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7 ABSTRAK 

 

Industri tekstil telah mengalami pertumbuhan pesat dalam tahun-tahun 

kebelakangan ini. Dalam industri ini, pelbagai jenis pewarna telah digunakan untuk 

tujuan mewarna. Akibatnya, air sisa industri ini mengandungi sejumlah besar warna 

dan sebatian toksik yang akan memudaratkan alam sekitar jika tidak dirawat. Oleh 

itu, kumbahan tekstil mempunyai keperluan untuk dirawat dengan kaedah yang 

cekap sebelum dilepaskan ke saliran air. Di antara semua kaedah rawatan, proses 

penjerapan didapati sebagai kaedah yang berkesan. Kitosan (CS) merupakan salah 

satu polimer tabii jadi yang boleh didapati secara meluas. CS telah terbukti sebagai 

penjerap warna yang berkesan kerana sifat-sifatnya seperti mudah untuk 

biodegradasi, ciri kationik dan harga yang rendah. Walau bagaimanapun, CS mentah 

mempunyai ciri-ciri yang mengehadkan prestasi penjerapan seperti kawasan 

permukaan dan kapasiti penjerapan yang rendah. Oleh itu, CS perlu diubah suai 

sebelum digunakan sebagai penjerap. Dalam kajian ini, CS telah diubah suai dari 

segi fizikal dan kimia dan kemudian telah digunakan sebagai penjerap pewarna 

reaktif (reaktif biru 4 (RB4) dan reaktif hitam 5 (RB5)) dan untuk air sisa tekstil 

sebenar. Untuk pengubahsuaian secara fizikal, CS telah berjaya ditukar kepada 
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manik CS. Kemudian, manik-manik CS telah diubahsuai secara kimia menggunakan 

heksadesilamina (HDA) dan 3-aminopropil trietoksisilana (APTES). Ciri-ciri 

fizikokimia bagi semua manik CS yang diubahsuai dan tidak diubah suai telah dinilai 

menerusi kaedah Fourier transformasi spektroskopi inframerah (FTIR), imbasan 

elektron mikroskopi (SEM), ukuran penjerapan-penyaherapan nitrogen spektroskopi, 

tenaga serakan X-ray (EDX) dan pengukuran potensi Zeta. Luas permukaan BET 

bagi manik yang disediakan adalah dalam julat di antara 0.29 dan 1.32 m
2
/g. Kesan 

pH (2-10), suhu (30-50 °C), masa sentuhan, kepekatan pewarna permulaan (50-500 

mg/L) dan dos penjerap (0.25-1.5 g/L) telah disiasat. Kapasiti penjerapan maksimum 

manik CS selepas pengubahsuaian menggunakan HDA dan APTES meningkat 

daripada 317.1 mg/g ke 433.8 mg/g, 454.7 mg/g dan 468.8 mg /g pada pH 4 dan 30 ° 

C untuk CS/APTES, CS/HDA dan manik CS/HDA/APTES masing-masing. Data 

penjerapan dinilai berdasarkan garisan sesuhu keseimbangan penjerapan (Langmuir, 

Freundlich, Temkin dan Redlich-Peterson), model kinetik penjerapan (tertib pseudo 

pertama dan pseudo-kedua) dan kajian termodinamik. Untuk semua penjerapan, data 

isoterma didapati mematuhi model Freundlich dan kajian kinetik menunjukkan 

bahawa model kadar pseudo-tertib kedua adalah lebih sesuai untuk dipadankan 

dengan data kaji uji. Nilai negatif parameter termodinamik yakni ∆G0 (−2.28, −4.70, 

−2.12 dan −6.64 kJ/mol pada 30 ±2 °C),  ∆H0 (−172.18, −43.82, −101.62 dan −74.32 

kJ/mol) dan ∆S0 (−560.71, −129.08, −314.58 dan −223.35 J/molK) manik manik CS, 

APTES, HDA dan CS/HDA/APTES masing-masing menunjukkan bahawa proses 

penjerapan RB4 adalan spontan dan eksotermik. Keputusan yang diperolehi daripada 

penjanaan semula CS menunjukkan bahawa semua penjerap yang disediakan dapat 

digunakan beberapa kali dalam kitaran penjerapan dan penyahjerapan. Manik CS 

diubahsuai dengan kedua-dua HDA dan APTES (manik CS/HDA/APTES) telah 
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dipilih untuk dinilai bagi penyingkiran RB5 dan rawatan air sisa tekstil sebenar. 

Keputusan menunjukkan bahawa manik CS/HDA/APTES dapat menyingkirkan 

92.1% daripada RB5 dan 93.2% daripada pewarna dalam air sisa tersebut. 
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ADSORPTION OF REACTIVE DYES BY 

HEXADECYLAMINE AND 3-AMINOPROPYL 

TRIETHOXYSILANE MODIFIED CHITOSAN BEADS  

  

8 ABSTRACT 

 

Textile industry has experienced exponential growth in recent years. In these 

industries, many different types of dye are being used for coloring purposes. As a 

result, the effluent of these industries contains large amount of color and toxic 

compounds. These colors and toxic compounds would be detrimental to the 

environment if they are left untreated. As such, the textile effluent has a dye need to 

be treated with an efficient method before being released into water bodies. Among 

all treatments, adsorption process is found to be an effective method for industrial 

effluents treatment. Chitosan (CS) is one of abundantly available natural polymers 

and is an effective adsorbent due to its specific adsorption properties such as 

biodegradability, cationicity and low price. However, the raw CS suffers from some 

draw backs such as low surface area and low adsorption capacity which limit its 

adsorption performance. Therefore, it is necessary for CS to be modified prior to its 

use as an adsorbent. In the present study CS, was modified physically and chemically 

and then applied for adsorption of reactive dyes (reactive blue 4 (RB4) and reactive 

black 5(RB5)) and real textile wastewater. For physical modification, the CS powder 

was successfully converted to CS beads. Afterwards, the CS beads were chemically 

modified using hexadecylamine (HDA) and 3-aminopropyl triethoxysilane (APTES). 
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The physicochemical properties of all prepared modified and unmodified CS beads 

were characterized by means of Fourier transformed infrared spectroscopy (FTIR), 

Scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, 

energy dispersive X-ray spectroscopy (EDX) and Zeta potential measurement. The 

BET surface areas of the prepared beads were in the range of 0.29 - 1.32 m
2
/g.  

Effects of pH (2-10), temperature (30-50 °C), contact time (5 to 480 min), initial dye 

concentration (50-500 mg/L) and adsorbent dosage (0.25-1.5 g/L) on adsorption 

performance of adsorbents were investigated. The maximum adsorption capacity of 

CS beads after modification using HDA and APTES increased from 317.1 mg/g to 

433.8 mg/g, 454.7 mg/g and 468.8 mg/g at pH 4 and 30 °C for CS/APTES, CS/HDA 

and CS/HDA/APTES beads, respectively. This could be attributed to the presence of 

more cationic functional groups on the surface of modified adsorbents which resulted 

in an increase in the surface charge and enhance dye adsorption performance of 

adsorbents. The obtained adsorption data were assessed based on equilibrium 

adsorption isotherms, kinetics adsorption models and thermodynamic studies. For all 

adsorbents, the isotherm data were significantly described by Freundlich model. The 

kinetic study revealed that the pseudo-second-order rate model was in better 

agreement with the experimental data.  The negative values of the thermodynamic 

parameters, including ∆G0 (−2.28, −4.70, −2.12 and −6.64 kJ/mol at 30 ±2 °C),  ∆H0 

(−172.18, −43.82, −101.62 and −74.32 kJ/mol) and ∆S0 (−560.71, −129.08, −314.58 

and −223.35 J/molK) for CS beads and APTES, HDA and HDA/APTES modified 

beads, respectively, showed that RB4 adsorption is a spontaneous and exothermic 

process. Obtained results from regeneration studies showed that all prepared 

adsorbents were able to be used 13 times in the adsorption and desorption cycles. 

The CS beads modified with both HDA and APTES (CS/HDA/APTES beads) were 
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selected to be evaluated for RB5 removal and textile wastewater treatment as well. 

Results showed that CS/HDA/APTES beads were able to remove 92.1% of RB5 and 

93.2% of dye in textile wastewater.     
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1 CHAPTER  ONE 

INTRODUCTION 

 

1.1 Water and textile effluent  

Water is a vital substance for survival of life and health on earth. About 55% of 

human body, 65% of animal’s tissue and 60% of plants are composed of water. 

Although more than 70 percent of Earth's surface is covered by water but many 

people suffer from a shortage of potable water, because most of the existing water on 

Earth is saline water in oceans which cannot be used for drinking, cooking, farming 

and industrial activities. The amount of available fresh water on the Earth is very 

limited and only one percent of the total existing water on Earth is freshwater 

(Inglezakis and Poulopoulos, 2006). In recent decades, increasing in the world’s 

population, unplanned urbanization, industrialization, agricultural activities, and 

expanded use of chemicals, have contributed to environmental contamination via 

emission of wastes and pollutants (Gupta and Suhas, 2009). Inorganic and organic 

wastes produced by human activities have resulted in high volumes of contaminated 

water, contamination of limited fresh water resources and thus threaten human health 

and other living organisms (Dixit et al., 2014). 

Malaysia is one of the fastest growing economies in the Asian region where 

industries such as textile, palm oil, food, rubber, and agricultural industries, play an 

important role in economic growth (Mallak et al., 2014). In recent years, after the 

electronic and the palm oil industries, textile industry has flourished and become one 

of the main sources of income for Malaysia ($5.4 million in 2007). About 1500 

textile factories in this country are producing different types of textile products, 
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playing a positive role in the economic development of Malaysia (Siddiqui et al., 

2011). In addition to the textile industry, dyes also are extensively applied by other 

dyeing industries such as paper, rubber, plastic, food or leather for the production of 

colored products. In spite of immense economic benefits of these industries for this 

country, the large volume of produced colored wastewater from these industries are 

the main sources of industrial wastewater which cannot be ignored by environmental 

regulations in Malaysia (Lim et al., 2010). About 22% of the total volume of 

industrial wastewater is due to textile wastewater (Idris et al., 2007).  

The wastewater generated by the textile industry, having high salinity, high 

chemical oxygen demand (COD) concentrations, high temperature, high fluctuation 

in pH (2–12) and strong coloration is one of the most important environmental 

concerns (El-Mekkawi and Galal, 2013). Some of the used dyes in this industy 

directly or during the dyeing process are released to effluents. In the dyeing process, 

due to the low level of dye-fiber fixation, about 10–15% of the used dyes are lost in 

wastewater. Eventually, a highly colored wastewater is generated and finds its way to 

the environment. The release of dyes as wastewater is problematic because of high 

visibility, resistance, and toxic impact of the dyes (Demirbas, 2009; Ali et al., 2009).  

 

1.2 Textile dyes  

The dye is defined as a colored chemical organic compound used for imparting 

and providing color to other substances (Yagub et al., 2014). The dyes can bind to 

surface of other materials by mechanical retention, physical adsorption, forming 

covalent bond or complexes with salts or metals (Chequer et al., 2013). Dyes can be 

classified according to their chemical structure. There are two major components in a 
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dye molecule. The first group includes chromophores such as quinoid, carbonyl       

(–C=O), azo (–N=N–), nitro (–NO2), and methine (–CH=) groups.  The second type 

of components are auxochromes such as hydroxyl (–OH), amine (–NH3), sulfonate (–

SO3H) and carboxyl (–COOH) groups (dos Santos et al., 2007). The chromophores 

are responsible to impart color to the dye and auxochromes are used as a supplement 

of chromophores to deepen the color and enhance the dye attachment towards the 

fibers. It should be noted that the sulfonate groups confer very high aqueous 

solubility to the dyes (Bafana et al., 2011). The ability to adsorb light in the visible 

region is a feature of all dyes (Asgher, 2012). The structural diversity of dyes made 

them possible to be classified in several ways such as chemical structure, application 

class and their solubility. However, the classification based on their usage is the most 

common method and they can be divided into anionic (acid, reactive and direct 

dyes), cationic (basic dyes), and non-ionic (dispersed dyes) (Yagub et al., 2014). 

Anionic dyes normally have similar characteristics e.g. negative charge, ionic 

substituent, high water solubility and contain sulphonate (SO3Na) group but possess 

dissimilar structure characteristics such as xanthenes, anthraquinone, azonic, and 

triphenylmethane which increase the dyes resistance to degradation (Tripathi, 2013). 

Anionic dyes are extensively used in dyeing of polyamide and protein materials (acid 

dyes) and cellulosic substances (reactive and direct dyes) (Gowri et al., 2014). The 

process of dyeing is frequently carried out in acidic conditions due to the interaction 

between protonated amino groups in fibers and negatively charged sulfonate groups 

of anionic dyes structure in acidic solution (Tehrani-Bagha and Holmberg, 2013).  

The positively charged dyes, however, are known as cationic or basic dyes 

(Tripathi, 2013). Transformation of amino (–NH2) to ammonium (–NH3) groups is 
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the responsible for their basic and positive properties. This class of dye is widely 

used for acrylic fibers dyeing due to the negative charge of these fibers, which 

interact with the positively charged dye molecules (Tehrani-Bagha and Holmberg, 

2013). The presence of these functional groups in cationic dyes makes them more 

water soluble and provides more visibility, brilliance and intensity of colors (Salleh 

et al., 2011). The term non-ionic refers to the other groups of dye (disperse dye) with 

small, planar and not ionized molecules (free from ionizing groups). Due to the 

hydrophobic properties of disperse dyes (limited water solubility and presence of 

polar groups such as –NO2 and –CN), they are more suitable for dyeing the 

hydrophobic fibers such as nylon, polyamide, polyester and polyurethane (Uliana et 

al., 2013; Adinew, 2013). 

 

1.3 Reactive dyes 

Reactive dyes was discovered in 1954 and later in 1956 it entered into the 

commercial market (Kanetkar, 2010). Afterward, due to the favorable dyeing 

properties, this class of dyes has become one of the most popular and extensively 

applied dyes for dyeing the cellulosic substrate such as polyamides, wool and cotton 

(Rizk et al., 2015). These kinds of dyes are called reactive dyes due to the presence 

of reactive groups on dye molecules and capability of chemically interaction 

(covalent bonds) with functional groups of fiber (Soleimani-Gorgani and Taylor, 

2006).  

Reactive dyes represent an increasing market share, (about 20–30%) of the 

total market for dyes because they are used to dye cotton which makes up about half 

of the worlds fibre consumption. High popularity of reactive dyes is based on 
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producing brilliant and fast colors with a wide range of shades using various 

environmentally friendly procedures. Reactive dyes stand out from other dyes by 

their ability to make covalent bonds between carbon atoms of dye reactive group and 

oxygen atoms of cotton hydroxyl groups under alkaline conditions. On the other 

hand, they suffer from some drawbacks such as high cost of dye, long time for batch 

processing, high salt content of the wastewater, low adsorption ability, non-

biodegradability, high water solubility and low degree of fixation on the surfaces 

which resulted in generating highly colored wastewater (Nabil et al., 2014). A large 

fraction, typically around 30%, of the applied reactive dye, is wasted because of dye 

hydrolysis in the alkaline dyebath (Papić et al., 2004). Among textile effluents, 

reactive dyes are hardly eliminated under aerobic conditions and are probably 

decomposed into carcinogenic aromatic amines under anaerobic conditions. 

Furthermore, it is difficult to remove reactive dyes using chemical coagulation due to 

the dyes' high solubility in water (Sakkayawong et al., 2005). 

Reactive dyes are colored compound which contains one or two groups capable 

of forming covalent bonds between a carbon or phosphorus atom of the dye ion or 

molecule and an oxygen, nitrogen or sulfur atom of a hydroxyl, an amino or 

mercepto group, respectively, of the substrate. Reactive dyes are characterized by 

azo-based chromophores with aromatic structure combined with various types of 

reactive groups such as chlorotriazine, vinyl sulfone, difluorochloropyrimidine and 

trichloropyrimidine (Aksu et al., 2007).  

The other difference of reactive dyes with other dyes is in the dyeing process.  

The anionic properties of both reactive dyes and cellulose, reduce the interaction 

between them, so the dyeing process is usually conducted in highly concentrated 
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alkaline conditions (pH 9–12), salt concentrations of 40 g/L to 100 g/L and at high 

temperatures ranging from 30 °C to 70 °C (dos Santos et al., 2007). However, in the 

presence of water, some of the dye molecules do not attach to the surface of fiber. 

This is due to the hydrolysis of their reactive group with the hydroxyl group of water. 

Consequently, high amount of applied reactive dye is wasted and discharged in the 

effluent (Patel et al., 2014). The presence of this dye in environment can threat the 

ecosystem due to its toxic effects and sunlight transmission reduction through aquatic 

environment.  

Reactive blue 4 (RB4) is an important dye which is widely used in the textile 

industry for coloring of cellulosic fabrics. The release of effluents containing RB4 

into the environment without any treatment is a source of public concern. Its health 

risk is considered to be low due to the presence of low concentration of RB4 in 

environment. Nevertheless, presence of high concentration of RB4 in environment is 

toxic. According to the Epolito et al. (2005) the estimated LD50 value for rodent and 

LC50 value for fish are reported to be 8980 mg/kg of body weight and 1500 mg/L, 

respectively. These values however, are much higher than the RB4 concentrations in 

the environment.  

RB4 has an anthraquinone molecular structure. Thus, due to its aromatic 

structure, RB4 molecule has high resistant to biodegradation and can remain stable 

and colored for a long time (Fanchiang and Tseng, 2009). Its slow environmental 

degradation is reported to be 0.053 day in air, 150 days in water and soil and 600 

days in sediment (Ullhyan, 2014; Epolito et al., 2005). The presence of RB4 in water 

bodies leads to aesthetics problem and affects the aquatic ecosystem by adsorbing, 

reflecting and reducing the sunlight transmission through aquatic environment. 

http://global.britannica.com/science/anthraquinone
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Therefore, this can lead to complications in the environment if the effluent is 

discharged without suitable treatment for dye elimination. 

 

1.4 Textile effluent treatment 

In the recent years, rapid expansion of the industry has led to an increase in 

industrial effluents. This is considered as one of the main environmental and water 

pollution sources. Textile effluents constitute a major part of industrial wastewater. 

The release of dyes to the environment through untreated wastewater poses serious 

threat to the freshwater sources, aquatic life and human beings (Sathian et al., 2014). 

Hence, given the importance of water for human life, an effective method for 

treatment of dyes wastewater is necessary to control water pollution in many 

countries.  

Various conventional methods such as coagulation (Wei et al., 2015), 

membrane filtration (Chen et al., 2015), flocculation (Fu et al., 2015), electro 

chemical oxidation (Chatzisymeon et al., 2006), Fenton processes (Bae et al., 2015), 

photochemical oxidation (Modirshahla et al., 2011) and ozonation (Turhan et al., 

2012) have been applied for the removal of dyes from contaminated waters and 

industrial effluents. However, these methods usually suffer from their high cost, low 

efficiency, long processing period or secondary pollution (Liu et al., 2013a). Among 

all treatment methods, adsorption process is found to be as an effective and 

economical method for treating industrial effluents (Qiu et al., 2009).  

Different materials have been applied as adsorbents for removal of dyes. 

Chitosan has been gaining a lot of attention by researchers for use as an adsorbent for 

dye removal. It is a deacetylated form of chitin and the second most abundant 
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polymer in the world after cellulose. In addition, this biopolymer has many specific 

properties such as the presence of different adsorption sites on chitosan chain, 

biodegradability, cationicity, high adsorption capacity, macromolecular structure, 

abundance and low price (Sadeghi-Kiakhani et al., 2013). Thus, there has been a 

growing interest on the use of chitosan as adsorbent in adsorption process for 

removal of dyes. Different types of modification agent can be used to improve the 

adsorption performance of chitosan based adsorbent by introducing new functional 

groups. This area can open a new window in preparation of low-cost, environmental 

friendly adsorbents based on renewable biomaterial.  

 

1.5 Problem statement   

Today, the world is witnessing significant technological progress to provide a 

better life for mankind. These technological processes have their own negative 

impacts on ecosystem and lead to contamination of the environment. Malaysia has 

various industries such as textile, palm oil, food, rubber, and agricultural industries. 

Among them the textile industry is one of the most important industries in Malaysia 

(Lim et al., 2010). In terms of environmental pollution, textile industry is one of the 

leading and effective industries due to large consumption of water and dyes and 

consequently generating massive amounts of colored effluent (Nawaz and Ahsan, 

2014). The presence of dyes in effluent leads to unpleasing conditions in water 

bodies by affecting the dissolved oxygen content , water transparency and aesthetic 

merit as well as endangering the aquatic flora and fauna due to their toxicity, high 

water solubility,  non-biodegradability and stability (Duarte et al., 2013). Therefore, 
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it is important to minimize aforementioned dyes negative aspects by effectively 

eliminating them.  

Among all treatment strategies, adsorption process by using efficient 

adsorbents has been shown to be an effective method for the elimination of dyes 

from wastewater because they are rapid, convenient and impermeable to toxic 

contaminants. Hence, many efforts have been carried out in the recent years in order 

to produce more cost effective alternative adsorbents with effective adsorption 

capacity that can be used in dye wastewater treatment. Recently researchers have 

been focusing on utilization of adsorbents composed of natural polymers that are not 

harmful to the environment and also can be obtained in abundance especially 

polysaccharides such as chitosan (Crini and Badot, 2008).  

Chitosan is an abundantly available low-cost bio-polymer for dye removal that 

can be obtained from natural resources. It has received a lot of focus due to its 

specific properties such as biodegradability, biocompatibility, nontoxicity, 

antibacterial property, cationicity, high adsorption capacity, macromolecular 

structure, hydrophilicity, abundance and low price (Muzzarelli et al., 2012). Based 

on the above properties, chitosan potentially has high affinity to adsorb dyes due to 

several functional groups available on this material. Beside all of these advantages, 

the raw chitosan in the form of flakes suffers from some draw backs such as its low 

acid stability, low surface area, low porosity and low adsorption capacity, which 

limit its adsorption performance. Therefore, modification of chitosan (chemically and 

physically) could be an effective solution to produce a product with the desired 

properties to overcome the limitations of chitosan. Raw chitosan can be modified 

physically by conversion of raw chitosan flakes into beads. Compared with chitosan 
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flakes, the use of chitosan in the form of beads presents better adsorption properties 

due to its higher specific surface area. Afterward, increasing the amount of functional 

groups through chemical modification brings new derivatives with improved 

adsorption properties. 

This study is aimed at preparing the physically and chemically modified 

chitosan beads. The chitosan physically modified by conversion into the beads form 

and then were chemically modified by two chemicals i.e. Hexadecylamine (HDA) 

and 3-aminopropyl triethoxysilane (APTES) to obtain new adsorbents with more 

amino groups. HDA and APTES can be used to modify chitosan properties and 

enhance the adsorption performance of CS. Molecular structures of HDA and 

APTES are shown in Figure 1.1. HDA as a cationic surfactant and APTES as a 

cationic amine-terminated organosilicon with a hydrophilic group (NH2) can be used 

with the hope of increasing the amino groups onto the surface of chitosan as well as 

enhancing the cationicity and adsorptive capacity of chitosan for removal of dyes 

from aqueous solutions. The developed adsorbents can be used as suitable adsorbents 

for removal of reactive dyes, reactive blue 4 and reactive black 5, from aqueous 

solution through batch adsorption process. Reactive dyes are anionic dyes normally 

have similar characteristics e.g. negative charge, ionic substituent, low adsorption 

capability, high water solubility and contain sulphonate (SO3Na) group. Therefore, 

using suitable adsorbents with positive surface charge and high cationicity is an 

appropriate method for elimination of reactive dyes from aqueous solutions.  
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Figure 1.1: Molecular structure of (a) HDA and (b) APTES. 

 

1.6 Research objectives 

The aim of the current study is to achieve the following objectives: 

 To prepare and characterize the modified chitosan beads for correlation 

between the preparation conditions such as temperature, concentration and 

time on dye removal. 

 To determine the effect of adsorption parameters including adsorbent dosage, 

initial dye concentration, initial pH, time and temperature on adsorption of 

reactive dye in adsorption process. 

 To determine the isotherms, kinetics and thermodynamics of batch adsorption 

process using the prepared adsorbents. 

 To evaluate the efficiency of the modified adsorbents in dye removal and 

COD reduction of real textile wastewater. 

 To determine the regeneration of the adsorbents of reactive dye after several 

times repeated cycle of adsorption and desorption. 

 

H2N 

(a) 

  (b) 
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1.7 Scope of the study 

The current research focuses on the adsorption of reactive dyes on modified 

chitosan beads. This research also involves investigation on utilization of HDA and 

APTES as new modification agents on chitosan beads. Fourier transformed infrared 

spectroscopy (FTIR), surface area and porosity distribution, scanning electron 

microscope (SEM) and Zeta potential were used to investigate and clarify the 

physicochemical changes after modification of the beads. The efficiency of the 

prepared modified adsorbents was tested for adsorption of reactive blue 4 (RB4) and 

reactive black 5 (RB5) dyes in the batch adsorption system. Moreover, adsorption 

parameters such as adsorbent dosage, initial dye concentration, initial pH, time and 

temperature were evaluated. Thermodynamic, kinetics and equilibrium studies were 

performed to assess the adsorption process.  In addition, adsorption efficiency of 

adsorbents for treatment of a real textile wastewater as well as regeneration of 

prepared adsorbents after several times repetition of adsorption and desorption cycles 

were performed. 

 

1.8 Organization of the thesis 

The thesis is divided in to five major chapters and a section consists of 

references, appendix and publications.  The first chapter represents an overview of 

the water pollution caused by industrialization. The effect of dyes on the 

environment, dyes wastewater treatment methods, adsorption and the use of chitosan 

as adsorbent are being discussed. Moreover, problem statement, research objectives, 

scope of study and organization of the thesis are presented in this chapter. Chapter 

two presents a detailed review of the related literature information on the chitosan 
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properties and use of chitosan and its derivatives for adsorption of different types of 

dye. This chapter also provides a detailed review on different modification 

techniques, environmental impacts and toxicity of chitosan modifications using 

different techniques. Finally, a literature review on the theory of adsorption process, 

isotherm models, kinetics and thermodynamic of batch adsorption process is 

presented. 

Chapter three covers detailed information about the material and methods 

presented in this study. This chapter comprises all the materials and chemicals 

utilized during the experiments, preparation and modification procedures of 

adsorbents and their characterization techniques as well as description of various 

units of equipment used for the preparation, characterization of adsorbents and for 

batch adsorption and regeneration experiments. In addition, a summary of the 

research activities is briefly described in a flow sheet diagram.  

Chapter four shows and elaborates in detail the all obtained results of the 

present investigation. The characterization of the unmodified and modified 

adsorbents used for adsorption experiments is presented in the first part. The next 

part represents the results and discussion for preparation and modification of 

adsorbents. The effect of adsorbent dosage, initial dye concentration, initial pH, time 

and temperature on adsorption of reactive dyes and reduction of COD through the 

batch adsorption process is discussed in detail in the next part. Furthermore, this part 

discusses the adsorption isotherms, kinetics and the thermodynamic studies. 

Moreover, desorption and regeneration results are presented and then comparison of 

the adsorption performance of the prepared adsorbents are discussed in this chapter. 
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Chapter five summarizes the important results obtained from this study and 

provided conclusions and recommendations for future research in the same area for 

the improvement of adsorption behavior of modified adsorbents. The last section of 

the thesis is consists of references, appendix and publications emanated from this 

research work. 
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2 CHAPTER  TWO  

LITERATURE REVIEW  

 

This chapter consists of a detailed literature review of dye wastewater 

treatment methods aiming to highlight the adsorption of dyes on modified and 

unmodified chitosan. Some discussion on physically and chemically modifications of 

chitosan are presented. A review on the various parameters that affect the adsorption 

process is also included. Further, the theory of adsorption was presented in this 

section. 

 

2.1 Water pollution 

The increasing in world population, unplanned urbanization, industrialization, 

and agricultural activities, as well as the excessive use of chemicals have contributed 

to environmental pollution by producing high amounts of wastes and pollutants 

(Ahmad et al., 2007). Inorganic and organic wastes produced by human activities 

have resulted in high volumes of contaminated water, which leads to pollution of 

water sources and threatens human health and other living sources. Industries are 

identified as one of the major sources of water pollution by discharging untreated 

wastewater in waterways (Abdel-Aty et al., 2013).  

Textile industries and other dyeing industries, such as paper, printing, leather, 

food, and plastic, are among the major industrial wastewater sources. Generally, the 

volume of discharged wastewater from each step of a textile operation is at as high as 

40 L/kg to 65 L/kg of the product (Mezohegyi et al., 2012). The presence of dyes in 

textile wastewater is an environmental problem due to their high visibility, 
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resistance, and toxic impact (Ali et al., 2009). The presence of dyes even at low 

concentration in water is easily visible and can reduce photosynthetic activities in 

aquatic environments by preventing the penetration of light and oxygen. Therefore, 

biological cycles and photosynthetic activities affected and endangered (Crini, 2006). 

Given their synthetic origin and complex aromatic structures, dyes are non-

biodegradable substances that remain stable under different conditions (Buthelezi et 

al., 2012). The half-life of hydrolyzed dyes can be very high. As an example the half-

life duration of reactive blue 19 dye is approximately 46 years at 25 °C and pH 7 

(Zaharia and Suteu, 2012). In addition, dyes have direct and indirect toxic effects on 

human in the form of cancer, jaundice, tumors, skin irritation, allergies, heart defects, 

and mutations (Alver and Metin, 2012; Hariharasuthan et al., 2013). 

 

2.2 Dye wastewater treatment method 

Environmentally, elimination of dyes from colored effluents is an important 

issue due to their negative impacts on the environment (even a small amount). Based 

on the governmental regulations, wastewater needs to be treated and thus, an 

effective process for removal of dyes is required (Lee et al., 2006). There are various 

methods that have been applied for the dyes wastewater treatment which are 

generally classified as physical, chemical, and biological (Ratnamala and Brajesh, 

2013).  

Biological wastewater treatment is the most common method for removing 

dyes from wastewater (Barragán et al., 2007; Frijters et al., 2006). In this method, 

bacteria are used to prepare the required energy for microbial activities through 

various wastewater components (Rai et al., 2005). This method is limited and 
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affected by factors such as dye concentration, temperature, and initial pH of the 

wastewater. Biological wastewater treatment is more environmental friendly, cost 

effective and appropriate for the removal of different dyes in comparision with other 

methods. However, this method also has drawbacks, including large area 

requirement, long decolorization time, and lack of flexibility in operation and design. 

In addition, this method might not be effective at low concentration (Mohammed et 

al., 2011; Crini, 2006). 

Oxidation methods, ozonation, photochemical, irradiation or electrochemical 

processes are some chemical treatment methods. These methods are effective in 

eliminating dyes from wastewaters by using chemical reagents, such as aluminum, 

calcium, chlorine, lime, or ferric ions (Sabur et al., 2012). Disadvantages of these 

methods include large volume of sludge generated as waste, pH dependence, 

excessive chemical use and expensive reagents (Hassan et al., 2009). In Fenton 

process chemical reagent are used for treating waste waters. Chemical separation 

uses the action of sorption or bonding to remove dissolved dyes from textile. But one 

major disadvantage of this method is generation of sludge through the flocculation of 

the reagent and the dye molecules used in dyeing stage (Orta de Velsquez, 2002).   

Physical methods for dye separation treatment process, include sedimentation, 

membrane, and adsorption, do not require any chemical reagent, bacteria, or 

microorganisms to improve the quality of wastewater (Ahmad et al., 2012; Gupta, 

2009). Despite of the ability of these methods for dye removal from effluents as legal 

requirements, all of these methods are suffering from some limitations such as high 

cost or inability to remove wide range of dyes. Table 2.1 presents the advantages and 

disadvantages of various methods for dye treatment. 

http://www.sciencedirect.com/science/article/pii/S0011916411006333#t0005
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Table 2.1: Advantages and disadvantages of dye removal methods (Salleh et al. 2011) 

Methods Advantages Disadvantages 

Chemical treatments 

Oxidative process  Simplicity of application (H2O) agent needs to be activated by some 

means 

H2O2 + Fe(II) salts (Fenton's 

reagent)  

Fenton's reagent is a suitable chemical means Sludge generation 

Ozonation  

 

Ozone can be applied in its gaseous state and 

does not increase the volume of wastewater 

and sludge 

Short half-life (20 min) 

Photochemical  No sludge is produced and foul odours are 

greatly reduced 

Formation of by-products 

Sodium hypochlorite (NaOCl)  Initiates and accelerates azo-bond cleavage Release of aromatic amines 

Electrochemical destruction  

 

No consumption of chemicals and no sludge 

buildup 

Relatively high flow rates cause a direct 

decrease in dye removal 

Biological treatments 

Decolourisation by white-rot fungi  White-rot fungi are able to degrade dyes using 

enzymes 

Enzyme production has also been shown to be 

unreliable 
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Table 2.1: Continued. 

Methods Advantages Disadvantages 

Other microbial cultures (mixed bacterial)  Decolorised in 24–30 h  Under aerobic conditions azo dyes are not 

readily metabolized 

Adsorption by living/dead microbial 

biomass  

Certain dyes have a particular affinity for 

binding with microbial species 

Not effective for all dyes 

Anaerobic textile–dye bioremediation 

systems  

 

Allows azo and other water-soluble dyes to 

be decolorised  

Anaerobic breakdown yields methane and 

hydrogen sulfide 

Physical treatments   

Adsorption by activated carbon Good removal of wide variety of dyes  Very expensive 

Membrane filtration Removes all dye types  Concentrated sludge production 

Ion exchange  Regeneration: no adsorbent loss Not effective for all dyes 

Irradiation  Effective oxidation at lab scale  Requires a lot of dissolved O2 

Electrokinetic coagulation  Economically feasible  High sludge production 
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2.3 Adsorption  

Adsorption is a simple and effective process for dye removal from wastewater. 

This treatment method is attractive for effluents if low-cost adsorbents can be used. 

The application of the adsorption in the early days is not clear. However, there are 

some information available on some applications such as the use of some special 

materials to decolorize some solutions. In addition, the first use of adsorption process 

in large scale is reported to be in the early 1920 in Germany and United States (King, 

1987). Over the past few decades, application of adsorption, has gained more 

importance in the industry and has been further developed for environmental 

protection.  

Among water treatment strategies, adsorption is regarded to be an effective and 

preferable method for removing dyes from wastewater. This method is rapid, 

convenient, cost effective as well as requiring low initial costs, simplicity of design 

and operation, nontoxic by-products while producing high-quality effluent (Oluyemi 

et al., 2012). Adsorption is a separation process, in which the amount of chemical 

components (adsorbate) being collected, concentrated and retained at the surface of a 

solid (adsorbent) (Yadla et al., 2012). This process incorporates both physical and 

chemical actions that involve van der Waals forces, or other actions between an 

adsorbate and an adsorbent (Wang et al., 2009).  

Adsorption efficiency is affected by the nature and type of adsorbent. An ideal 

adsorbent for dye removal possesses the following properties: large surface area and 

adsorption capacity, sufficient pore size and volume, easy accessibility, cost 

effectiveness, mechanical stability, compatibility, ease of regeneration, and high 

selectivity to remove a wide range of dyes (Egashira et al., 2012; Najafi et al., 2011). 
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Both organic and inorganic materials can be used as adsorbents for dye removal. 

Researchers have focused on activated carbon (Ribas et al., 2014), alumina (Shen et 

al., 2015), zeolites (Liu et al., 2014), silica gel (Wang et al., 2014), industrial by-

products (Hameed et al., 2009), agricultural solid wastes (Bharathi and Ramesh, 

2013), clays (Abidi et al., 2015), peat (Rovani et al., 2014), bacterial biomass 

(Przystaś et al., 2012), and polysaccharides (Gao et al., 2015). 

Activated alumina is synthesized by the thermal treatment of hydrous alumina 

granules. Specifically, thermal treatment removes hydroxyl groups, thereby leaving a 

porous solid structure of activated alumina with a large surface area of 200 m
2
/g to 

300 m
2
/g. The adequate surface area of activated alumina makes it an appropriate 

adsorbent to remove pollutants from aqueous solutions. Previous studies have 

evaluated the capacity of activated alumina to remove dyes (Adak et al., 2005; Adak 

et al., 2006; Huang et al., 2007). Zeolites are hydrated aluminosilicate minerals with 

a porous structure. They are naturally formed through changes in glass-rich volcanic 

rocks (tuff) by sea or playa lake water. Zeolites can also be synthesized and are 

considered as appropriate adsorbents for removing pollutants from wastewaters. The 

good adsorption behavior is due to their effective properties, including high ion 

exchange, and their applications in molecular sieving, catalysis, and sorption (Ji et 

al., 2012; Wang and Peng, 2010). Some zeolites can be used for the removal of dyes 

(Alpat et al., 2008; Yu et al., 2013) and other pollutants, such as heavy metals 

(Malamis and Katsou, 2013; Šljivić Ivanović et al., 2013). Silica gel is a 

concentration of Si(OH)4 in siloxane chains and was invested in the 1920s. Silica 

gels could be present in the form of regular, intermediate, or low density with a 

surface area of 750 m
2
/g, 300 m

2
/g to 350 m

2
/g, and 100 m

2
/g to 200 m

2
/g. Silica gel 
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is a suitable adsorbent because of its valuable physicochemical properties, such as 

stability under acidic conditions, rapid adsorption, and porous structure with high 

surface area. Although it is also nontoxic, nonflammable, and chemically ineffective, 

the use of silica gel is limited due to its high cost (Salam et al., 2011; Fan et al., 

2011). Gaikwad and Misal (2010) and Samiey and Toosi (2010) have reported the 

use of silica gel for dye adsorption. 

Activated carbon, with an outstanding capacity to adsorb various chemicals, is 

one of the oldest and important adsorbents utilized for wastewater treatment 

worldwide (Salleh et al., 2011). Carbon is activated through dehydration and 

carbonization in the presence of heat and in the absence of oxygen. The produced 

activated carbon has an amorphous structure with small pores and a large surface 

area of 300 m
2
/g to 4000 m

2
/g. Although activated carbon is an effective adsorbent 

for eliminating different dyes, it is still limited by its high cost and requirement of 

regeneration after adsorption, which leads to decreased adsorption capability and 

increased cost (Bhatnagar and Minocha, 2009). In general, a good adsorbent should 

be cost effective, readily available, environmentally friendly, and does not require 

heavy processing and maintenance. Hence, researchers have focused on developing 

materials based on natural polymers such as chitosan to serve as alternative 

adsorbents with improved adsorption capacity and low cost (Wan Ngah and 

Hanafiah, 2008). 

 

2.4 Chitosan 

Chitosan is one of the world’s most plentiful and low-cost biopolymers that 

possess several suitable properties to be used as an ideal adsorbent for removing 
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pollutants from wastewater. Originally, chitin was boiled in potassium hydroxide to 

produce an acid-soluble product called chitosan (Kavitha et al., 2011). Chitin, the 

second most abundant polysaccharide worldwide can be extracted from fungal 

species or from the exoskeleton of sea creatures such as crayfish, lobster, prawns, 

crab and shrimp (Gavhane et al., 2013). Figure 2.1 shows the molecular structure of 

chitosan. Chitosan or poly-(1,4)-2-amino-2-deoxy-b-D-glucose is a biopolymer that 

can be chemically expressed as nontoxic, heterogeneous, linear, cationic and 

biodegradable polysaccharide with high molecular weight (Riva et al., 2011). 

Chitosan is produced from the alkaline de-acetylation of chitin (Hsiao et al., 2013). 

In this process, the acetyl groups of chitin are hydrolyzed and converted to free 

amine groups. This step determines the degree of de-acetylation (DD) or the ratio of 

de-acetylated to acetylated units.  

 

 

Figure 2.1: Molecular structure of chitosan. 

 

DD is influenced by temperature, time and the concentration of sodium 

hydroxide used in the de-acetylation (Hsiao et al., 2013; Hussain et al., 2013). The 

degree of de-acetylation affects the adsorption capacity of the chitosan. High DD 

generally results from the presence of high amounts of amino groups and it can 

increase dye adsorption capacity of the chitosan by protonation (Piccin et al., 2009). 

DD is commonly used to characterize chitosan alongside other properties such as 
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molecular weight, crystallinity, and distribution of amine groups which determine the 

physicochemical, biological and reaction of chitosan in the solution (Jana et al., 

2013; Sorlier et al., 2001). Previous studies reported that molecular weight affects the 

solubility (solubility decreases with increasing molecular weight), tensile strength 

(Park et al., 2002), bacteriological properties (Cárdenas et al., 2008), coagulant-

flocculant performance of chitosan (Aranaz et al., 2009) and crystallinity (Jaworska 

et al., 2003). Meanwhile, crystallinity affects the adsorption capacity (Piron et al., 

1997) and accessibility of amine groups (Guibal, 2004).  

Chitosan is insoluble in water, alkaline solutions and organic solvents because 

of the hydrogen bonds between its molecules. However, it is soluble in acidic 

solutions due to the protonation of its amine groups (Aranaz et al., 2009; Hamdine et 

al., 2005). Based on the above properties chitosan potentially has high affinity to 

adsorb pollutions such as heavy metals (Ren et al., 2013) and dyes (Peng et al., 

2013). However, some drawbacks such as solubility in acid and low surface area 

limit the performance of this material in the adsorption process. This necessitated the 

modification of chitosan for dye removal by many researchers as elaborated in the 

following sections. 

 

2.5 Unmodified chitosan 

Many researchers have investigated the adsorption performance of different 

forms of chitosan. The obtained chitosan from chitin; a solid material with high 

crystallinity called chitosan flakes, has been used by a few researchers as an 

adsorbent for dye removal from aqueous solutions. Piccin et al. (2009) prepared 

chitosan from shrimp waste and used to eliminate food dyes (FD&C Red No. 40) 


