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PENGASINGAN DAN PENCIRIAN SELULOSA NANOKRISTAL TEMPO 

TEROKSIDA DARIPADA TANDAN BUAH KELAPA SAWIT KOSONG 

 

ABSTRAK 

 Selulosa nanokristal daripada tandan buah kelapas sawit kosong (OPEFB-

NCC) telah berjaya diasingkan, dengan hasil sebanyak 67% daripada OPEFB-MCC, 

melalui proses kimia dan mekanikal menggunakan pengoksidaan 4-acetamido-

TEMPO/NaBr/NaClO dengan bantuan ultrasonik. Imej-imej TEM menunjukkan 

morfologi bagi OPEFB-NCC-MCC adalah kristal selulosa yang lurus dengan 

panjang 122 ± 45 nm, dan lebar seragam 4 ± 2 nm. Analisis FTIR dan 
13

C-

NMR/MAS keadaan pepejal mencadangkan pengoksidaan berlaku di kumpulan 

hidroksil primer (C6) rantai selulosa dan OPEFB-NCC yang terhasil kebanyakannya 

terdiri daripada selulosa kristal jenis I. XRD dan 
13

C-NMR/MAS menunjukkan 

bahawa NCC mempunyai indeks kristal yang lebih rendah barbanding bahan 

permulaan. Analisis terma menunjukkan OPEFB-NCC terurai pada suhu rendah 

berbanding OPEFB-MCC, tetapi menghasilkan kadar arang yang tinggi iaitu 46% 

berbanding 7% bagi OPEFB-MCC. Proses penghasilan MCC menggunakan bahan 

kimia dan masa, melibatkan beberapa langkah tindak balas untuk penyediaannya, 

oleh sebab itu bahan alternatif yang lebih ringkas seperti pulpa selulosa diperlukan. 

Walau bagaimanapun, kerana penghasilan pulpa selulosa juga melibatkan urutan 

proses pelunturan, kesan bagi urutan proses pelunturan terhadap sifat-sifat pulpa TO-

OPEFB juga dikaji. Berdasarkan kandungan karboksil dan nisbah kristal yang 

diperolehi bagi pulpa TO-OPEFB, membuktikan bahawa pulpa OPEFB tanpa 

pelunturan dapat memberikan kesan yang sama seperti yang diingini terhadap pulpa 

menjalani urutan pelunturan. NCC yang diasingkan dari pulpa TO-OPEFB tanpa 
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pelunturan (OPEFB-NCC-pulpa) juga wujud sebagai selulosa kristal yang lurus 

dengan lebar purata 5 ± 1 nm. Secara perbandingan, OPEFB-NCC-pulpa mempunyai 

nisbah paksi yang lebih besar dengan panjang purata 224 ± 80 nm berbanding 122 ± 

45 nm bagi OPEFB-NCC-MCC. Kesannya, OPEFB-NCC-pulpa mempunyai 

geometri nisbah paksian yang lebih besar; walau bagaimanapun keduanya adalah 

setanding daripada segi indeks kristal (72%) dan kestabilan terma. Filem OPEFB-

NCC kelihatan pendarrona (kesan warna pelangi) pada cahaya terkutub, yang 

meningkat dengan ketebalan filem tetapi disertai dengan pengurangan transparensi. 

Pemerhatian visual bagi filem yang dibuat daripada OPEFB-NCC bernisbah paksian 

rendah dan medium (dengan nilai 27 dan 45) adalah lutsinar, manakala filem dengan 

nisbah paksian tinggi iaitu 46 kelihaan lutcahaya. Apabila dilihat dibawah POM, 

filem daripada nilai paksian rendah menunjukkan pantulan warna terbesar dalam 

kawasan biru, manakala bagi nisbah paksian medium, ia teranjak ke kawasan hijau 

spektrum nampak. Dengan penambahan yang berterusan nisbah paksian, kehadiran 

pendarrona tidak lagi dapat dilihat. Filem OPEFB-NCC-pulpa juga menunjukkan 

permukaan rata, lutsinar tetapi rapuh dengan kekuatan tegangan 49 MPa, modulus 

Young 9.26 GPa dan 0.53% pemanjangan ketika putus. Glicerol ditambahkan 

sebagai pemplastik, menghasilkan filem yang lebih mudah lentur, senang dibengkok, 

boleh dilipat dan dipotong tanpa retak berbanding dengan filem OPEFB-NCC yang 

tulen. Walau bagaimanapun, filem OPEFB-NCC terplastik mempunyai sifat 

tegangan dan kadar kristal yang rendah, tetapi kebolehbasahan yang tinggi 

berbanding filem OPEFB-NCC tulen. Dengan mengambil kira kesan positif dan 

negatif, penggunaan 30% bahan pemplastik dicadangkan bagi penghasilan filem 

OPEFB-NCC. Hasil daripada kajian ini membuka laluan baru dan membentuk asas 

dalam usaha-usaha kajian untuk meningkatkan keupayaan sisa biojisim kepada 
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aplikasi nanoteknologi daripada bahan terbiodegradasi dengan cara yang selamat dan 

mampan.  

 

Kata kunci: Tandan kosong buah kelapa sawit (OPEFB); selulosa nanokristal 

(NCC); selulosa mikrokristal (MCC); urutan pelunturan tanpa klorin 

(TCF); pengoksidaan 4-acetamido-TEMPO/NaBr/NaClO dengan 

bantuan ultrasonik (TEMPO); ultrasonik; nematik kiral; filem selulosa 

nanokristal tandan kosong buah kelapa sawit (OPEFB-NCC filem); 

sifat pendarrona; sifat tegangan.  
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ISOLATION AND CHARACTERIZATION TEMPO OXIDIZED 

NANOCRYSTALLINE CELLULOSE FROM OIL PALM EMPTY FRUIT 

BUNCH 

 

ABSTRACT 

Oil palm empty fruit bunch nanocrystalline cellulose (OPEFB-NCC) has been 

successfully isolated, with yields of 67%, from OPEFB-MCC via a chemical and 

mechanical process using 4-acetamido-TEMPO/NaBr/NaClO oxidation and 

ultrasonic treatment. TEM images indicate the morphology of OPEFB-NCC as 

straight crystals of cellulose with lengths 122 ± 45 nm, and uniform widths of 4 ± 2 

nm. FTIR and 
13

C-NMR/MAS solid state analysis suggests that oxidation occurred at 

the site of the primary (C6) hydroxyl groups on the cellulose chain and that OPEFB-

NCC consists primarily of crystalline cellulose I. XRD and 
13

C-NMR/MAS indicated 

that OPEFB-NCC had a lower crystallinity index than the OPEFB-MCC starting 

material. Thermal analysis revealed that OPEFB-NCC degraded at lower temperature 

than OPEFB-MCC, but had a much higher char content of 46% to the 7% of 

OPEFB-MCC. The production of MCC is a chemical and time consuming process, 

involving various reaction steps during its preparation; hence an alternative of a 

much simpler material such as cellulose pulp is much desired. However, since its 

production also entails a sequence of bleaching process, the effect of such sequence 

on the properties of TO-OPEFB pulps were also investigated. Based on the carboxyl 

content and crystallinity of the obtained TO-OPEFB pulp, it is established that 

unbleached OPEFB pulp gave the same desired effect than bleached TCF pulps. 

NCC isolated from TO-OPEFB unbleached pulp (OPEFB-NCC-pulp) also exhibit 

straight crystals of cellulose with an average width of 5 ± 1 nm. Comparatively, 

OPEFB-NCC-pulp has a longer crystallite length with an average length of 224 ± 80 
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nm against 122 ± 45 nm for OPEFB-NCC-MCC. Consequently, OPEFB-NCC-pulp 

has a greater geometrical axial ratio; nevertheless, both types of NCC are comparable 

in terms of crystallinity and thermal stability. Films of OPEFB-NCC exhibit 

iridescence (rainbow like effect) in polarized light, which increases with film 

thickness but at the expense of transparency. Visual observations of the film made 

from low and medium geometrical axial ratios of OPEFB-NCC (with values of 27 

and 45) were optically transparent, whilst the film with high axial ratio of 46 

appeared translucent. When viewed under POM, film of low axial ratio induces the 

largest reflected color in the blue region, whilst for the medium axial ratio, it shifted 

to green region of the visible spectrum. With further increase to the high axial ratio, 

the iridescent appearance could no longer be seen. The OPEFB-NCC-pulp films also 

showed a smooth, transparent but brittle surface with a tensile strength of about 49 

MPa, Young’s modulus of 9.26 GPa and an elongation at break of 0.53%. Glycerol 

was added as a plasticizer, resulting in a much more pliable film, easily bent, folded 

and can be cut without cracking compared to that of the pure OPEFB-NCC-pulp 

film. However, the plasticized OPEFB-NCC-pulp films have lower tensile properties 

and crystallinity, but higher wettability compared to pure OPEFB-NCC film. Taking 

into consideration of the positive and negative effects, it is suggested that a 30% 

addition of glycerol is recommended for OPEFB-NCC film production. The outcome 

of this study opens a new avenue and forms the basis in the research efforts on 

expanding the capabilities of biomass residue into nanotechnology application from 

biodegradable material in a safe and sustainable manner.  
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CHAPTER 1 

INTRODUCTION 

 

1.1  Project Background 

As one of the biggest producers and exporters of palm oil, Malaysia produced 

approximately 90 million tons of oil palm biomass each year (Danish et al., 2015); 

including trunks, fronds, and empty fruit bunches (OPEFB), with annual production 

expected to increase in line with the growing worldwide demand for palm oils 

(Bazmi et al., 2011). These residues represent an abundant, inexpensive, and readily 

available source of renewable lignocellulosic biomass.  

Several applications such as electricity generation, conversion into pulp and 

paper products (Wanrosli et al., 2006) and roughage for animal feeds (MARDI, 

2008) have been proposed for the oil palm lignocellulosic residues. To increase its 

diversity and economic importance, new high-performance products from this 

lignocellulosic based materials that are safe and sustainable have to be developed.  

 

1.2 Problem Statement  

OPEFB with ca. 60% cellulose content (Wanrosli et al., 2004), has the 

potential to be exploited into high value products in particular in the production of 

nanocrystalline cellulose (NCC). NCC are the basic building blocks of cellulose and 
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are nanorod in the range of 100-500 nm in length and less than 10 nm in width, 

depending on the cellulose source (Fleming et al., 2001; Habibi et al., 2010).  

NCC are considered today as a novel class of nanomaterials with many 

attracting properties such as nanoscale dimension, high specific strength and 

modulus, high surface area, unique optical properties, etc. (Peng et al., 2011) that has 

the potentials to be used in an array of applications. Of particular interest which 

forms as one of the object of this research is the production of iridescent film, which 

is seen as a prospect material towards developing a lightweight visual display 

fabrication that could replace the currently used high conventional batch processes 

based on plastic (petroleum based product) substrate (Shah & Brown, 2005; Nogi et 

al., 2009).  

NCC can be isolated from a variety of cellulose sources. Of late, considerable 

efforts have been geared toward producing nanocellulose from non-woody sources; 

such as sisal fiber (Moran et al. 2008), kenaf (Jonoobi et al. 2010; Kargarzadeh et al. 

2012), pea hull (Chen et al. 2009), rice straw (Jiang & Hsieh 2013), and sugarcane 

bagasse (Mandal & Chakrabarty 2011). Since Malaysia has an abundant supply of oil 

palm fibrous material generate by the palm oil industry and this biomass is readily 

available at minimal cost, it is economical, of great interest to develop a technique 

that can process this lignocellulosis biomass into a high value product of NCC.  

NCC is usually obtained from the crystalline regions of cellulose fiber via 

sulfuric acid hydrolysis at elevated temperatures, however, this process induces a 

rapid decrease in the degree of polymerization through breaking down the accessible 

amorphous regions of the long glucose chains resulting in yield loss, with only ca. 30 
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% of the crystalline obtained (Habibi et al., 2010; Peng et al., 2011; Hirota et al., 

2012). Hence, alternative isolation processes are sought.  

NCC’s have recently been prepared via 2,2,6,6,–tetramethyl–1–

piperidinyloxy (TEMPO)-mediated oxidation to yield of more than 90% being 

reported (Kitaoka et al., 1999; Saito et al., 2007; Tahiri & Vignon 2000). In an effort 

to increase the efficiency of the oxidation reaction, ultrasonic uses have been 

proposed to assist the TEMPO-mediated oxidation.  

The high energy of the ultrasound expected can give advantages in the 

TEMPO-mediated oxidation process through fibrillation process, thus increasing 

availability of accessible primary hydroxyl groups for oxidation. This seems to 

suggest that this is a promising route to isolate NCC from OPEFB, hence, this 

methodology of ultrasonic assisted TEMPO-mediated oxidation is adopted in this 

study.  

 

1.3 Objectives  

The objectives of the present study were:- 

i. To isolate and characterize OPEFB-NCC from OPEFB-MCC using the 

ultrasonic assisted TEMPO-mediated oxidation followed by 

ultrasonification of the oxidized cellulose. 

ii. To study various degrees of lignin content (effects of total chlorine free 

(TCF) bleaching sequence) on the properties of TEMPO-oxidized OPEFB 

pulp and to isolate OPEFB-NCC from the most efficient oxidized OPEFB 

pulp by ultrasonification.  
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iii. To compare the properties of OPEFB-NCC isolated from OPEFB-MCC 

and most efficient OPEFB-pulp produced in (ii). 

iv. To fabricate and characterize OPEFB-NCC film from selected OPEFB-

NCC obtained in (ii)  

v. To study the effects of film thickness, geometrical axial ratio and plasticizer 

on the properties of NCC film produced in (iv). 
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CHAPTER 2 

LITERATURE RIVIEW 

 

2.1 The Oil Palm  

 Oil palm (Elaeis guineensis) (Fig. 2.1) originated from West Africa, and later 

brought to Southeast Asia as an agricultural crop to produce palm oil that is derived 

from the palm fruit at the beginning of the 20
th

 century. Since then, rapid expansion 

has occurred and by the mid-20
th

 century, the oil palm industry has become the most 

important agricultural sector that contributes to high export earnings to Malaysia. It 

is the most productive oil crop and has become an important feedstock to the food 

industry for edible oil production, since the amount oil produced per hectare per year 

is far greater than other vegetable oils like soybean, sunflower and rapeseed (Fig. 

2.2) (MPOB, 2013). 

 In 2011, Malaysia alone had 4.908 million hectares of oil palm plantation, 

which covers approximately 73% of the agricultural land (Wendy et al., 2012). Fig. 

2.3 shows distribution of oil palm plantation that can provide employment 

opportunities to the local residents. 
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Fig. 2.1: Oil palm tree. 

 

 

Fig. 2.2: Average vegetable oil yield (MPOB, 2013). 
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Fig. 2.3: The distribution of oil palm plantations in Malaysia (Wendy et al., 2012). 

 

2.1.1 Oil Palm Biomass as an Alternative Source of Fiber 

 In 2005, an estimated 56 million tons of oil palm biomass are generated in 

Malaysia and annual production is expected to increase in line with the growing 

worldwide demand for palm oils (Bazmi et al., 2011). These include the oil palm 

fronds (OPF) and oil palm trunks (OPT) which are obtainable at the plantation site; 

empty fruit bunches (EFB), palm kernel shells, mesocarp fiber and palm oil mill 

effluent (POME) at the mill sites. TABLE 2.1 shows the breakdown of wastes from 

oil palm production. Although efforts are currently underway to utilize this enormous 

biomass, it is still perceived as wastes causing its disposal a great concern which has 

gained criticism from environmental groups regarding their biodiversity and air 

pollution (Aljuboori, 2013). 
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TABLE 2.1: Wastes from Malaysia’s Palm Oil Production in 2007 (Abdullah & 

Sulaiman, 2013) 

Wastes Quantity (k tons) 

Fronds 46 837 

Empty fruit bunches (EFB) 18 022 

Palm pressed fibbers (PPF) 11 059 

Oil palm trunks (OPT) 10 827 

Shell 4 506 

 

  In terms of utilization, oil palm biomass is being used in various industries. 

For example, EFB is being used as mulching and fertilizer in plantation or it can 

contribute as a solution to the renewable energy at the mill site (Bazmi et al., 2011). 

In addition, oil palm EFB is now viewed as a feasible alternative of coconut fiber for 

mattress and cushion production, which do not need to go through further cleaning 

process and extracting of long fiber. Other than that, EFB can also be used for 

medium density fiberboard production, or can be converted into paper making pulp 

with good printing properties and a good papermaking formation (Henghuat, 2015).  

 Realizing the potential of these oil palm biomasses, recently, there have been 

numerous ongoing efforts to increase profits from the oil palm biomass fiber by 

producing fuel and bio-based chemicals (Aljuboori, 2013). Additionally, oil palm 

biomass residue is a reliable resource because of its availability, continually 

production, non-hazardous, biodegradable material (Abdullah & Sulaiman, 2013) 

and does not compete its food production in terms of land destination (Verardi et al., 

2012). Oil palm fibers are also versatile, stable and can be processed into various 

dimensions and grades to fit specific applications. 

 Several reviews and scientific papers have been published on the synthesis of 

cellulose and cellulose derivative from oil palm empty fruit bunch, such as cellulose 
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phosphate (Wanrosli et al., 2011; Wanrosli et al., 2013), microcrystalline cellulose 

(Haafiz et al., 2013), carboxyl methylcellulose and cellulose acetate (Djuned et al., 

2014).    

 In general, all lignocellulosic biomass (including wood and non-wood) is 

composed of lignin, hemicelluloses and cellulose, with small amounts of inorganic 

materials. As for oil palm biomass, it is reported (Wanrosli et al., 2004) that the 

composition is as follows: cellulose (60%), hemicelluloses (24%) and lignin (17%); 

data presented is after normalization between cellulose, hemicelluloses and lignin. 

Although all of these components have been investigated for its use (Ren & Zhao, 

2013; Sánchez, 2009), cellulose remains the most potential because of its availability 

and possibility of modifications. 

 

2.2 Cellulose 

 Cellulose, a natural polysaccharide, is the most abundant renewable 

biopolymer, naturally produced by plants, as well as by microorganisms. In wood, 

cellulose can be obtained by 42-52% and mostly located in the secondary cell wall, 

while more than 90% cellulose can be obtained from raw cotton, and more than 60% 

can be obtained from the oil palm empty fruit bunch (OPEFB) (Credou & Berthelot, 

2014; Abdullah et al., 2011). Cellulose is a macromolecule, which needs to be 

defined on three structural levels, namely molecular, supramolecular and 

morphological.  
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2.2.1 Molecular Structure 

 Cellulose is composed from the simplest structure of a unique monomer 

among polysaccharides of β-D-glucopyranose units, linked by β-1,4-glycosidic 

bonds. The dimer cellobiose is the smallest repetitive unit of cellulose, which is 

formed by two glucose monomers (Fig. 2.4). In which, anhydroglucose unit is the 

monomer of cellulose, cellobiose is the dimer. Cellulose chain has a direction, one 

end being a closed ring structure and the other being an aliphatic reducing end in 

equilibrium with cyclic hemiacetals (Credou & Berthelot, 2014).   

 The number of single anhydroglucose units constituting the chain orders the 

chain length or degree of polymerization (DP) of cellulose. The average DP value 

not only depends on the origin of the raw material, but also on the potential 

extraction treatments like isolation, purification, and solubilization that generally 

cause scission of the cellulose chain (Credou & Berthelot, 2014).   

 

 

Fig. 2.4: Cellulose molecular structure (n=DP, degree of polymerization). 
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 Cellulose contains a large amount of free hydroxyl groups available for 

reaction located at C2, C3, and C6 respectively, where hydroxyl group of C6 is much 

more reactive than that of C2 and C3 (Qin et al., 2011). These hydroxyl groups 

together with the oxygen atoms of both pyranose ring and the glycosidic bond have 

an ability to make an extensive hydrogen bond network, composed of both intra- and 

intermolecular hydrogen bonds that govern the physical (straightness of the chain, 

mechanical properties, thermal stability, etc.) properties of cellulose (Credou & 

Berthelot, 2014). 

  During cellulose formation, the intramolecular hydrogen bonds are partly 

responsible for linear integrity and rigidity of the polymer chain, whereas, 

intermolecular hydrogen bonds promote aggregation of multiple cellulose chain 

formation resulting in various ordered crystalline structure and other supramolecular 

arrangements (Credou & Berthelot, 2014). 

 

2.2.2 Supramolecular Structure 

 Cellulose exists in several allomorphic forms; four different polymorphs of 

cellulose are known as cellulose I, II, III and IV. Fig. 2.5 shows schematic for the 

formation of cellulose allomorphs. Indeed, two main routes from cellulose I to 

cellulose II, emerge by (i) mercerization (treatment with aqueous sodium hydroxide) 

and (ii) solubilization followed by regeneration (recrystallization). Then, treatment of 

cellulose I and II with liquid ammonia leads to cellulose III1 and III2, respectively, 

and heat treatment of cellulose III1 and III2 leads to cellulose IV1 and IV2, 

respectively. The transformation of cellulose III and IV is usually partial and 

reversible (can be converted to the origin cellulose) (Credou & Berthelot, 2014; 



12 
 

Kontturi et al., 2006). However, review focus on cellulose I and cellulose II due to 

only these cellulose allomorphs engage in this study.  

 Cellulose I, sometimes referred to as native cellulose, crystallizes (organize 

into units) simultaneously in two allomorphs of Iα and Iβ (Fig. 2.6). Cellulose Iα has a 

triclinic unit cell and exists in primitive organism such as bacteria or algae, whereas, 

cellulose Iβ has a monoclinic unit cell, and prevails in wood, ramie fibers and cotton. 

Fig. 2.6 (a) shows projection along the chain direction with the Iα and Iβ unit cells 

superimposed on the cellulose I crystal lattice, showing the parallelogram shape of 

both unit cells when looking down the c-axis. In this orientation both unit cells have 

nearly identical molecular arrangements, sharing the three major lattice planes, 

labeled 1, 2, and 3, with the corresponding d-spacings of 0.39, 0.53, and 0.61 

(Credou & Berthelot, 2014). 

  

Fig. 2.5: Schematic for the formation of cellulose allomorphs. 
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Fig. 2.6: Schematic representation of the unit cells of cellulose Iα (triclinic, dashed 

line) and Iβ (monoclinic, solid line) structure (Credou & Berthelot, 2014). 

   

 

 

Fig. 2.7: Supramolecular distinction between cellulose I and cellulose II lies in inter– 

and intramolecular hydrogen bonds (Credou & Berthelot, 2014). 

 

 Cellulose Iβ is more stable than the Iα form as the amount of weak inter-chain 

hydrogen bonds in the Iβ structures is believed to be larger than in the Iα polymorph. 

Cellulose Iα and Iβ are interconverted by bending during microfibril formation and 

  Triclinic  
 Monoclinic  

(a) (b) 
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metastable cellulose Iα converts to cellulose Iβ on annealing (a process of heating and 

slow cooling) (Poletto et al., 2013). 

 Cellulose II crystallizes in the same monoclinic unit cell, but, different from 

their inter- and intramolecular hydrogen bonds as compared to cellulose I (Fig. 2.7). 

The main interchain hydrogen bond is that of O3-H···O5 for both polymorphs, which 

gives cellulose chain its rigid, linear shape. In contrast, cellulose I have an O6-

H···O3 inter-chain bond, whereas cellulose II has it at O6-H···O2 position, resulting 

cellulose II to have an antiparallel packing whereas the chain in cellulose I run in a 

parallel direction.  

 In addition, intermolecular hydrogen bonds of cellulose II occur in the 

intrasheets and between intersheets to form an optimal hydrogen network bonding 

unlike cellulose I where only intrasheet hydrogen bonds have been detected and a 

slipping of sheets appears possible (Zugenmaier, 2001). Therefore, cellulose II is 

considered to be irreversible and thermodynamically the most stable among cellulose 

crystalline forms (Credou & Berthelot, 2014; Kontturi et al., 2006). 

 

2.2.3 Morphological Structure  

 Cellulose has a hierarchical (characteristic of a hierarchy) structure, from the 

polymeric glucose chains to the microfibrils (Fig. 2.8). The long chains of cellulose 

polymers are accumulated and packed together in a very specific way described as 

being fractal (complex patterns that are self-similar across different scale) to form 

microfibrils (nanometer scale diameter and micrometer scale length) by hydrogen 

and van der Waals bonds (Samir et al., 2005). Assembling these microfibrils together 
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results in macrofibrils (micrometer scale diameter and millimeter scale length) that 

represent the building block of cellulose (Credou & Berthelot, 2014). This assembly 

leads to cellulose commonly having a highly crystalline structure, insoluble in water, 

and resistance to most reagents (Fleming et al., 2001; Lucia & Rojas, 2009; 

Montanari et al., 2005).  

 Cellulose can be classified as a semicrystalline fibrillar material since it 

contains both crystalline and amorphous regions as a result of small crystalline units 

being imperfectly packed together (Fleming et al., 2001; Samir et al., 2005). Their 

ratio, or degree of crystallinity, depends on the origin of cellulose: sisal 65-70% 

(Credou & Berthelot, 2014), tunicate 95% (Zhao et al., 2015), wood 40-30% 

(Andersson et al., 2003), cotton linter 56-78% (Terinte et al., 2011), and flax 72% 

(Credou & Berthelot, 2014; Cao et al., 2012a). 

  

 

Fig. 2.8: Schematic representation of the plant cell walls along with the main 

polysaccharide components (Quiroz-Castañeda & Folch-Mallol, 2013). 
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 Besides being semicrystalline, it is important to understand that cellulose 

rarely exists in nature in a pure single-compound entity as native cellulose always 

contains varying amounts of other amorphous component, including hemicelluloses 

(various polysaccharides) and lignin (a polyphenol) depending on refinement 

treatment (Kontturi et al., 2006). For instance, in the cell wall of plants, microfibrils, 

which are integrally embedded with hemicelluloses and lignin, are tightly hooked to 

one another (to form macrofibril) by multiple hydrogen bonds, that greatly 

responsible for the supramolecular structure of cellulose (Fig. 2.8) (Saito et al., 

2007). For this reason, separation or individualization of cellulose nanofibrils from 

wood cellulose fibers or pulps is very difficult, needing extended of mechanical and 

chemical treatment. 

 

2.3 Nanocrystalline Cellulose 

Nanocrystalline cellulose (NCC) is the basic building unit of cellulose that is 

released from the original cellulose fibers. Various terms have been used to describe 

NCC in the literature, including cellulose nanocrystal (Habibi et al., 2010; Qin et al., 

2011), nanocellulose crystal, cellulose nanofibrils (Hamad, 2006), cellulose 

nanowhiskers (Chen et al., 2009), and cellulose crystallites (Fleming et al., 2001).  

 NCC is a one dimensional nanomaterial (1D), nanorod within the range 100 

to 500 nm length with a width of less than 10 nm. However, determining the exact 

dimensions of NCC is complicated, where the overall size, shape and specific 

dimensions of the NCC depends on the cellulose origin, preparation condition 

(Fleming et al., 2001; Habibi et al., 2010; Qin et al., 2011; Sacui et al., 2014), and on 

the used measurement techniques (Mishra et al., 2011; Montanari et al., 2005).   
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NCC can be obtained from a variety of cellulose sources, with wood pulp 

being the most used (Sacui et al., 2014; Yang et al., 2013). However, since Malaysia 

has an abundant supply of oil palm fibrous material generated by the palm oil 

industry and this biomass is readily available at minimal cost, it is, economically, of 

great interest to develop a technique that can process this lignocellulosic biomass 

into a high-value product of NCC. Because it is obtained from cellulosic fibers, NCC 

is a renewable, recyclable and abundant form of nanomaterials, hence making it an 

important class of materials with vast potential applications.  

 

2.4 Production of Nanocrystalline Cellulose   

Nanocrystalline cellulose (NCC) is usually obtained from the crystalline 

regions of cellulose fiber via sulfuric acid hydrolysis at elevated temperatures, 

whereby a small amount of sulfate ester (negative charges) is introduced to the 

surface during the reaction, thereby giving a significant and stable colloidal 

suspension of NCC over sedimentation (Fleming et al., 2001; Hamad, 2006).  

 Fig. 2.9 shows a scheme for the isolation of the crystalline cellulose by acid 

hydrolysis. This process induces a rapid decrease in the degree of polymerization 

through breaking down the accessible amorphous regions of the long glucose chains 

with yields of ca. 30% of crystalline material (Habibi et al., 2010; Peng et al., 2011; 

Hirota et al., 2012). This is owing to lower density of amorphous region as compared 

to the crystalline regions of cellulose, as a result, the amorphous regions break up 

releasing the individual crystallites when subjected to harsh acid treatment (Peng et 

al., 2011).  
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 On the other hand, if hydrochloric acid is used as a hydrolyzing agent for 

isolation of NCC, their dispersibility is limited and their aqueous suspensions tend to 

flocculate (Habibi et al., 2006), even though their characters displayed similar under 

TEM and x-ray diffraction patterns to the ones obtained by sulfuric acid hydrolysis 

(Holt et al., 2010). 

 Apart from acid hydrolysis treatment, NCC has also been prepared from 

native cellulose using TEMPO-mediated oxidation followed by mechanical 

disintegration of the oxidized cellulose (Johnson et al. 2009; Saito et al. 2007). 

TEMPO (2,2,6,6-tetramethylpiperidine-1-Oxy) and  its derivative, 4-acetamido-

TEMPO are water soluble catalytic oxidation systems, which have received 

considerable attention due to their catalytic and selective oxidation of the primary 

hydroxyl groups (C6) of pulp fibers. The TEMPO radical helps to introduce 

additional carboxylic groups on and in fibers and thus improves inter-fiber bonding 

strength of paper (Kitaoka, 1999; LeRoux, 2006). 

 Saito et al. (2007) had studied extensively the oxidation of cellulose fibers by 

means of TEMPO mediation. They found significant amounts of carboxylate and 

aldehyde groups on native cellulose while maintaining their fibrous morphology and 

crystallinity. This allowed them to prepare dispersions of individualized cellulose 

nanofibrils in water. This technique is advantageous since it does not require strong 

acid to hydrolyze cellulose and gives relatively high yields. Because of its added 

benefits, TEMPO oxidation followed by mechanical treatment will be adopted for 

the production of NCC from oil palm biomass. 
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Fig. 2.9: Schematic for the isolation of the crystalline structure of cellulose by acid 

hydrolysis. 

 

2.4.1 TEMPO-Mediated Oxidation 

 TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and its derivatives (Fig. 2.10), 

are water soluble, commercially available and stable nitroxyl radicals (towards 

dimerization or decomposition and inert to typical organic molecules), and were 

studied for catalytic and high selectivity for oxidation of primary hydroxyl groups of 

polysaccharides under aqueous condition (Denooy et al., 1995; Qin et al., 2011; Saito 

& Isogai, 2004).  

In general, TEMPO-mediated oxidation of polysaccharides is a regioselective 

process, whereby the C6 primary hydroxyl group of polysaccharides is the most 

prone to be oxidized to carboxylate groups than the secondary hydroxyl groups due 

to steric effect caused by the four methyl groups in TEMPO as well as low 

accessibility of the secondary hydroxyl group (Denooy et al., 1995; Saito & Isogai, 

2004).  
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Since the dissociated carboxylate groups have anionic charges in the water, 

repulsive forces are formed between the cellulose microfibrils in the TEMPO 

oxidized celluloses with generally carboxylate contents >1 mmol/g. Thus, mostly 

individualized cellulose nanofibrils 3-4 nm in width can be obtained by simple 

mechanical disintegration of the oxidized celluloses in water (Saito et al., 2006). 

Initially, TEMPO-mediated oxidation was applied to water soluble 

polysaccharides such as pullulan, amylodextrin, starch and potato. In this oxidation 

process, NaClO was used as primary oxidant with less than 1% of catalytic amount 

of NaBr (used to increase oxidation rate) and TEMPO (Denooy et al., 1994; Denooy 

et al., 1995; Saito & Isogai, 2004; Tavernier et al.,  2008). The investigations by 

Saito et al. (2007) have opened new dimensions of the use of TEMPO for the 

isolation of NCC. 

 

 

Fig. 2.10: Molecular structure of TEMPO and its derivatives (Iwamoto et al., 2010). 
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Fig. 2.11: Regioselective oxidation of C6 primary hydroxyls of cellulose to C6 

carboxylate groups by TEMPO/NaBr/NaClO oxidation in water at        

pH 10 -11 (Isogai et al., 2011). 

 

The mechanism for TEMPO-mediated oxidation mechanism of cellulose is 

shown in Fig. 2.11. The oxidation begins with the addition of NaClO to aqueous 

cellulose suspensions in the presence of catalytic amounts of TEMPO and NaBr at 

pH 10–11 and room temperature. In this process, NaClO plays a role as primary 

oxidant to form NaBrO, which in turn oxidizes TEMPO (a) to form the nitrosonium 

compound (b). Note that the nitrosonium ion is continuously regenerated in situ. The 

nitrosonium compound (b) oxidizes the primary hydroxyl to carboxylate via 

aldehyde structure in water at pH 10, forming N-hydroxylamine (c) in Fig. 2.11. The 

nitrosonium compound (b) is regenerated from (c) via TEMPO in the catalytic 

system. The C6 primary hydroxyl groups of cellulose are converted to carboxylate 

groups via C6 aldehyde groups, and only inexpensive NaClO and NaOH are 

consumed as the oxidation proceeds (Isogai et al., 2011; Praskalo et al., 2009; 

Iwamoto et al., 2010).  
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2.4.2 Factors that Influence the Oxidation Reaction 

  Fiber morphology is one of the important factors influencing the reaction 

rate; TEMPO-mediated oxidation process is hampered by the high crystalline state 

and poor accessibility of primary hydroxyl group of cellulose materials. TEMPO-

mediated oxidation of native cellulose demonstrates that even though the oxidation 

proceeded throughout the fibers, but only partial primary hydroxyl group could be 

converted mainly at the surface of the microfibrils (Montanari et al., 2005; Saito et 

al., 2009; Saito & Isogai, 2004; Saito et al., 2006; Tavernier et al., 2008). Therefore, 

most of carboxylate group were present on the crystal surface and in disorder regions 

with high density (Saito & Isogai, 2004). Fig. 2.12 shows a schematic model of 

cellulose microfibril surface oxidation by TEMPO system, in which, only primary 

hydroxyl group on the cellulose surface was oxidized into carboxylic group.  

 

 

Fig. 2.12: Schematic model of oxidation of primary hydroxyl on cellulose microfibril 

surface of TEMPO/NaClO/NaBr system (Isogai et al., 2011). 
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Fig. 2.13: Cross-sectional representation accessible area for TEMPO mediated 

oxidation of C6 hydroxyl group of cellulose crystal surface (Habibi et 

al., 2006). 

 

 Fig. 2.13 shows that all accessible C6 hydroxyl groups of cellulose located at 

the cellulose crystal surface were carboxylated, but the core of the crystals remained 

unaffected. The oxidation reaction can be improved either by using cellulose samples 

with a small microfibril diameter or, by reducing the diameter of the existing 

microfibrils (Habibi & Vignon, 2008; Sun et al., 2005). Therefore, ultrasonic wave 

was adopted in this study to reduce the diameter of microfibril during TEMPO-

mediated oxidation reaction.  

 TEMPO-mediated oxidation is also a pH dependent reaction, which seems to 

be some inconsistency there with respect to the product obtained depending on the 

applied reaction condition, which the oxidation under basic conditions is more rapid 

and selective than under acid condition. Results show that the optimum pH for 

oxidation of water soluble glucan was between 10 – 11 (Denooy et al., 1995), while 

minimum depolymerization could occur in oxidation reaction of pullulan at 9.2 – 9.7 

of pH range and for amorphous cellulose pH of 10 at 4°C (Dang et al., 2007). Other 
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than that, the molar ratio of reagent, reaction time and temperature were the key 

factors controlling the product yields, depolymerization of cellulose and the 

oxidation rate of TEMPO-mediated oxidation (Habibi & Vignon, 2008; Isogai & 

Kato, 1998).  

 As TEMPO-mediated oxidation of cellulose was studied in smaller scopes 

(Praskalo et al., 2009), this process may become one of the interesting and promising 

routes for surface modification of cellulose in the near future, where carboxylate and 

aldehyde functional groups can be effectively introduced into solid native cellulose 

under aqueous and mild conditions (Milanovic et al., 2012; Saito et al., 2006a). 

Furthermore, the advantages of these TEMPO-mediated oxidations are catalytic 

process, high reactivity rate, high yield, high selectivity, modest degradation of 

polysaccharides throughout the process, and consumes inexpensive hypochlorite 

(NaClO) and sodium hydroxide (NaOH) (Denooy et al., 1995; Praskalo et al., 2009).   

 TABLE 2.2 shows characteristics of TEMPO-mediated oxidation reaction of 

cellulose sample. Based on the review, ultrasonic-assisted treatment increases the 

TEMPO oxidation reaction resulting in an increase in the carboxyl content of the 

cellulose fibers. This is an important feature since its presence will create 

electrostatic repulsion between the NCC produced after mechanical disintegration of 

the oxidized fibers, hence maintaining their individualization for a substantial period 

of time. Therefore, the oxidation of OPEFB pulp in this investigation was carried out 

using 4-acetamido-TEMPO reaction with ultrasonic treatment at pH 9.5, which is the 

optimum condition for 4-acetamido-TEMPO catalyst (Mishra et al., 2012a).  
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