absolutely pure water
Absorption coefficient of yellow substance
Absorption coefficient

Spectral absorptance

Backscattering coefficient

Forwards scattering coefficient

Scattering coefficient

Specific backscattering of phytoplankton
Specific backscattering of suspended matter
Bias

Water backscattering coefficient
Scatterance

Fraction of incident power

Beam attenuation coefficient

Covariance of each bands

Calibration factor

Coefficient

XV



error
Downwelling plane irradiances
Incident irradiance

Energy of wavelength reflected
Energy of wavelength incident
Spectral upwelling

Activation function

Logistic activation function
Intensity

Water leaving radiance, Radiance
Refractive index

Q Factor

Water-air reflection

Remote sensing reflectance

Below water reflectance
Above-water reflectance

Spectral irradiance reflectance
Irradiance reflectance just beneath the water surface
Pearson correlation

Coefficient of determination
Radiance from reference panel
Transmittance

Weights

normalized input value

Input signal

Output neurons

Parameters of ocean colour products
Depth

XVi



ALOS
ANNs
AOPs
ATCOR-2
AVNIR
BPNN
CA-NN
Ceni

Cs
CZCS
DEM
ETM

HR

IOPs
IVS
JAXA
Landsat TM
MLPNN
MNLR
MODIS
MSS
MVLR
MVR
MVRM
NASA
NN

NTU
OCTS
oM

OR

Pan

PC
PCA-NN
PLS
POLDER
RBV
RMSE
SDD
SeaWiFS
SLR
SLRTM
TSS
TURB
VIF

LIST OF ABBREVIATION

Advanced land observing satellite

Anrtificial neural networks

Apparent optical properties

Atmospheric correction-2

Advanced visible and near-infrared radiometer
Back propagation neural network
Correlation analysis-neural network
Chlorophyll-a concentration

Suspended sediment concentration

Coastal zone colour scanner

Digital elevation model

Enhanced Thematic Mapper (ETM)

High resolution

Inherent optical properties

Input variable selections

Japan aerospace exploration agency

Land remote sensing satellite-Thematic Mapper
Multilayer perceptron neural network
Multivariate nonlinear regression

Moderate resolution imaging spectroradiometer
Multi spectral scanner

Multivariate linear regression

Multivariate regression

Multivariate regression model

National aeronautic space of America

Neural network

Nephelometric turbidity units

Ocean colour and temperature scanner
Optical model

Optical regression

Panchromatic

Personal computer

Principal correlation-analysis neural network
Partial least square

Polarization and directionality of Earth’s reflectances
Return beam vidicon

Root mean square error

Secchi disk depth

Sea-viewing Wide Field-of-view sensor
Simple linear regression

Shuttle radar topography mission

Total suspended solid

Turbidity

Variance inflation factor

XVii



PENDERIAAN JAUH WARNA LAUT BAGI PERAIRAN KES 2

MENGGUNAKAN RANGKAIAN NEURAL YANG DIOPTIMUMKAN

ABSTRAK

Kajian ini memberi tumpuan pada pembangunan algoritma baru untuk
mendapatkan produk warna laut di kawasan perairan kes 2 menggunakan model
rangkain neural (NN) dari pelbagai jenis data penderiaan jauh sebagai input. Model
NN dan parameter latihan dioptimumkan dengan input yang dipilih berdasarkan
analisis korelasi (CA) dan analisis komponen utama (PCA). Di pesisiran pantai
Kelantan, penggunaan data spektra pantulan in situ dan simulasi penderiaan jauh
satelit telah dikaji untuk menganggar dua parameter kejelasan iaitu kekeruhan
(TURB) dan cakera kedalaman Sechhi (SDD). Data simulasi Landsat TM dan
AVNIR-2 diuji berdasarkan pengukuran spektra pantulan in situ menggunakan ASD
spectroradiometer. Keputusan menunjukkan bahawa data simulasi Landsat TM dan
AVNIR-2 membenarkan tafsiran TURB dan SDD. Di kawasan pesisiran pantai Pulau
Pinang, penggunaan data satelit penderiaan jauh tunggal dan gabungan pelbagai
tarikh telah dikaji untuk menganggar sediment terampai (Cs) dan kepekatan klorofil
(Ccni). Pengukuran sampel air pelbagai tarikh telah dibuat selari dengan perolehan
data satelit Landsat TM dan AVNIR-2 di lokasi terpilih dari Februari 1999 hingga
Mac 2011. Data pantulan dari imej Landsat TM dan AVNIR-2 yang diperoleh
menggunakan perisian ATCOR-2/3 diambil pada setiap lokasi sampel air dan data
pantulan tersebut diperiksa dengan pelbagai algoritma. Walaupun hubungan yang
signifikan telah dikesan antara nilai-nilai pantulan terhadap Cs dan C., apabila

menggunakan model regresi linear berganda dan optikal, namun aplikasi NN

xviii



menunjukkan prestasi yang lebih baik untuk pemodelan dalam kajian ini. Keputusan
menunjukkan bahawa ketepatan penganggaran untuk ciri-ciri dua produk warna laut
menggunakan NN adalah jauh lebih baik daripada algoritma empirikal dan optikal.
Keputusan juga menunjukkan bahawa NN yang dioptimumkan berdasarkan analisis
korelasi (CA) dan analisis komponen utama (PCA) boleh meningkatkan
penganggaran ciri-ciri produk warna laut. Dengan menggunakan lima pembolehubah
bebas (TM1, TM2, TM4, TM5 dan TM7) sebagai input, model rangkain neural
(PCA-NN) dari data Landsat TM gabungan pelbagai tarikh menunjukkan sedikit
peningkatan prestasi pencarian Cs and Cen (R® = 0.93 dan R? = 0.92 untuk RMSE =
22.38 pg/L dan RMSE = 1.29 pg/L) berbanding dengan model NN dan CA-NN.
Sebaliknya, model CA-NN dengan empat pembolehubah bebas (AV1, AV3, AV4
dan AV3/AV2) daripada data AVNIR-2 gabungan pelbagai tarikh menunjukkan
prestasi ramalan yang lebih baik (R? = 0.93 dan R? = 0.92 untuk RMSE = 22.38 ng/L
dan RMSE = 1.29 nug /L) berbanding dengan model NN dan PCA-NN. Walaupun
PCA-NN menggunakan data AVNIR-2 gabungan pelbagai tarikh telah berkurang
sedikit kuasa generalisasi, namun pengoptimuman model PCA-NN menunjukkan
prestasi ramalan yang lebih baik berbanding NN model. Oleh itu, ia memungkinkan
untuk membangunkan algoritma warna laut di mana CA dan PCA digunakan sebagai

kaedah pemilihan input pembolehubah pada NN untuk pemerhatian penderiaan jauh.
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OCEAN COLOUR REMOTE SENSING OF CASE 2 WATERS USING

AN OPTIMISED NEURAL NETWORK

ABSTRACT

This study focused on the development of the new algorithm for retrieving
ocean colour products of Case 2 water types using the neural network (NN) model
and multiple types of remotely sensed data as inputs. The NN model architecture and
training parameters were optimised, with inputs being selected based correlation
analysis (CA) and principal component analysis (PCA). In Kelantan coastal waters,
the use of in situ reflectance spectra and simulated satellite data for estimation of two
water clarity parameters namely turbidity (TURB) and Secchi disk depth (SDD) have
been studied. The simulated Landsat TM and AVNIR-2 data were tested against in
situ reflectance spectra measurements using ASD Spectroradiometer. The results
show that the simulated Landsat TM and AVNIR-2 data enables the interpretation of
TURB and SDD. In Penang coastal area, the use of single and multitemporal remote
sensing data for estimation of Cs and C., has been studied. Multidate in-situ water
sample measurements concurrent with Landsat TM and AVNIR-2 satellite data were
obtained in selected locations from February 1999 to March 2011. The irradiance
reflectances of Landsat TM and AVNIR-2 derived by ATCOR-2/3 software from the
water sampling sites were extracted and examined with numerous algorithms.
Although significant correlation was detected between reflectance values of Cs and
Ccni When using the multivariate, and optical model, however the application of NN
appears to produce superior performance in modelling transfer function in this study.

The results show that the estimation accuracy for characteristics of two ocean colour

XX



products using neural network is much better than those empirical and optical
algorithms. The results also indicated that NN based on CA and PCA can improve
the estimation of these characteristics. Using five independent variables (TM1, TM2,
TM4, TM5 and TM7) as inputs, PCA-NN model from multitemporal Landsat TM
data has shown slightly improved the retrieval performance of Cs and Cgy (R? = 0.93
and R? = 0.92 for RMSE = 22.38 mg/L and RMSE = 1.29 ug/L) in comparison with
the NN and CA-NN model. On contrary, the CA-NN model with four independent
variables (AV1, AV3, AV4 and AV3/AV2) of multitemporal AVNIR-2 data has
shown better prediction performance for Csand Cen With (R? = 0.93 and R? = 0.92 for
RMSE = 22.38 mg/L and RMSE = 1.29 pg/L) in comparison with the NN and PCA-
NN model. Although the PCA-NN using the multitemporal AVNIR-2 data has a
slightly reduce generalization power, however the optimization of the PCA-NN
model has demonstrated better prediction performance in comparison with the NN
model. Therefore, it may be possible to develop ocean colour algorithms in which
CA and PCA are used as methods for selecting input variables to a NN for remote

sensing observation.

XXI



CHAPTER 1

INTRODUCTION

1.1 Research background

Coastal areas are the important ecological system that has a strategic value
for many nations. Coastal areas are generally defined as the transition area between
terrestrial and sea, the landward boundary covering part of the dry and wetland that
is still affected by the oceanography properties at the sea surface, such as wind, tidal,
seawater intrusion in the coastal, which characterised by a typical vegetation. On the
other hand, the boundary of the coastal areas to the seaward reaches the outer limit of
the continental shelf, where the characteristics of its waters are still influenced by a
natural process that occurs in the terrestrial environment, such as sedimentation and
flow of fresh water on estuarine, or process caused by human activities such as
deforestation and contamination.

The coastal area is a very complex, dynamic environment and it is the most
productive area of the global ocean (Chen-Tung Arthur et al., 2003; Muller-Karger et
al., 2005). It is also the area for processing of nutrients and dissolved materials
derived from the terrestrial environments to the coastal ocean. A large number of
biological, geological, chemical, and physical processes occur over a multi-time and
space scales. In addition, the optical properties of coastal waters also have particular
complexity. It is characterised by the propagation and utilization of light in the water
body varies over time and space scales conforming to changes in concentrations of
optically active ocean components, such as phytoplankton, suspended sediments and
coloured dissolved organic matter (Miller et al., 2005). Currently, the coastal areas

are facing great pressure from various excessive human activities, either directly or



indirectly, starting with the intense concentration of population, overfishing, and
mineral extraction, changing sediment load, coastal deforestation, pollution, tourism,
global warming and sea level rise. These pressures continue to increase, and will
threaten the future of countless ecosystems. Many attempts have been made by
researchers in studying coastal waters to obtain a better understanding of earth
system processes for climate change or environmental change research for
integrated coastal management. Unfortunately, the dynamic nature of coastal waters
made most measurements and traditional data collection becoming ineffective
(Miller et al., 2005). In addition, the quality and quantity of the measurements can
have different in every moment. This task would cost relatively much and requires a
long time. It becomes more uneconomical when making detailed measurements on
the variability of various coastal processes for large coverage simultaneously.

In contrast, space-based remote sensing offers unique large-scale synoptic
information to address the complex environment of coastal waters. The periodic
satellite overpass enables the routine and cost-effective collection of various
observations over large areas and often inaccessible locations from the coast and
adjacent waters in a short period of time. This set of satellite observations meets the
needs of many users. Coastal managers, fishermen, and environmental scientists are
some of the many groups that take advantage of oceanographic products derived

from remote sensing observations (Brown et al., 2005).

1.1.1  Coastal ocean colour
Since 1970, there has been important progress in the oceanic observations.
Spacecraft and sensors are exclusively developed to the study of ocean colour, for

example, CZCS, OCTS, SeaWiFS, POLDER, MODIS, Landsat TM/ETM,



ALOS/AVNIR-2, IKONQOS, Etc. The goal of these remote sensors are to obtain
information on processes such as the distribution and dissemination of dissolved
organic  matter, identifying phytoplankton, biogeochemical assessment,
understanding changes in benthic communities in clear, shallow tropical coral reefs,
and monitoring coastal water quality (Bukata, 2005; Muller-Karger et al., 2005).

Many efforts have been made to estimate and map coastal and ocean colour
products using these ocean colour sensors (Garcia et al., 2005; Miller & McKee,
2004; Reinart & Reinhold, 2008; Tilstone et al., 2015; G. Wu et al., 2014; M. Wu et
al., 2009). Investigations also suggest that the high resolution satellite imageries such
as Landsat TM/ETM, ALOS/AVNIR-2, and SPOT may be more useful to gain
information in coastal waters (Alashloo et al., 2013; Allan et al., 2011; Bonansea et
al., 2015; Pattiaratchi et al., 1994; Sakuno et al., 2014; G. Wu et al., 2013).

The observations of ocean colour are particularly important because they are
useful to estimate the spatial distribution of routine and the rate of change in a variety
of organic carbon in the ocean. It is related to living and natural waste materials and
with coloured dissolved the organic matter (CDOM). These data are valuable for the
coastal zona applications including managing and monitoring of suspended
sediments and dissolved materials linked to the discharge of rivers and resuspension
from the bottom. These tasks can be accomplished by retrieving inherent optical
properties of the water constituents such as suspended matter and chlorophyll from

ocean surface reflectance measurements (Muller-Karger et al., 2005).

1.1.2 Case 1 and Case 2 waters
Physical oceanographers have developed an extensive theoretical basis for

the assessment of ocean hue and parameters that influence it. Pure water itself



absorbs and scatters light, but otherwise the colour of ocean waters depends on the
water constituent concentrations that absorb and scatter light. The constituents of
concern are phytoplankton, organic and inorganic particulate materials (detritus and
inorganic sediment), and coloured dissolved organic matter (CDOM, yellow
substance, or Gelbstoff) that result from significant quantities of terrigenous
materials (Woodruff et al., 1999). In shallow coastal waters, reflected light from the
bottom can affect the hue of water (Shubha Sathyendranath, 2000).

In general, coastal areas or in lakes are often designated as “Case 2” waters.
It is recognized that Case 2 waters are more complex rather than Case 1 waters in
their constituent compositions and optical properties. On the other hand, Case 1
waters usually refer to open sea are when phytoplankton concentrations mainly
responsible for ocean colour. Therefore, the interpretation of an optical signal from
Case 2 waters can be rather difficult due to those optical complexities (Shubha
Sathyendranath, 2000). Panda et al. (2004) explained that the complex optical
situation in coastal waters and water dynamics are more difficult to have linear
relationship. Ritchie et al. (2003) found that the linear relationship between the
concentration of suspended sediments and sea water reflectance in the range between
0 and 50 mg/L. In other studies, the relationship found between reflectance spectra
from datasets typical coastal waters and the suspended sediments was strongly
nonlinear, even when suspended sediment range between 0.5-10 mg/L (Froidefond
et al., 1993). Y. Zhang et al. (2002); Panda et al. (2004) found that the fit function
between suspended sediment and reflectance measured by satellite data is only linear

between 1-20 mg/L.



1.1.3  Case 2 ocean colour algorithms

Many studies have tried to introduce new approaches to improve the
performance of Case 2 ocean colour algorithms (Ali & Ortiz, 2014; Doxaran et al.,
2002; Islam et al., 2001; Ritchie et al., 1990; Ritchie et al., 2003; Teodoro et al.,
2007). For instance, Doxaran et al. (2002) proposed a relationship between the
visible and near-IRed band reflectance of satellite data and suspended sediment
concentrations. Ritchie et al. (1990); Ritchie et al. (2003) developed an empirical
algorithm to estimate the suspended sediments and chlorophyll concentration from
remote-sensing measurements. Band ratio algorithms were proposed (Doxaran et al.,
2002; M. Zhang et al., 2010), though band ratio algorithms sometimes can improve
suspended sediment inversion accuracy, but not significantly (Sakuno et al., 2014; Y.
Zhang et al., 2003). Multivariate algorithms (Ali & Ortiz, 2014; Su et al., 2008;
Vignolo et al.,, 2006), and new estimation algorithms such as polynomial,
logarithmic, power and exponential (Forget & Ouillon, 1998; Islam et al., 2001; Ma
& Dai, 2005) were also proposed.

Cipollini et al. (2001); Y. Zhang et al. (2002) use artificial neural network
(ANN) to retrieve the ocean colour products from hyperspectral and multispectral
data. Gan et al. (2004) compared the results of linear regression, non-linear
regression, and an ANN to determine the seawater optically active parameters using
Landsat TM data. They conclude that the spectral reflectance relationship is highly
non-linear spatially and temporally, even non-linear regressions are not sufficient for
modelling nonlinear transfer functions. For study of the non-linear behaviour to
extract the concentration of water constituents from ocean colour, the ANN probably
more potential than the regressions models, partially because of its parallel

computing structure that arises from neurons being interconnected by a network (Gan



et al., 2004). In another part of NN study, Y. Zhang et al. (2002) compared the
results of multivariate linear regression (MLR) and NN model to retrieve surface
water quality using combined satellite optical and microwave data. The results show
that the estimation accuracy of surface water using NN is much better than those
from MLR analysis. The ANNs have been widely applied for optimal retrieval of
water constituents from ocean colour in Case 2 waters using space platform (Chebud
et al., 2012; X. Chen et al., 2004; Dzwonkowski & Yan, 2005; Gross et al., 1999;
Gross et al., 2000; Song et al., 2012; Tanaka et al., 2004; T.-S. Wang et al., 2008).

However, most of the artificial neural networks (ANN) studies cited above
have involved the input from all channels of satellite data for the evaluation of the
ocean colour. While other studies have formed a relatively small number of input
parameters yet with more than a hidden layer were used. In a case study based on
remote sensing data, hyperspectral and multispectral remote sensing are receiving the
reflected energy from the terrestrial surface at different intervals of the
electromagnetic spectrum with specific wavelengths. The information from this
wavelength range is stored at independent bands (Estornell et al., 2013). Due to the
specific nature of the certain information received by the remote sensor (Shubha
Sathyendranath, 2000) causing two bands located closely each other are highly
correlated, whereas highly correlated input can create misperception to the NN
(Walczak & Cerpa, 1999), or it can create redundancy, which results in low
predictive power (May et al., 2011).

In this current study, an investigation was conducted to develop new
algorithms for more accurate estimation of water constituents from ocean colour in
Case 2 waters using remotely sensed data. The main difference between conventional

NN algorithms and the NN approach is that the NN model is fewer complexes,



requires a smaller number of input parameters and hidden layer units, and most
importantly, input parameters are pre-determined using CA and PCA. Therefore, the
ANN approach can be implemented on ocean colour products using the inputs

available from remote sensing data.

1.1.4  Case studies

This thesis presents two case studies to illustrate and prove the potential use
of optimised algorithms for studying ocean colour remote sensing of Case 2 at
different sites and different ocean colour parameters: Cs, Ccni, TURB, and SDD. The
case studies do not represent all possible uses of developed algorithm in Case 2
waters but are typical of some problems encountered by oceanographers and other
researchers. Besides, the choice of case studies was also based on in situ field data

available and author’s personal experience in study areas.

1.2 Research problems

As mentioned in the introduction, the water dynamics is very complex (Case
2) to have a linear correlation between the ocean colour products and the satellite
spectral signatures, because there is significant scattering (in the visible light and
near-IRed) from the coastal waters containing high Cs and Cc,. In addition, the
complex optical situation of coastal waters may confound the reflectance signal (Ali
& Ortiz, 2014). Therefore, the development of methods to characterise ocean colour
in coastal areas has been a great challenge topic and required new approximation
algorithms.

Previous studies in the coastal area of Penang (Case 2) have developed an

optical algorithm and explored the possibilities of using remotely sensed data for the



determination of Cs and Cgp, with varying degrees of success (Abdullah et al., 2002;
Asadpour et al., 2011; Jafri et al., 2003; Lim et al., 2008) These studies have shown
that three bands (band 1-3) of data from various satellite sensors contain adequate
information to conduct quantitative evaluations for both of this constituent. However,
due to limited only to bands 1, 2 and 3 used to develop the model. Therefore, the
estimation algorithms still need to be enhanced by using another band combination, it
based on detecting multicollinearity between independent bands by methods of
examining the variance inflation factors (VIF).

The data availability by in situ measurements of any single sampling event
to develop such models for describing the variation of water constituent from ocean
colour of Case 2 waters is limited in this study, particularly in spatial terms, whereas,
a conceptual model requires sufficient data on the problems entity that can use to
build the model, to develop mathematical and logical relationships, and to test the
model’s underlying assumptions (Sargent, 2005). Bruzzone et al. (1999) also
described that the value of such a probability may remarkably affect the prediction
result. Furthermore, appropriately testing model requires splitting the data into a
calibration and validation, which further reduce the amount of data. Therefore, the
study of integration potential of multi-date satellite data to obtain better predictions
of the Cs and C., (multitemporal) uses a time series of 30-m resolution images from
the Landsat TM and 10-m resolution from the ALOS/AVNIR-2 are investigated.

The NN models have been extensively applied for the evaluation of ocean
colour in Case 2 waters by using remotely sensed data (J. Chen et al., 2014; Gross et
al., 2000; loannou et al., 2013; M. Wu et al., 2009). The NN training using in situ
data has become a good method for these purposes. However, one of the essential

issues in applying NN model for the analysis of nonlinear transfer function is the



input variables selection problem (Giordano et al., 2014). There are no such
assumptions made regarding the structure of the NN model. In contrast, the input
variable selection to the neural and developing models based on the available data
(May et al., 2011). Therefore, the algorithms can still to be refined by identifying the
optimal form of NN models.

The analysis of spectral characteristics is the important part in the remote
sensing technologies. The main advantage of this method is to optimise the
combination of bands, which may help to decrease the difficulty in selection of bands
and development of contextual algorithm. Therefore, it is necessary to study the
spectral characteristics of water constituents from ocean colour in Case 2 waters. On
the other hand, remote sensing offers some advantages such as good spatial and
temporal coverage and the possibility of measuring many lakes simultaneously. With
remote sensing, some others parameters of water quality, such TURB and SDD may
influence ocean colour could potentially be assessed using a remotely sensed data.
Therefore, in order to study the usefulness of remote sensing data for water quality
measurements, the use of spectroradiometer in-situ data and simulated satellite data
are important to be investigated, especially in areas that have not done specific

research on water quality using satellite data.

1.3 Research objectives

The main objective of this research is to develop an optimised neural
network algorithm for ocean colour products estimation in Case 2 waters using
multitemporal remotely sensed data as inputs. The specific objectives that summarize

the importance of this research are as follow:



1. To examine the relationship between satellites spectral reflectance and water
constituents such as Cs and Cgy from ocean colour from numerous time
measurements.

2. To improve the accuracy of model-based optical for interpretation of Cs and Cgp
from ocean colour in Case 2 waters, based on detecting less-multicollinearity
between independent bands by the methods of examination the VIF.

3. To characterise the spectral reflectance of Case 2 waters, which is characterised
by heterogeneous TURB and SDD as the optical properties that influences ocean
colour and aims to optimise the combination of bands that could aid the

quantification both variables using simulated satellite data.

1.4 Research scopes

This study primarily focuses on the development of a new algorithm for
estimating concentrations of the substances in the water column, such as Cs, Cepj,
TURB and SDD that influence on ocean colour in Case 2 waters. As case studies are
in Penang and Kelantan coastal waters, both of these coastal areas are the subject of
substantial water quality, originating from rivers and various human activities. It
confirms that the study areas can be classified into Case 2 waters.

The different types of data formats (e.g., single and multitemporal satellite
images, in situ spectral reflectance and ground truth data) are examined in numerous
transformations such as simple regression (SLR) model multivariate regression
model (MVRM) optical model (OM) and NN model. This study only exploits two
types of satellite images: the Landsat TM 30-m and the AVNIR-2 10-m resolution

image, where overpasses both satellite was concurrent with field data collection.
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The new approach is the optimization of NN model from multi-temporal
remote data as input. The architecture and training parameters are optimised with
designing effective as possible the input variables and hidden layer units, thus
resulting model with high predictive power. In other sections, classical regression
analysis and optical model often employed to assess coastal waters were also
enhanced the accuracy of the estimation through the selection of the input variables,
based on detecting less-multicollinearity between independent bands by methods of

examining the VIF.

1.5 Research novelties

Many studies have proposed algorithms between satellite data and in-situ
water constituents from ocean colour in Case 2 waters using regression models and
optical models. In this study, we demonstrated the algorithms of using time series
Landsat TM, ALOS/AVNIR-2 and in-situ spectral reflectance data to characterise the
dynamics of ocean colour products in the Penang and Kelantan coastal waters. The
novelty of this study is that we developed optimised NN model to determine Cs, Cepi,
TURB and SDD based on examining potentially less-multicollinearity between
independent bands. In generally, initial determinations of less-multicollinearity
between independent bands have provided the ability improving the accuracy of the
estimates.

The developed NN algorithms are relatively different in the input variable
selection when compared with another NN algorithms used in remote sensing for
ocean colour studies in Case 2 waters. In another developed NN models, there are no
such assumptions made regarding the structure of the NN model, in which the input

variables are selected based on available data from the remote sensor. Therefore, this
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optimization method can be considered as a novelty approach to determine the water
constituents from ocean colour in Case 2 waters of using remote sensing data
(satellite sensor or reflectance spectra) due to the input variables to the NN

architecture selected based on CA or PCA.

1.6 Outline of the thesis

The discussion of research in this thesis is well-organized in seven chapters.
This research focuses on developing multiple ocean colour algorithms of Case 2
waters. Different instruments were used to extract the Cs, Cer;, TURB and NTU. This
case study is focused on two study areas that are Penang and Kelantan coastal areas.
Because complexity the results and discussion of this study, therefore this structure
are made in three chapters.

Chapter 1 introduces the fundamental aspect of the research, research
scopes, and objectives, including the thesis outline. This chapter sets up a
preliminary understanding of the research activities and a brief methodological
perspective. The description of the study area is given in Chapter 3.

Chapter 2 presents a literature review of previous research regarding ocean
colour remote sensing. This includes the application theories of optical oceanography
for the remote sensing system, such as IOPs and their relation to the water
constituents. This chapter also explains the algorithms that have been developed for
ocean colour products, especially for the coastal area or Case 2 type waters.

Chapter 3 elaborates on the stages of implementation that have been applied
for the entire research. It begins with the methods used to collect data, type of data
used, supporting equipment, the procedure of implementation and the research steps.

Also, this chapter describes the variables which are included in the research and

12



research analysis. Experimental methodology, including equipment, pre-processing,
developed algorithms and a flow chart of the research steps. The chapter continued
by elucidating the distinctive approaches in executing the research objectives.

In Chapter 4, retrieval of ocean colour products from every single and
multitemporal remote sensing data and in-situ observation is discussed. This chapter
starts with the characteristics analysis of various Cs and Cc,. This chapter is to
develop empirical algorithms for estimating Cs and Cgp in the Penang coastal water
from Landsat TM and AVNIR-2 data.

Chapter 5 focuses on the estimation of the TURB and SDD from simulated
satellite data (e.g., Landsat TM and AVNIR-2) by using different algorithms. This
chapter is to optimise the combination of bands which could aid the quantification of
TURB and SDD in Case 2 waters using Landsat TM and AVNIR-2 data.

Chapter 6 discusses the results of retrieving Cs and Cg, using model-based
approaches from single and multitemporal satellite data. Next, the best retrieval
algorithms using multitemporal data are applied to the Penang coastal area and
comparing the performance both of them in mapping the distribution of Cs and Cgy is
described in this chapter. Finally, chapter 7 concludes this thesis with a discussion of
the main results and finding of all previous chapters and possible suggestions for

future research and developments.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The colour of the water is one of the physical phenomena which occur
because the processes of the scattering and absorption of visible light by pure water,
inorganic and organic, particulate and dissolved, as well as the material are present in
the water (Shubha Sathyendranath, 2000) The researchers recognise that these
substances can vary independently of each other in Case 2 waters, thus, must
consider each of the separations. In addition, the colour of Case 2 waters can be
affected by bottom reflectance in the shallow area, clear waters.

The objective of this chapter is to present a literature review related to
remote sensing of optically complex waters which is usually encountered in coastal
regions. Water masses of this kind are often appointed as Case 2 waters. Also, much
intention is given to discussing the principal and basic concepts to understand how to
express the remotely detected signal as a function of the concentrations of the various
substances present in the water column which is strongly related to this research.
Finally, an overview of approaches and algorithms that are recently developed to
derive relevant oceanic quantities from satellite ocean colour data from Case 2
waters is described. This section provides a comprehensive overview of the two

major groups of algorithms: Empirical approaches and model-based approaches.

2.2 Ocean colour
One of the natural phenomena that we often encounter around us is ocean

colour (Figure 2.1). Physically, the ocean looks blue is due to absorption and
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scattering of light. It is similar to the scattering phenomenon in the sky, but for the

clear ocean, water absorption is the much larger aspect than the scattering.

Figure 2.1. Ocean hue is due to the phenomenon of the absorption and scattering of
sunlight (Source: http://science.nasa.gov).

Red and other parts of the visible light are more strongly absorbed by clear
water when compared to the blue part, the red light and others are absorbed rapidly
in the ocean leaving blue. In details, the longest wavelengths of visible light such as
red, yellow and green are absorbed by water molecules in the ocean. When sunlight
reaches the ocean, some of the light parts are redirected directly, but most of it
penetrate to the ocean surface and interacts with the water molecules that encounters.
Red, orange, yellow and green wavelengths of light are absorbed so that the
remaining light is structured of the shorter wavelength blues and violet.

Although almost all sunlight that enters the ocean is absorbed, however, this
phenomenon is not entirely applicable in the coastal area. In the coastal area, the

scattering of light will increase due to the presence any suspended particles. Runoff
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from rivers, which convey a high concentration of mineral suspended solid and
nutrient, resuspension of sand and silt from the bottom by waves, tides, and the wind
and a number of another substance, which is alter the ocean colour of the coastal
areas. On the other hand, some particles such as microscopic living plant matter
(commonly referred to as phytoplankton or algae) also contain the substances that
absorb the certain wavelength of light, which can change its characteristic. A detail
description of absorption of light by oceans with various types of the particles and

other components can be found in (Wozniak & Dera, 2007).

2.3 Optical oceanography

The solutes and particles of natural waters (fresh and saline) are both
optically essential and very variable in type and concentration. As a consequence, the
optical properties of natural waters show larger temporal and spatial variations and
rarely resemble pure water. Huge variations in the optical properties of natural waters
are the main challenge to researchers who desire information about the aquatic
ecosystem. However, the merging between constituent properties and optical
properties presented that optical measurements can be used to infer information
about this ecosystem. Definitely, the relationship between optical properties and
chemical, biological and geological constituents of natural waters has asserted the
important role of optics in aquatic research.

In a large scale, optical properties of water are divided into two mutually
exclusive classes: the inherent and apparent. The inherent optical properties (IOPs)
are the properties of the medium itself that do not affect by ambient light field. IOPs
are the underlying parameters of hydrological optics. The inherent optical properties

commonly vary in two terms, the absorption coefficient (coefficient a())), which
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controls the exponential degree of deterioration of flux per unit of path length of light
in the medium, and per unit incident flux, because the absorption process, and the
scattering coefficient (coefficient b(A)), which defines equally of the exponential rate
of the flux of deterioration due to scattering (Bhatti, 2008; Froidefond et al., 2002).
The apparent optical properties (AOP's) are those properties that depend
both on the IOP's and on the light field in which they are measured (Mobley, 1994).
The most widely-used AOPs are the irradiant reflectance, the remote sensing
reflectance, and the attenuation coefficients. The used AOP related to the study are
described below. In the ocean colour remote sensing, the integration of in situ data,
optical models and remotely sensed data have been widely employed by researchers
to develop the relationship between water quality parameters and the optical
properties of water bodies. Therefore, it is important to discuss the theory and

measurement of inherent and apparent optical properties of oceanic waters.

2.3.1 Inherent optical properties

Based on the earlier description, it is clear that the IOPs determine the
optical properties of natural waters in a form suited to the needs of radiative transfer
theory. Thus, 10Ps are defined here. When a photon interacts with matter one of two
things can happen: The absorption and scattering. The absorption is the processes
when the energy of a photon being converted to another form such as heat. Scattering
is the processes when the energy of the photon changes direction. Both phenomena
can be deduced mathematically as follow:

Consider a small volume AV of water, of a thickness Ar, illuminated by a

collimated beam of monochromatic light of spectral radiant power ®p,y (1) in unit W

nm™, schematically depicted in Figure 2.2. Some part of the incident power ®; () is

17



absorbed within the volume of water. Some part ®s(A,y) is scattered out of the beam
at an angle y, and the remaining power ®(1) is transmitted through the volume with
no change in direction. Let ®(A) be the total power that is scattered into all

directions.

Figure 2.2. The geometry used to define inherent optical properties (Source:
Mobley, 1994, 2004).

Moreover, by assuming that there are no photons undergo a change in
wavelength during the scattering process. By the law of conservation of energy,

o, =2, + 2, Q) + (D) (2.1)

The spectral absorptance A (L) is the fraction of incident power that is absorbed

within the volume:

@, (D)

A = &0

(2.2)

In the same manner, the spectral scatterance B (L) is the fractional part of the
incident power that is scattered out of the beam in all directions,

o)

AW =om

(2.3)

and the spectral transmittance T(A), the fraction of the incident power that passes
through the volume without interacting with the medium, is

@ (D)
@;(D)

TQ) = (2.4)
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AN +BM)+T) =1 (2.5)

The Inherent optical properties generally apply in optical hydrology is the

spectral absorption and scattering coefficients, which are respectively the spectral

absorptance and scatterance per unit distance in the medium. Based on Figure 2.2,

and assuming that the thickness Ar is approaching zero. The absorption
coefficient a()) is then defined as:

M) dAY)

— 1 -1 2.6
a@) = Aly_)n() Ar dr (m™) 26
Likewise the scattering coefficient b()) is defined as
AB(A) dB(A
b(}) = lim @ _ dBQ) (m™1) 2.7)

Ar—0 Ar dr

The spectral beam attenuation coefficient c() is defined as

c(A) =ad)+b) (2.8)
The angular distribution of the scattered power, with B(y, A) being the fraction of
incident power scattered out of the beam through an angle 6 into a solid angle AQ
centred on 6, as shown in Figure 2.2. The angle v is called the scattering angle; its
values lay in the interval 0 <y <. Then the angular scatterance per unit distance and
unit solid angle B(y, 1), is:

IR N0
FObA) = i 3% .00 ar a0 (2.9)

The spectral power scattered into the given solid angle AQ is the spectral radiant
intensity scattered into direction y times the solid angle:

O, (Y, N) = (Y, )AN (2.10)
Moreover, if the incident power ®;(A) falls on an area AA, then the corresponding

incident irradiance is:
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E;()) = ®;(A)AA (2.11)
And AV = ArAA is the volume of water that is illuminated by the incident beam. The

expression becomes

Bp) = Jim V)

2.12
ar~0 E;()AV (212)

This form of A(y, 1) suggests the name, spectral volume scattering function and the
physical interpretation of scattered intensity per unit incident irradiance per unit
volume of water Integrating S(y, A) over all directions (solid angles) gives the total
scattered power per unit incident irradiance and unit volume of water, in other words

the spectral scattering coefficient;

T

b(A) = 2m f B (3, Vsiny dy (2.13)

0

This integration is often divided into forward scattering, 0 < y < /2, and backward

scattering, /2 <\ < parts.

b = by, + by (2.14)

b (1) = Zﬂf B (Y, )siny dy (2.15)
0

b,(1) = an B (Y, )siny dy (2.16)
0

2.3.2  Apparent optical properties

One of the main goals of optical oceanography is to learn something about
the constitution of water, such as the concentration of suspended sediment and
chlorophyll of optical measurement. This means, by measuring the absorption

coefficient and volume scattering function, then the information about the optical
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properties of water bodies will be obtained, because the IOPs can provide
information about the type and concentration of water constituents. However, in the
early days of optical oceanography, is it difficult to measure in situ IOPs. On the
other hand, it is relatively easy to measure radiometric variables such as upwelling
and downwelling irradiances plane. This led to the use of the optical properties
(AOPs) more dominant than 10Ps in describing the optical properties of most of the
water bodies. Appropriate AOPs can provide useful information about the bodies of
water, for example, the type and concentration of water constituents, from simple

measurements, were made in the light field.

2.3.2.1 Irradiance reflectance

In generally, the reflection characteristic of earth surface features is the
dimensionless ratio of the radiance emittance of an object and the irradiance. When
measured as a function of wavelength it is called the spectral reflectance, and defined

mathematically as (Lillesand et al., 2014):

_Er(D)

=g, X 100 (2.17)

p(A)

where the p (A) is expressed as a percentage, Er is the energy of wavelength
reflected from the object, and E, is the energy of wavelength incident upon the object.
A graph of spectral reflectance of an object is called the spectral reflectance curve.
This configuration spectral curve gives information about the spectral characteristics
of the object. It is necessary in the determination of the wavelength region (s) in
which the remotely sensed data is acquired for a particular application.

In the water bodies, reflectance R is treated as an apparent optical property
(AOP). Irradiance reflectances commonly used AOP because they are essential to
remote sensing of the oceans. Algorithm developed to correlate irradiance reflectance
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R to quantities such as suspended sediment and chlorophyll concentration (Gordon &
Morel, 2012; M. Zhang et al., 2010). In ocean colour remote sensing, the spectral
irradiance reflectance is symbolized as (Mobley, 1994), is defined as the ratio of the
spectral upwelling to downwelling plane irradiances:

Ey(z; A)

R@D=5.@n

(2.18)

R (z;4) is often assessed in the water just below the surface and denote this depth by

z=w =0. The illustrated of irradiance reflectance is shown in Figure 2.3.

E.(z,A\)

Figure 2.3. lllustration of irradiance reflectance (Redrawn from:
http://www.oceanopticsbook.info).

Another reflectance used for remote sensing of ocean colour is the remote sensing
reflectance (Rrs). More lately, the R,s has become the AOP of another alternative for
remote sensing of ocean properties (Mobley et al., 2005; O'Reilly et al., 1998). The

spectral remote-sensing reflectance R is defined as:

L(6, ¢, 1)

. 2.19
E1(0, ) (Sr™5) (2.19)

Rrs (6’ ¢’ A) =

Rys (as illustrated in Figure 2.4) is evaluated using L and Eqin the air just above the
surface of the water, and L is often indicated as the water leaving radiance. The
reason that R has replaced R for remote sensing is due to less sensitive to the

environmental conditions such as sun angle or sky condition. However,
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determination of R.s is more complicated than R. It requires another parameter and
different sensor, which must be accurately calibrated (Froidefond et al., 1999;
Mobley et al., 2011).

Although Rrs is currently used for most remote sensing application of ocean
colour, yet, is still commonly measured in water studies and is widely used. For
example, inverting R spectra to acquire absorption and scattering properties (Roesler

& Perry, 1995).

Figure 2.4. Illustration of remote sensing reflectance (Redrawn from:
http://www.oceanopticsbook.info).

2.4 Optical constituents of the ocean

It is important to have some information on the composition of those waters.
Natural waters contain a constant size distribution of particles starting from water
molecules of size ~0.1 nm, to small organic molecules of size ~1 nm, to large organic
molecules of size ~100 nm, to a huge size such as whales and submarines of sizes
~10 m to ~100 m. Thus, clearly, the water is composed fully of particles. However,
the constituents of natural waters have traditionally been divided into "dissolved" and
"particulate™ matter, of organic and inorganic origin, living and non-living (Mobley,

1994).
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Constituents in water, which affects its optical properties, are traditionally
grouped into the following: (1) Pure water, both fresh and saline (water + inorganic
dissolved material). (2) Micro-plant (phytoplankton). (3) Colour dissolved organic
material (CDOM). (4) Non-phytoplankton organic particles (sometimes referred to
as detritus or tripton). (5) Inorganic particles, and (6) Bubbles. Following below three
of six constituents in water that affect its optical properties are discussed in this
study.

The I0OPs mentioned above have provided an understanding of the aquatic
environment and implies that optical measurements can be used to deduce
information of optically active constituents. The water column is assumed to be
homogeneous in terms of optical properties. Optical remote sensing is likely to
become quite challenging when the optical properties of the upper water column
significantly known. The method discussed and applied here relies on the concepts of

model an inversion technique, leading to analytical algorithms.

2.5 Statistical techniques

Input variable selection (IVS) methods are important in finding the optimal
functional form of statistical models. The task of choosing the input variables is
generally in the development of all statistical models and is largely dependent on the
discovery of relationships within the data available to identify the appropriate
predictors of the model output. However, in the case of ANN, and other similar data-
driven statistical modelling approaches, there are no such assumptions made
regarding the structure of the NN model. In contrast, the 1VS and developing models

based on the available data (May et al., 2011).
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