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PENDERIAAN JAUH WARNA LAUT BAGI PERAIRAN KES 2 

MENGGUNAKAN RANGKAIAN NEURAL YANG DIOPTIMUMKAN 

 

ABSTRAK 

 

Kajian ini memberi tumpuan pada pembangunan algoritma baru untuk 

mendapatkan produk warna laut di kawasan perairan kes 2 menggunakan model 

rangkain neural (NN) dari pelbagai jenis data penderiaan jauh sebagai input. Model 

NN dan parameter latihan dioptimumkan dengan input yang dipilih berdasarkan 

analisis korelasi (CA) dan analisis komponen utama (PCA). Di pesisiran pantai 

Kelantan, penggunaan data spektra pantulan in situ dan simulasi penderiaan jauh 

satelit telah dikaji untuk menganggar dua parameter kejelasan iaitu kekeruhan 

(TURB) dan cakera kedalaman Sechhi (SDD). Data simulasi Landsat TM dan 

AVNIR-2 diuji berdasarkan pengukuran spektra pantulan in situ menggunakan ASD 

spectroradiometer. Keputusan menunjukkan bahawa data simulasi Landsat TM dan 

AVNIR-2 membenarkan tafsiran TURB dan SDD. Di kawasan pesisiran pantai Pulau 

Pinang, penggunaan data satelit penderiaan jauh tunggal dan gabungan pelbagai 

tarikh telah dikaji untuk menganggar sediment terampai (Cs) dan kepekatan klorofil 

(Cchl). Pengukuran sampel air pelbagai tarikh telah dibuat selari dengan perolehan 

data satelit Landsat TM dan AVNIR-2 di lokasi terpilih dari Februari 1999 hingga 

Mac 2011. Data pantulan dari imej Landsat TM dan AVNIR-2 yang diperoleh 

menggunakan perisian ATCOR-2/3 diambil pada setiap lokasi sampel air dan data 

pantulan tersebut  diperiksa dengan pelbagai algoritma. Walaupun hubungan yang 

signifikan telah dikesan antara nilai-nilai pantulan terhadap Cs dan Cchl  apabila 

menggunakan model regresi linear berganda dan optikal, namun aplikasi NN 
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menunjukkan  prestasi yang lebih baik untuk pemodelan dalam kajian ini. Keputusan 

menunjukkan bahawa ketepatan penganggaran untuk ciri-ciri dua produk warna laut 

menggunakan NN adalah jauh lebih baik daripada algoritma empirikal dan optikal. 

Keputusan juga menunjukkan bahawa NN yang dioptimumkan berdasarkan analisis 

korelasi (CA) dan analisis komponen utama (PCA) boleh meningkatkan 

penganggaran ciri-ciri produk warna laut. Dengan menggunakan lima pembolehubah 

bebas (TM1, TM2, TM4, TM5 dan TM7) sebagai input,  model rangkain neural 

(PCA-NN) dari data Landsat TM gabungan pelbagai tarikh menunjukkan sedikit 

peningkatan prestasi pencarian Cs and Cchl (R
2
 = 0.93 dan R

2 
= 0.92 untuk RMSE = 

22.38 g/L dan RMSE = 1.29 g/L) berbanding dengan model NN dan CA-NN. 

Sebaliknya, model CA-NN dengan empat pembolehubah bebas (AV1, AV3, AV4 

dan AV3/AV2) daripada data AVNIR-2 gabungan pelbagai tarikh menunjukkan 

prestasi ramalan yang lebih baik (R
2
 = 0.93 dan R

2
 = 0.92 untuk RMSE = 22.38 g/L 

dan RMSE = 1.29 g /L) berbanding dengan  model NN dan PCA-NN. Walaupun 

PCA-NN menggunakan data AVNIR-2 gabungan pelbagai tarikh  telah berkurang 

sedikit kuasa generalisasi, namun pengoptimuman model PCA-NN menunjukkan 

prestasi ramalan yang lebih baik berbanding NN model. Oleh itu, ia memungkinkan 

untuk membangunkan algoritma warna laut di mana CA dan PCA digunakan sebagai 

kaedah pemilihan input pembolehubah pada NN untuk pemerhatian penderiaan jauh.  
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OCEAN COLOUR REMOTE SENSING OF CASE 2 WATERS USING                     

AN OPTIMISED NEURAL NETWORK  

 

ABSTRACT 

 

This study focused on the development of the new algorithm for retrieving 

ocean colour products of Case 2 water types using the neural network (NN) model 

and multiple types of remotely sensed data as inputs. The NN model architecture and 

training parameters were optimised, with inputs being selected based correlation 

analysis (CA) and principal component analysis (PCA). In Kelantan coastal waters, 

the use of in situ reflectance spectra and simulated satellite data for estimation of two 

water clarity parameters namely turbidity (TURB) and Secchi disk depth (SDD) have 

been studied.  The simulated Landsat TM and AVNIR-2 data were tested against in 

situ reflectance spectra measurements using ASD Spectroradiometer. The results 

show that the simulated Landsat TM and AVNIR-2 data enables the interpretation of 

TURB and SDD. In Penang coastal area, the use of single and multitemporal remote 

sensing data for estimation of Cs and Cchl has been studied. Multidate in-situ water 

sample measurements concurrent with Landsat TM and AVNIR-2 satellite data were 

obtained in selected locations from February 1999 to March 2011. The irradiance 

reflectances of Landsat TM and AVNIR-2 derived by ATCOR-2/3 software from the 

water sampling sites were extracted and examined with numerous algorithms. 

Although significant correlation was detected between reflectance values of Cs and 

Cchl when using the multivariate, and optical model, however the application of NN 

appears to produce superior performance in modelling transfer function in this study. 

The results show that the estimation accuracy for characteristics of two ocean colour 
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products using neural network is much better than those empirical and optical 

algorithms. The results also indicated that NN based on CA and PCA can improve 

the estimation of these characteristics. Using five independent variables (TM1, TM2, 

TM4, TM5 and TM7) as inputs, PCA-NN model from multitemporal Landsat TM 

data has shown slightly improved the retrieval performance of Cs and Cchl (R
2
 = 0.93 

and R
2
 = 0.92 for RMSE = 22.38 mg/L and RMSE = 1.29 g/L) in comparison with 

the NN and CA-NN model. On contrary, the CA-NN model with four independent 

variables (AV1, AV3, AV4 and AV3/AV2) of multitemporal AVNIR-2 data has 

shown better prediction performance for Cs and Cchl with (R
2
 = 0.93 and R

2
 = 0.92 for 

RMSE = 22.38 mg/L and RMSE = 1.29 g/L) in comparison with the NN and PCA-

NN model. Although the PCA-NN using the multitemporal AVNIR-2 data has a 

slightly reduce generalization power, however the optimization of the PCA-NN 

model has demonstrated better prediction performance in comparison with the NN 

model. Therefore, it may be possible to develop ocean colour algorithms in which 

CA and PCA are used as methods for selecting input variables to a NN for remote 

sensing observation. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Research background 

Coastal areas are the important ecological system that has a strategic value 

for many nations. Coastal areas are generally defined as the transition area between 

terrestrial and sea, the landward boundary covering part of the dry and wetland  that 

is still affected by the oceanography properties at the sea surface, such as wind, tidal, 

seawater intrusion in the coastal, which characterised by a typical vegetation. On the 

other hand, the boundary of the coastal areas to the seaward reaches the outer limit of 

the continental shelf, where the characteristics of its waters are still influenced by a 

natural process that occurs in the terrestrial environment, such as sedimentation and 

flow of fresh water on estuarine, or process caused by human activities such as 

deforestation and contamination. 

The coastal area is a very complex, dynamic environment and it is the most 

productive area of the global ocean (Chen-Tung Arthur et al., 2003; Muller-Karger et 

al., 2005). It is also the area for processing of nutrients and dissolved materials 

derived from the terrestrial environments to the coastal ocean. A large number of 

biological, geological, chemical, and physical processes occur over a multi-time and 

space scales. In addition, the optical properties of coastal waters also have particular 

complexity. It is characterised by the propagation and utilization of light in the water 

body varies over time and space scales conforming to changes in concentrations of 

optically active ocean components, such as phytoplankton, suspended sediments and 

coloured dissolved organic matter  (Miller et al., 2005). Currently, the coastal areas 

are facing great pressure from various excessive human activities, either directly or 
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indirectly, starting with the intense concentration of population, overfishing, and 

mineral extraction, changing sediment load, coastal deforestation, pollution, tourism, 

global warming and sea level rise. These pressures continue to increase, and will 

threaten the future of countless ecosystems. Many attempts have been made by 

researchers in studying coastal waters to obtain a better understanding of earth 

system processes for climate change or environmental change research for 

integrated coastal management.  Unfortunately, the dynamic nature of coastal waters 

made most measurements and traditional data collection becoming ineffective 

(Miller et al., 2005). In addition, the quality and quantity of the measurements can 

have different in every moment. This task would cost relatively much and requires a 

long time. It becomes more uneconomical when making detailed measurements on 

the variability of various coastal processes for large coverage simultaneously.  

In contrast, space-based remote sensing offers unique large-scale synoptic 

information to address the complex environment of coastal waters. The periodic 

satellite overpass enables the routine and cost-effective collection of various 

observations over large areas and often inaccessible locations from the coast and 

adjacent waters in a short period of time. This set of satellite observations meets the 

needs of many users. Coastal managers, fishermen, and environmental scientists are 

some of the many groups that take advantage of oceanographic products derived 

from remote sensing observations (Brown et al., 2005).  

 

1.1.1 Coastal ocean colour 

Since 1970, there has been important progress in the oceanic observations. 

Spacecraft and sensors are exclusively developed to the study of ocean colour, for 

example, CZCS, OCTS, SeaWiFS, POLDER, MODIS, Landsat TM/ETM, 
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ALOS/AVNIR-2, IKONOS, Etc. The goal of these remote sensors are to obtain 

information on processes such as the distribution and dissemination of dissolved 

organic matter, identifying phytoplankton, biogeochemical assessment, 

understanding changes in benthic communities in clear, shallow tropical coral reefs, 

and monitoring coastal water quality (Bukata, 2005; Muller-Karger et al., 2005). 

Many efforts have been made to estimate and map coastal and ocean colour 

products using these ocean colour sensors (Garcia et al., 2005; Miller & McKee, 

2004; Reinart & Reinhold, 2008; Tilstone et al., 2015; G. Wu et al., 2014; M. Wu et 

al., 2009). Investigations also suggest that the high resolution satellite imageries such 

as Landsat TM/ETM, ALOS/AVNIR-2, and SPOT may be more useful to gain 

information in coastal waters (Alashloo et al., 2013; Allan et al., 2011; Bonansea et 

al., 2015; Pattiaratchi et al., 1994; Sakuno et al., 2014; G. Wu et al., 2013).  

The observations of ocean colour are particularly important because they are 

useful to estimate the spatial distribution of routine and the rate of change in a variety 

of organic carbon in the ocean. It is related to living and natural waste materials and 

with coloured dissolved the organic matter (CDOM). These data are valuable for the 

coastal zona applications including managing and monitoring of suspended 

sediments and dissolved materials linked to the discharge of rivers and resuspension 

from the bottom. These tasks can be accomplished by retrieving inherent optical 

properties of the water constituents such as suspended matter and chlorophyll from 

ocean surface reflectance measurements (Muller-Karger et al., 2005). 

 

1.1.2 Case 1 and Case 2 waters 

Physical oceanographers have developed an extensive theoretical basis for 

the assessment of ocean hue and parameters that influence it. Pure water itself 
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absorbs and scatters light, but otherwise the colour of ocean waters depends on the 

water constituent concentrations that absorb and scatter light. The constituents of 

concern are phytoplankton, organic and inorganic particulate materials (detritus and 

inorganic sediment), and coloured dissolved organic matter (CDOM, yellow 

substance, or Gelbstoff) that result from significant quantities of terrigenous 

materials (Woodruff et al., 1999). In shallow coastal waters, reflected light from the 

bottom can affect the hue of water (Shubha Sathyendranath, 2000).  

In general, coastal areas or in lakes are often designated as “Case 2” waters.  

It is recognized that Case 2 waters are more complex rather than Case 1 waters in 

their constituent compositions and optical properties. On the other hand, Case 1 

waters usually refer to open sea are when phytoplankton concentrations mainly 

responsible for ocean colour. Therefore, the interpretation of an optical signal from 

Case 2 waters can be rather difficult due to those optical complexities (Shubha 

Sathyendranath, 2000). Panda et al. (2004) explained that the complex optical 

situation in coastal waters and water dynamics are more difficult to have linear 

relationship.  Ritchie et al. (2003) found that the linear relationship between the 

concentration of suspended sediments and sea water reflectance in the range between 

0 and 50 mg/L. In other studies, the relationship found between reflectance spectra 

from datasets typical coastal waters and the suspended sediments was strongly 

nonlinear, even when suspended sediment range between  0.5–10  mg/L (Froidefond 

et al., 1993). Y. Zhang et al. (2002); Panda et al. (2004) found that the fit function 

between suspended sediment and reflectance measured by satellite data is only linear 

between 1–20 mg/L. 
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1.1.3 Case 2 ocean colour algorithms 

Many studies have tried to introduce new approaches to improve the 

performance of Case 2 ocean colour algorithms (Ali & Ortiz, 2014; Doxaran et al., 

2002; Islam et al., 2001; Ritchie et al., 1990; Ritchie et al., 2003; Teodoro et al., 

2007). For instance,   Doxaran et al. (2002) proposed a relationship between the 

visible and near-IRed band reflectance of satellite data and suspended sediment 

concentrations. Ritchie et al. (1990); Ritchie et al. (2003) developed an empirical 

algorithm to estimate the suspended sediments and chlorophyll concentration from 

remote-sensing measurements. Band ratio algorithms were proposed (Doxaran et al., 

2002; M. Zhang et al., 2010), though band ratio algorithms sometimes can improve 

suspended sediment inversion accuracy, but not significantly (Sakuno et al., 2014; Y. 

Zhang et al., 2003). Multivariate algorithms (Ali & Ortiz, 2014; Su et al., 2008; 

Vignolo et al., 2006), and new estimation algorithms such as polynomial, 

logarithmic, power and exponential (Forget & Ouillon, 1998; Islam et al., 2001; Ma 

& Dai, 2005) were also proposed.  

Cipollini et al. (2001); Y. Zhang et al. (2002) use artificial neural network 

(ANN) to retrieve the ocean colour products from hyperspectral and multispectral 

data. Gan et al. (2004) compared the results of linear regression, non-linear 

regression, and an ANN to determine the seawater optically active parameters using 

Landsat TM data.  They conclude that the spectral reflectance relationship is highly 

non-linear spatially and temporally, even non-linear regressions are not sufficient for 

modelling nonlinear transfer functions.  For study of the non-linear behaviour to 

extract the concentration of water constituents from ocean colour, the ANN probably 

more potential than the regressions models, partially because of its parallel 

computing structure that arises from neurons being interconnected by a network (Gan 
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et al., 2004).  In another part of NN study, Y. Zhang et al. (2002) compared the 

results of multivariate linear regression (MLR) and NN model to retrieve surface 

water quality using combined satellite optical and microwave data. The results show 

that the estimation accuracy of surface water using NN is much better than those 

from MLR analysis. The ANNs have been widely applied for optimal retrieval of 

water constituents from ocean colour in Case 2 waters using space platform (Chebud 

et al., 2012; X. Chen et al., 2004; Dzwonkowski & Yan, 2005; Gross et al., 1999; 

Gross et al., 2000; Song et al., 2012; Tanaka et al., 2004; T.-S. Wang et al., 2008).  

However, most of the artificial neural networks (ANN) studies cited above 

have involved the input from all channels of satellite data for the evaluation of the 

ocean colour. While other studies have formed a relatively small number of input 

parameters yet with more than a hidden layer were used. In a case study based on 

remote sensing data, hyperspectral and multispectral remote sensing are receiving the 

reflected energy from the terrestrial surface at different intervals of the 

electromagnetic spectrum with specific wavelengths. The information from this 

wavelength range is stored at independent bands (Estornell et al., 2013).  Due to the 

specific nature of the certain information received by the remote sensor (Shubha 

Sathyendranath, 2000) causing two bands located closely each other are highly 

correlated, whereas highly correlated input can create misperception to the NN 

(Walczak & Cerpa, 1999), or it can create redundancy, which results in low 

predictive power (May et al., 2011). 

In this current study, an investigation was conducted to develop new 

algorithms for more accurate estimation of water constituents from ocean colour in 

Case 2 waters using remotely sensed data. The main difference between conventional 

NN algorithms and the NN approach is that the NN model is fewer complexes, 
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requires a smaller number of input parameters and hidden layer units, and most 

importantly, input parameters are pre-determined using CA and PCA. Therefore, the 

ANN approach can be implemented on ocean colour products using the inputs 

available from remote sensing data. 

 

1.1.4 Case studies 

This thesis presents two case studies to illustrate and prove the potential use 

of optimised algorithms for studying ocean colour remote sensing of Case 2 at 

different sites and different ocean colour parameters: Cs, Cchl, TURB, and SDD.  The 

case studies do not represent all possible uses of developed algorithm in Case 2 

waters but are typical of some problems encountered by oceanographers and other 

researchers. Besides, the choice of case studies was also based on in situ field data 

available and author’s personal experience in study areas. 

 

1.2 Research problems  

As mentioned in the introduction, the water dynamics is very complex (Case 

2) to have a linear correlation between the ocean colour products and the satellite 

spectral signatures, because there is significant scattering (in the visible light and 

near-IRed) from the coastal waters containing high Cs and Cchl. In addition, the 

complex optical situation of coastal waters may confound the reflectance signal (Ali 

& Ortiz, 2014). Therefore, the development of methods to characterise ocean colour 

in coastal areas has been a great challenge topic and required new approximation 

algorithms.  

Previous studies in the coastal area of Penang (Case 2) have developed an 

optical algorithm and explored the possibilities of using remotely sensed data for the 
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determination of Cs and Cchl, with varying degrees of success (Abdullah et al., 2002; 

Asadpour et al., 2011; Jafri et al., 2003; Lim et al., 2008) These studies have shown 

that three bands (band 1–3) of data from various satellite sensors contain adequate 

information to conduct quantitative evaluations for both of this constituent. However, 

due to limited only to bands 1, 2 and 3 used to develop the model. Therefore, the 

estimation algorithms still need to be enhanced by using another band combination, it 

based on detecting multicollinearity between independent bands by methods of 

examining the variance inflation factors (VIF). 

The data availability by in situ measurements of any single sampling event 

to develop such models for describing the variation of water constituent from ocean 

colour of Case 2 waters is limited in this study, particularly in spatial terms, whereas, 

a conceptual model requires sufficient data on the problems entity that can use to 

build the model, to develop mathematical and logical relationships, and to test the 

model’s underlying assumptions (Sargent, 2005). Bruzzone et al. (1999) also 

described that the value of such a probability may remarkably affect the prediction 

result. Furthermore, appropriately testing model requires splitting the data into a 

calibration and validation, which further reduce the amount of data. Therefore, the 

study of integration potential of multi-date satellite data to obtain better predictions 

of the Cs and Cchl (multitemporal) uses a time series of 30-m resolution images from 

the Landsat TM and 10-m resolution from the ALOS/AVNIR-2 are investigated. 

The NN models have been extensively applied for the evaluation of ocean 

colour in Case 2 waters by using remotely sensed data (J. Chen et al., 2014; Gross et 

al., 2000; Ioannou et al., 2013; M. Wu et al., 2009). The NN training using in situ 

data has become a good method for these purposes. However, one of the essential 

issues in applying NN model for the analysis of nonlinear transfer function is the 
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input variables selection problem (Giordano et al., 2014). There are no such 

assumptions made regarding the structure of the NN model. In contrast, the input 

variable selection to the neural and developing models based on the available data 

(May et al., 2011). Therefore, the algorithms can still to be refined by identifying the 

optimal form of NN models. 

The analysis of spectral characteristics is the important part in the remote 

sensing technologies. The main advantage of this method is to optimise the 

combination of bands, which may help to decrease the difficulty in selection of bands 

and development of contextual algorithm. Therefore, it is necessary to study the 

spectral characteristics of water constituents from ocean colour in Case 2 waters. On 

the other hand, remote sensing offers some advantages such as good spatial and 

temporal coverage and the possibility of measuring many lakes simultaneously. With 

remote sensing, some others parameters of water quality, such TURB and SDD may 

influence ocean colour could potentially be assessed using a remotely sensed data. 

Therefore, in order to study the usefulness of remote sensing data for water quality 

measurements, the use of spectroradiometer in-situ data and simulated satellite data 

are important to be investigated, especially in areas that have not done specific 

research on water quality using satellite data. 

 

1.3 Research objectives 

The main objective of this research is to develop an optimised neural 

network algorithm for ocean colour products estimation in Case 2 waters using 

multitemporal remotely sensed data as inputs. The specific objectives that summarize 

the importance of this research are as follow: 
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1. To examine the relationship between satellites spectral reflectance and water 

constituents such as Cs and Cchl from ocean colour from numerous time 

measurements. 

2. To improve the accuracy of model-based optical for interpretation of Cs and Cchl 

from ocean colour in Case 2 waters, based on detecting less-multicollinearity 

between independent bands by the methods of examination the VIF. 

3. To characterise the spectral reflectance of Case 2 waters, which is characterised 

by heterogeneous TURB and SDD as the optical properties that influences ocean 

colour and aims to optimise the combination of bands that could aid the 

quantification both variables using simulated satellite data.  

 

1.4 Research scopes 

This study primarily focuses on the development of a new algorithm for 

estimating concentrations of the substances in the water column, such as Cs, Cchl, 

TURB and SDD that influence on ocean colour in Case 2 waters. As case studies are 

in Penang and Kelantan coastal waters, both of these coastal areas are the subject of 

substantial water quality, originating from rivers and various human activities. It 

confirms that the study areas can be classified into Case 2 waters. 

The different types of data formats (e.g., single and multitemporal satellite 

images, in situ spectral reflectance and ground truth data) are examined in numerous 

transformations such as simple regression (SLR) model multivariate regression 

model (MVRM) optical model (OM) and NN model. This study only exploits two 

types of satellite images: the Landsat TM 30-m and the AVNIR-2 10-m resolution 

image, where overpasses both satellite was concurrent with field data collection.  
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The new approach is the optimization of NN model from multi-temporal 

remote data as input. The architecture and training parameters are optimised with 

designing effective as possible the input variables and hidden layer units, thus 

resulting model with high predictive power. In other sections, classical regression 

analysis and optical model often employed to assess coastal waters were also 

enhanced the accuracy of the estimation through the selection of the input variables, 

based on detecting less-multicollinearity between independent bands by methods of 

examining the VIF. 

 

1.5 Research novelties 

Many studies have proposed algorithms between satellite data and in-situ 

water constituents from ocean colour in Case 2 waters using regression models and 

optical models. In this study, we demonstrated the algorithms of using time series 

Landsat TM, ALOS/AVNIR-2 and in-situ spectral reflectance data to characterise the 

dynamics of ocean colour products in the Penang and Kelantan coastal waters. The 

novelty of this study is that we developed optimised NN model to determine Cs, Cchl, 

TURB and SDD based on examining potentially less-multicollinearity between 

independent bands. In generally, initial determinations of less-multicollinearity 

between independent bands have provided the ability improving the accuracy of the 

estimates. 

The developed NN algorithms are relatively different in the input variable 

selection when compared with another NN algorithms used in remote sensing for 

ocean colour studies in Case 2 waters. In another developed NN models, there are no 

such assumptions made regarding the structure of the NN model, in which the input 

variables are selected based on available data from the remote sensor. Therefore, this 
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optimization method can be considered as a novelty approach to determine the water 

constituents from ocean colour in Case 2 waters of using remote sensing data 

(satellite sensor or reflectance spectra) due to the input variables to the NN 

architecture selected based on CA or PCA.  

 

1.6 Outline of the thesis 

The discussion of research in this thesis is well-organized in seven chapters. 

This research focuses on developing multiple ocean colour algorithms of Case 2 

waters. Different instruments were used to extract the Cs, Cchl, TURB and NTU. This 

case study is focused on two study areas that are Penang and Kelantan coastal areas. 

Because complexity the results and discussion of this study, therefore this structure 

are made in three chapters. 

Chapter 1 introduces the fundamental aspect of the research, research 

scopes, and objectives, including the thesis outline. This chapter sets up a 

preliminary understanding of the research activities and a brief methodological 

perspective. The description of the study area is given in Chapter 3.  

Chapter 2 presents a literature review of previous research regarding ocean 

colour remote sensing. This includes the application theories of optical oceanography 

for the remote sensing system, such as IOPs and their relation to the water 

constituents. This chapter also explains the algorithms that have been developed for 

ocean colour products, especially for the coastal area or Case 2 type waters. 

Chapter 3 elaborates on the stages of implementation that have been applied 

for the entire research. It begins with the methods used to collect data, type of data 

used, supporting equipment, the procedure of implementation and the research steps. 

Also, this chapter describes the variables which are included in the research and 
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research analysis. Experimental methodology, including equipment, pre-processing, 

developed algorithms and a flow chart of the research steps. The chapter continued 

by elucidating the distinctive approaches in executing the research objectives. 

In Chapter 4, retrieval of ocean colour products from every single and 

multitemporal remote sensing data and in-situ observation is discussed. This chapter 

starts with the characteristics analysis of various Cs and Cchl. This chapter is to 

develop empirical algorithms for estimating Cs and Cchl in the Penang coastal water 

from Landsat TM and AVNIR-2 data.   

Chapter 5 focuses on the estimation of the TURB and SDD from simulated 

satellite data (e.g., Landsat TM and AVNIR-2) by using different algorithms. This 

chapter is to optimise the combination of bands which could aid the quantification of 

TURB and SDD in Case 2 waters using Landsat TM and AVNIR-2 data.  

Chapter 6 discusses the results of retrieving Cs and Cchl using model-based 

approaches from single and multitemporal satellite data. Next, the best retrieval 

algorithms using multitemporal data are applied to the Penang coastal area and 

comparing the performance both of them in mapping the distribution of Cs and Cchl is 

described in this chapter. Finally, chapter 7 concludes this thesis with a discussion of 

the main results and finding of all previous chapters and possible suggestions for 

future research and developments. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction  

The colour of the water is one of the physical phenomena which occur 

because the processes of the scattering and absorption of visible light by pure water, 

inorganic and organic, particulate and dissolved, as well as the material are present in 

the water (Shubha Sathyendranath, 2000)  The researchers recognise that these 

substances can vary independently of each other in Case 2 waters, thus, must 

consider each of the separations. In addition, the colour of Case 2 waters can be 

affected by bottom reflectance in the shallow area, clear waters.   

The objective of this chapter is to present a literature review related to 

remote sensing of optically complex waters which is usually encountered in coastal 

regions. Water masses of this kind are often appointed as Case 2 waters. Also, much 

intention is given to discussing the principal and basic concepts to understand how to 

express the remotely detected signal as a function of the concentrations of the various 

substances present in the water column which is strongly related to this research. 

Finally, an overview of approaches and algorithms that are recently developed to 

derive relevant oceanic quantities from satellite ocean colour data from Case 2 

waters is described. This section provides a comprehensive overview of the two 

major groups of algorithms: Empirical approaches and model-based approaches. 

 

2.2 Ocean colour 

One of the natural phenomena that we often encounter around us is ocean 

colour (Figure 2.1). Physically, the ocean looks blue is due to absorption and 
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scattering of light. It is similar to the scattering phenomenon in the sky, but for the 

clear ocean, water absorption is the much larger aspect than the scattering.  

 

 
 

Figure 2.1. Ocean hue is due to the phenomenon of the absorption and scattering of 

sunlight (Source: http://science.nasa.gov). 

Red and other parts of the visible light are more strongly absorbed by clear 

water when compared to the blue part, the red light and others are absorbed rapidly 

in the ocean leaving blue. In details, the longest wavelengths of visible light such as 

red, yellow and green are absorbed by water molecules in the ocean. When sunlight 

reaches the ocean, some of the light parts are redirected directly, but most of it 

penetrate to the ocean surface and interacts with the water molecules that encounters. 

Red, orange, yellow and green wavelengths of light are absorbed so that the 

remaining light is structured of the shorter wavelength blues and violet. 

Although almost all sunlight that enters the ocean is absorbed, however, this 

phenomenon is not entirely applicable in the coastal area. In the coastal area, the 

scattering of light will increase due to the presence any suspended particles. Runoff 
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from rivers, which convey a high concentration of mineral suspended solid and 

nutrient, resuspension of sand and silt from the bottom by waves, tides, and the wind 

and a number of another substance, which is alter the ocean colour of the coastal 

areas. On the other hand, some particles such as microscopic living plant matter 

(commonly referred to as phytoplankton or algae) also contain the substances that 

absorb the certain wavelength of light, which can change its characteristic. A detail 

description of absorption of light by oceans with various types of the particles and 

other components can be found in (Wozniak & Dera, 2007). 

 

2.3 Optical oceanography  

The solutes and particles of natural waters (fresh and saline) are both 

optically essential and very variable in type and concentration. As a consequence, the 

optical properties of natural waters show larger temporal and spatial variations and 

rarely resemble pure water. Huge variations in the optical properties of natural waters 

are the main challenge to researchers who desire information about the aquatic 

ecosystem. However, the merging between constituent properties and optical 

properties presented that optical measurements can be used to infer information 

about this ecosystem. Definitely, the relationship between optical properties and 

chemical, biological and geological constituents of natural waters has asserted the 

important role of optics in aquatic research. 

In a large scale, optical properties of water are divided into two mutually 

exclusive classes: the inherent and apparent. The inherent optical properties (IOPs) 

are the properties of the medium itself that do not affect by ambient light field. IOPs 

are the underlying parameters of hydrological optics. The inherent optical properties 

commonly vary in two terms, the absorption coefficient (coefficient a()), which 
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controls the exponential degree of deterioration of flux per unit of path length of light 

in the medium, and per unit incident flux, because the absorption process, and the 

scattering coefficient (coefficient b()), which defines equally of the exponential rate 

of the flux of deterioration due to scattering (Bhatti, 2008; Froidefond et al., 2002).  

The apparent optical properties (AOP's) are those properties that depend 

both on the IOP's and on the light field in which they are measured (Mobley, 1994). 

The most widely-used AOPs are the irradiant reflectance, the remote sensing 

reflectance, and the attenuation coefficients. The used AOP related to the study are 

described below. In the ocean colour remote sensing, the integration of in situ data, 

optical models and remotely sensed data have been widely employed by researchers 

to develop the relationship between water quality parameters and the optical 

properties of water bodies.  Therefore, it is important to discuss the theory and 

measurement of inherent and apparent optical properties of oceanic waters.  

 

2.3.1 Inherent optical properties 

Based on the earlier description, it is clear that the IOPs determine the 

optical properties of natural waters in a form suited to the needs of radiative transfer 

theory. Thus, IOPs are defined here. When a photon interacts with matter one of two 

things can happen: The absorption and scattering.  The absorption is the processes 

when the energy of a photon being converted to another form such as heat. Scattering 

is the processes when the energy of the photon changes direction. Both phenomena 

can be deduced mathematically as follow: 

Consider a small volume V of water, of a thickness r, illuminated by a 

collimated beam of monochromatic light of spectral radiant power my () in unit W 

nm
-1

, schematically depicted in Figure 2.2. Some part of the incident power i () is 
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absorbed within the volume of water. Some part s(,)  is scattered out of the beam 

at an angle , and the remaining power t()  is transmitted through the volume with 

no change in direction. Let s() be the total power that is scattered into all 

directions.  

 

 
 

Figure 2.2. The geometry used to define inherent optical properties (Source: 

Mobley, 1994, 2004). 

Moreover, by assuming that there are no photons undergo a change in 

wavelength during the scattering process. By the law of conservation of energy,  

Φi(λ) ≡ Φa(λ) + Φs(λ) + Φt(λ) (2.1) 

 

The spectral absorptance A () is the fraction of incident power that is absorbed 

within the volume: 

𝐴(λ) =
Φa(λ)

Φi(λ)
 (2.2) 

 

In the same manner, the spectral scatterance B () is the fractional part of the 

incident power that is scattered out of the beam in all directions, 

𝐴(λ) =
Φs(λ)

Φi(λ)
 (2.3) 

 

and the spectral transmittance T() , the fraction of the incident power that passes 

through the volume without interacting with the medium, is 

𝑇(λ) =
Φt(λ)

Φi(λ)
 (2.4) 
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𝐴(λ) + 𝐵(λ) + 𝑇(λ) = 1 (2.5) 

 

The Inherent optical properties generally apply in optical hydrology is the 

spectral absorption and scattering coefficients, which are respectively the spectral 

absorptance and scatterance per unit distance in the medium. Based on Figure 2.2, 

and assuming that the thickness r is approaching zero. The absorption 

coefficient a() is then defined as: 

𝑎(λ) ≡ lim
∆r→0

∆A(λ)

∆r
=

dA(λ)

dr
                    (m−1) (2.6) 

 

Likewise the scattering coefficient b() is defined as 

𝑏(λ) ≡ lim
∆r→0

∆B(λ)

∆r
=

dB(λ)

dr
                    (m−1) (2.7) 

 

The spectral beam attenuation coefficient c() is defined as 

𝑐(𝜆) ≡ 𝑎(𝜆) + 𝑏(𝜆) (2.8) 

 

The angular distribution of the scattered power, with B(, λ) being the fraction of 

incident power scattered out of the beam through an angle θ into a solid angle ΔΩ 

centred on θ, as shown in Figure 2.2. The angle  is called the scattering angle; its 

values lay in the interval 0 ≤  ≤π. Then the angular scatterance per unit distance and 

unit solid angle (, ), is: 

𝛽(𝜓, 𝜆) = lim
Δr→0

lim
ΔΩ→0

Φs(𝜓, λ)

Φi(λ)Δr ΔΩ
 (2.9) 

 

The spectral power scattered into the given solid angle ΔΩ is the spectral radiant 

intensity scattered into direction  times the solid angle: 

Φs(𝜓, λ) = 𝐼𝑠(𝜓, 𝜆)𝛥𝛺         (2.10) 

 

Moreover, if the incident power Φi(λ) falls on an area ΔA, then the corresponding 

incident irradiance is: 
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𝐸𝑖(λ) = Φi(λ)ΔA         (2.11) 

 

And ΔV = ΔrΔA is the volume of water that is illuminated by the incident beam. The 

expression becomes 

𝛽(𝜓, λ) = lim
Δr→0

Is(𝜓, λ)

Ei(λ)ΔV
  (2.12) 

 

This form of β(, λ) suggests the name, spectral volume scattering function and the 

physical interpretation of scattered intensity per unit incident irradiance per unit 

volume of water Integrating β(, λ) over all directions (solid angles) gives the total 

scattered power per unit incident irradiance and unit volume of water, in other words 

the spectral scattering coefficient; 

𝑏(𝜆) = 2π ∫ β

π

0

(𝜓, λ)sin𝜓 d𝜓 (2.13) 

 

This integration is often divided into forward scattering, 0 ≤  < π/2, and backward 

scattering, π/2  ≤   ≤ π parts. 

𝑏 = 𝑏𝑏 + 𝑏𝑓      (2.14) 

  

𝑏𝑓(𝜆) = 2π ∫ β

π

0

(𝜓, λ)𝑠𝑖𝑛𝜓 𝑑𝜓 (2.15) 

  

𝑏𝑏(𝜆) = 2π ∫ β

π

0

(𝜓, λ)𝑠𝑖𝑛𝜓 𝑑𝜓 (2.16) 

 

 

2.3.2 Apparent optical properties  

One of the main goals of optical oceanography is to learn something about 

the constitution of water, such as the concentration of suspended sediment and 

chlorophyll of optical measurement. This means, by measuring the absorption 

coefficient and volume scattering function, then the information about the optical 
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properties of water bodies will be obtained, because the IOPS can provide 

information about the type and concentration of water constituents. However, in the 

early days of optical oceanography, is it difficult to measure in situ IOPS. On the 

other hand, it is relatively easy to measure radiometric variables such as upwelling 

and downwelling irradiances plane. This led to the use of the optical properties 

(AOPs) more dominant than IOPS in describing the optical properties of most of the 

water bodies. Appropriate AOPs can provide useful information about the bodies of 

water, for example, the type and concentration of water constituents, from simple 

measurements, were made in the light field. 

 

2.3.2.1 Irradiance reflectance 

In generally, the reflection characteristic of earth surface features is the 

dimensionless ratio of the radiance emittance of an object and the irradiance. When 

measured as a function of wavelength it is called the spectral reflectance, and defined 

mathematically as (Lillesand et al., 2014): 

𝜌(𝜆) =
𝐸𝑅(𝜆)

𝐸𝐼(𝜆)
×  100 (2.17) 

 

where the  () is expressed as a percentage, ER  is the energy of wavelength 

reflected from the object, and EI is the energy of wavelength incident upon the object. 

A graph of spectral reflectance of an object is called the spectral reflectance curve. 

This configuration spectral curve gives information about the spectral characteristics 

of the object. It is necessary in the determination of the wavelength region (s) in 

which the remotely sensed data is acquired for a particular application. 

In the water bodies, reflectance R is treated as an apparent optical property 

(AOP). Irradiance reflectances commonly used AOP because they are essential to 

remote sensing of the oceans. Algorithm developed to correlate irradiance reflectance 



22 

 

 

R to quantities such as suspended sediment and chlorophyll concentration (Gordon & 

Morel, 2012; M. Zhang et al., 2010).  In ocean colour remote sensing, the spectral 

irradiance reflectance is symbolized as (Mobley, 1994), is defined as the ratio of the 

spectral upwelling to downwelling plane irradiances:  

𝑅(𝑧;  𝜆) =
𝐸𝑢(𝑧;  𝜆)

𝐸𝑑(𝑧; 𝜆)
 (2.18) 

 

R (z;) is often assessed in the water just below the surface and denote this depth by 

z = w = 0. The illustrated of irradiance reflectance is shown in Figure 2.3.  

 

Eu(z,)  

Ed(z,)  

z  
 

Figure 2.3. Illustration of irradiance reflectance (Redrawn from: 

http://www.oceanopticsbook.info). 

Another reflectance used for remote sensing of ocean colour is the remote sensing 

reflectance (Rrs). More lately, the Rrs has become the AOP of another alternative for 

remote sensing of ocean properties (Mobley et al., 2005; O'Reilly et al., 1998). The 

spectral remote-sensing reflectance Rrs is defined as: 

𝑅𝑟𝑠(𝜃, 𝜙, 𝜆) =
L(θ, ϕ, λ)

Ed(θ, ϕ, λ)
    (Sr−1). (2.19) 

 

Rrs (as illustrated in Figure 2.4) is evaluated using L and Ed in the air just above the 

surface of the water, and L is often indicated as the water leaving radiance. The 

reason that Rrs has replaced R for remote sensing is due to less sensitive to the 

environmental conditions such as sun angle or sky condition. However, 
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determination of Rrs is more complicated than R. It requires another parameter and 

different sensor, which must be accurately calibrated (Froidefond et al., 1999; 

Mobley et al., 2011).  

Although Rrs is currently used for most remote sensing application of ocean 

colour, yet, is still commonly measured in water studies and is widely used. For 

example, inverting R  spectra to acquire absorption and scattering properties (Roesler 

& Perry, 1995). 

 

Lw (θ,f ,Z)

Ed(z,)  

θ

  W 

 
 

Figure 2.4. Illustration of remote sensing reflectance (Redrawn from: 

http://www.oceanopticsbook.info). 

 

 

2.4 Optical constituents of the ocean 

It is important to have some information on the composition of those waters. 

Natural waters contain a constant size distribution of particles starting from water 

molecules of size ~0.1 nm, to small organic molecules of size ~1 nm, to large organic 

molecules of size ~100 nm, to a huge size such as whales and submarines of sizes 

~10 m to ~100 m. Thus, clearly, the water is composed fully of particles. However, 

the constituents of natural waters have traditionally been divided into "dissolved" and 

"particulate" matter, of organic and inorganic origin, living and  non-living (Mobley, 

1994). 
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Constituents in water, which affects its optical properties, are traditionally 

grouped into the following: (1) Pure water, both fresh and saline (water + inorganic 

dissolved material). (2) Micro-plant (phytoplankton). (3) Colour dissolved organic 

material (CDOM). (4) Non-phytoplankton organic particles (sometimes referred to 

as detritus or tripton). (5) Inorganic particles, and (6) Bubbles. Following below three 

of six constituents in water that affect its optical properties are discussed in this 

study. 

The IOPs mentioned above have provided an understanding of the aquatic 

environment and implies that optical measurements can be used to deduce 

information of optically active constituents. The water column is assumed to be 

homogeneous in terms of optical properties. Optical remote sensing is likely to 

become quite challenging when the optical properties of the upper water column 

significantly known. The method discussed and applied here relies on the concepts of 

model an inversion technique, leading to analytical algorithms. 

 

2.5 Statistical techniques 

Input variable selection (IVS) methods are important in finding the optimal 

functional form of statistical models. The task of choosing the input variables is 

generally in the development of all statistical models and is largely dependent on the 

discovery of relationships within the data available to identify the appropriate 

predictors of the model output. However, in the case of ANN, and other similar data-

driven statistical modelling approaches, there are no such assumptions made 

regarding the structure of the NN model. In contrast, the IVS and developing models 

based on the available data (May et al., 2011).  


