NATURAL RADIOACTIVITY, RADON CONCENTRATION AND HEAVY METALS IN SOIL AND WATER IN KEDAH, MALAYSIA

NISAR AHMAD

UNIVERSITI SAINS MALAYSIA

2015

NATURAL RADIOACTIVITY, RADON CONCENTRATION AND HEAVY METALS IN SOIL AND WATER IN KEDAH, MALAYSIA

By

NISAR AHMAD

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

September 2015

AKNOWLEDGEMENTS

All praises to ALLAH the most beneficent, merciful and omnipresent who blessed me with the ability to complete this research work and to bear all hardship, labour with patience.

I would like to thanks my supervisor, Prof. Dr. Mohamad Suhaimi Jaafar for his kind supervision, encouragement and devoted time during the course of this work. Without his supervision, love and care I could not have achieved my research.

I would like to thank the staff of Medical Physics Laboratory and Biophysics Laboratory, especially to Yahya Ibrahim, Mohamad Rizal Bin Mohamad Rodin and Hazar Bin Hassan for their help in samples collections.

I am especially thankful to Universiti Sains Malaysia and TWAS (The World Academy of Science) for financial support in the form of TWAS-USM fellowship.

Lastly, I am very thankful to my family, particularly my parents Allah Noor Khan and Awal Bibi and wife Bibi Hawa whose limitless love, pray, patience make me able to complete my goal. This love and pray is a major factor in giving success at each and every step of my life.

ii

TABLE OF CONTENTS

Page

AKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	Х
LIST OF SYMBOLS	xi
LIST OF PUBLICATIONS	xiv
ABSTRAK	XV
ABSTRACT	xviii
CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 Problem Statements	4
1.3 Objectives of the Research	5
1.4 Scope of Research	6
1.5 Outline of Thesis	6
CHAPTER 2: THEORY	7
2.1 Environmental Natural Radioactivity	7
2.2 Radon Emanation	12
2.3 Radon Exhalation	12
2.4 Transport of Radon	12

2.5 Literature Review	15
CHAPTER 3: MATERIALS AND METHODS	22
3.1 Area under Study	22
3.2 Collection of Samples, Materials and Methods	24
3.2.1 Collection of Soil Samples	24
3.2.2 Collection and Pretreatment of Water Samples	26
3.2.3 Materials and Equipments	29
3.2.4 Measurements of Natural Radioactivity in Soil Samples	32
3.2.4.1 Energy Calibration	34
3.2.4.2 Efficiency Calibration	36
3.2.4.3 Measurement of Specific Activity	38
3.2.4.4 Assessment of Radiological Hazard	38
3.2.4.4.1 Outdoor Hazard Index	39
3.2.4.4.2 Indoor Hazard Index	40
3.2.4.5 Annual Effective Dose	40
3.2.5 Soil Sample preparation and Measurements of Radon Concentration using	41
CR-39 NTDs	
3.2.5.1 CR-39 Track Detector	43
3.2.5.2 NRPB Radon Dosimeter	43
3.2.5.3 Chemical Etching, Water Bath and Optical Microscope	44
3.2.5.4 Porosity of Soil	46
3.2.6 Measurement of Radon Concentration in Soil using Continuous Radon	47
Monitor (CRM)	

3.2.7 Measurement of Radon Concentration in water using RAD-7	49
3.2.8 Measurement of Heavy Metals in Cultivated Soil and Water	50
CHPATER 4: RESULTS AND DISSCUSSION	54
4.1 Natural Radioactivity in Uncultivated and Cultivated Soil	54
4.1.1 Outdoor Hazard Index	66
4.1.2 Indoor Hazard Index	69
4.1.3 Annual Effective Doses	70
4.2 Radon concentration and exhalation rate in uncultivated and cultivated soil	74
collected from Sungai Petani, Baling and Kulim	
4.2.1 Radon Concentration in Uncultivated Soil using CR-39 NTDs and Continuous	74
Radon Monitor (CRM)	
4.2.2 Radon Concentration in Cultivated Soil using CR-39 NTDs	78
4.3 Radon Concentration in Water	82
4.4 Heavy Metals in Cultivated Soil and Water Samples	86
CHAPTER 5: CONCLUSIONS AND FUTURE RECOMMENDATIONS	89
5.1 Conclusions	89
5.2 Future Works	93
REFERENCES	94
APPENDIX A	109
APPENDIX B	124
APPENDIX C	133
APPENDIX D	138
APPENDIX E	144

LIST OF TABLES

Page

Table 2.1	Measurements of natural radioactivity in soil worldwide	15
Table 2.2	Measurements of radon concentration in soil worldwide	18
Table 2.3	Measurements of radon concentration in water samples worldwide	19
Table 2.4	Measurements of heavy metals in water samples worldwide	21
Table 3.1:	Geographic sites of soil sampling locations	24
Table 3.2:	Geographic sites of water sampling locations	27
Table 3.3:	Energies and percentage abundances of gamma rays used to measure the activity concentrations of the radionuclides	33
Table 3.4:	Detail of radionuclide's used for the energy calibration of detector	35
Table 3.5:	Details of radionuclides (IAEA Soil-375 source) used for the efficiency calibrations	y 36
Table 4.1:	Maximum, minimum and average values of natural radioactivity in uncultivated and cultivated soil collected from Kedah	58
Table 4.2:	Comparison of radioactivity levels in soil of Kedah with other countries	62
Table 4.3:	Ratios among Ra-226, Th-232 and K-40 in uncultivated and cultivated soil	64
Table 4.4:	Outdoor hazard index for uncultivated and cultivated soil of Kedah	67
Table 4.5:	Indoor hazard index for uncultivated and cultivated soil of Kedah	71
Table 4.6:	Annual effective dose from uncultivated and cultivated soil collected from Kedah	73
Table 4.7:	An average radon concentration and radon exhalation rate from uncultivated soil using CR-39 NTDs and Continuous Radon Monitor (CRM)	76
Table 4.8:	Variation in track density, radon concentration and exhalation rates from soil samples of Sungai Petani, Kulim and Baling with grain size u CR-39 NTDs	77 Ising

Table 4.9:	Radon concentration and exhalation rate in cultivated soil	80
Table 4.10:	A comparison of radon concentration in soil with the values reported for other countries	81
Table 4.11:	Minimum, maximum and average values of radon concentration from different sources of water	83
Table 4.12:	Average values of annual effective dose from drinking water	83
Table 4.13:	222 Rn activity concentration (Bq/L) in well and tap water with different parts of the World	85
Table 4.14:	Average concentrations of heavy metals (mg kg ⁻¹) in cultivated soil along with standards recommended by Department of Environment, Malaysia	87
Table 4.15:	Average concentrations of heavy metals water (μ g/L) along With standards recommended by different agencies	88

LIST OF FIGURES

Figure 2.1:	Uranium-238 decay series	9
Figure 2.2:	Uranium-235 decay series	10
Figure 2.3:	Thorium-232 decay series	11
Figure 2.4:	Rn-222 stopped by water in pores	13
Figure 2.5:	Rn-222 later loosened by water	14
Figure 3.1:	Map of Kedah, showing the study areas	23
Figure 3.2:	A flowchart of the main parts of this study	31
Figure 3.3:	Standard Marinelli beakers filled with sealed soil samples	34
Figure 3.4:	Energy calibration of HPGe detector	35
Figure 3.5:	Efficiency calibration Curve of the detector	37
Figure 3.6:	Measurement of radon concentration using CR-39 NTDs. The CR-39 based NRPB Dosimeter is fixed at the top of the container	43
Figure 3.7:	(a) Exterior of domed circular upper section (b) interior of domed circular upper section (c) circular base with CR-39 detector	44
Figure 3.8:	(a) Water bath used for etching of CR-39 NTDs (b) optical microscope for counting tracks	45
Figure 3.9:	Measurement of porosity. (a) Volume of air dry soil (b) volume of soil and water	46
Figure 3.10:	Soil samples inside RTC for the measurement of radon concentration concentration using CRM	48
Figure 3.11:	RAD 7 and RAD H_2O accessories for the measurement of radon in water	50
Figure 3.12:	Calibration curve of Ni obtained from Atomic Absorption Spectrometer	51

Figure 3.13:	Calibration Curve for Pb obtained from Atomic Absorption Spectrometer				
Figure 3.14:	: Calibration Curve of Cd obtained from Atomic Absorption Spectrometer				
Figure 3.15:	Calibration Curve for As obtained from Atomic Absorption Spectrophotometer				
Figure 3.16:	Calibration Curve for Cr obtained from Atomic Absorption Spectrometer	53			
Figure 4.1:	Typical HPGe gamma ray spectra due to naturally occurring gamma emitting radionuclides in Kedah (a) uncultivated soil (b) cultivated soil	55			
Figure 4.2:	Natural radioactivity in uncultivated and cultivated soil collected from Sungai Petani	59			
Figure 4.3:	Natural radioactivity's in uncultivated and cultivated soil samples collected from Baling	60			
Figure 4.4:	Natural radioactivity in uncultivated and cultivated soil samples Collected from Kulim	61			
Figure 4.5:	Relative contributions to total activity concentrations due to ²²⁶ Ra, ²³² Th and ⁴⁰ K in uncultivated and cultivated soil of study area	65			
Figure 4.6:	Correlation between 226 Ra and 226 Ra _{eq} in uncultivated and cultivated soil	65			
Figure 4.7:	Average radon concentration versus grain size (a) CR-39 NTDs, (b) CRM	77			
Figure 4.8:	Correlation of exhalation rate of radon with track production rate	78			

LIST OF ABBREVIATIONS

ADC	Analog-to- Digital Converter
CRM	Continuous Radon Monitor
DOE	Department of Environment
eV	Electron Volt
GPS	Global Positioning System
HPGe	High Purity Germanium
IAEA	International Atomic Energy Agency
ICRP	International Commission on Radiological Protection
ISO	International Organization for Standardization
NRPB	National Radiological Protection Board
NTDs	Nuclear Track Detectors
PCD	Pollution Control Department
RTC	Radon Tight Chamber
UNSCEAR	United Nations Scientific Committee on the Effects of Atomic Radiation

WHO World Health Organization

LIST OF SYMBOLS

3	Efficiency of the detector			
η	Efficiency of the detector for the corresponding peak			
λ_{Rn}	Decay constant of radon			
λ	Decay constant			
ω	Back diffusion constant			
A	Area of field of view			
A _a	Surface area of sample			
A _i	Intake of water			
A _s	Specific Activity			
A _{as}	Activity of the source			
A _o	Initial activity			
A_{w}	Radon in water			
C _{eq}	Equilibrium radon concentration			
C_{f}	Dose conversion factor			
C_K	Activity concentrations of ⁴⁰ K			
C_{Ra}	Activity concentrations of ²²⁶ Ra			
C _{Rn} (t)	Radon concentration measured by CRM			
C_{Th}	Activity concentrations of ²³² Th			
D _c	Diameter of container			
D _{in}	Indoor external dose			
D _{out}	Outdoor external dose			
D _s	Diameter of surface area of soil (used for CR-39)			

E _d	Annual effective time
Eindoor	Indoor annual effective dose
E _{outdoor}	Outdoor annual effective dose
Fo	Radon Exhalation rate
Н	Height of soil (used for CRM)
h	Height of container (used for CR-39)
H _{ex}	External hazard index
H _{in}	Internal hazard index
I_{α}	Alpha index
I_{γ}	Gamma index
L	Length of container (used for CRM)
n	Net area
Ni	No of tracks
Р	Porosity of soil
$P_{\gamma}(E)$	Gamma ray emission probability at energy E
P_{γ}	Emission probability
S	Surface area of sample in RTC
Т	Exposure time for CR-39 to measure radon in soil
t	Counting time
T _{eff}	Effective time for CR-39 to measure radon in soil
t _h	Decay time of the radionuclide
V	Volume of void space in container (used for RTC)
Va	Volume of air in soil

V_{eff}	Effective volume of RTC
V_{equip}	Volume of equipments inside RTC
$V_{equip+soil}$	Volume of equipments and soil (CRM)
V _{soil}	Volume of container having soil (used for CRM)
V_{sw}	volume of soil and water
Vt	Volume of air dry soil
W	Width of container (used for CRM)
W	Weight of the sample
Z ₀	Soil thickness

LIST OF PUBLICATIONS

- Ahmad, N., Jaafar, M., & Alsaffar, M. (2015). Natural radioactivity in virgin and agricultural soil and its environmental implications in Sungai Petani, Kedah, Malaysia. *Pollution*, 1(3), 305-313.
- Ahmad, N., Jaafar, M. S., & Alsaffar, M. S. (2015). Study of radon concentration and toxic elements in drinking and irrigated water and its implications in Sungai Petani, Kedah, Malaysia. *Journal of Radiation Research and Applied Sciences*, 8(3), 265-276.
- **3.** Ahmad, N., Jaafar, M. S., Bakhash, M., & Rahim, M. (2015). An overview on measurements of natural radioactivity in Malaysia. *Journal of radiation research and applied sciences*, 8(1), 136-141.
- Ahmad, N., Jaafar, M. S., & Khan, S. A. (2014). Correlation of radon exhalation rate with grain size of soil collected from Kedah, Malaysia. *Science International*, 26(2).

KERADIOAKTIFAN TABII, KEPEKATAN RADON DAN LOGAM BERAT DALAM TANIH DAN AIR DI KEDAH, MALAYSIA

ABSTRAK

Radioaktif semula jadi, kepekatan ²²²Rn dan logam berat (Pb, Ni, Cr, Cd dan As) telah ditentukan daripada 31 tanah tidak ditanam dengan sayuran, 42 tanah yang ditanam dan 51 air minuman dan air saliran untuk menyelidik kesan-kesan aktiviti manusia di Sungai Petani, Baling dan Kulim di Negeri Kedah, Malaysia. Kajian ini dijalankan dengan menggunakan Germanium berketulenan tinggi (HPGe) untuk mengukur keradioaktifan semula jadi, CR-39 NTDs dan Radon Monitor Berterusan (CRM) untuk mengukur kepekatan²²²Rn dalam tanah, Rad-7 untuk mengukur kepekatan²²²Rn dalam air dan Penyerapan Atom Spektrometer (AAS) untuk mengukur tahap logam berat dalam sampel tanah dan air. Kepekatan aktiviti purata ²²⁶Ra, ²³²Th dan ⁴⁰K didapati lebih tinggi di dalam tanah tanaman dan berada dalam lingkungan yang dilaporkan bagi negara-negara lain di seluruh dunia. Berdasarkan kepekatan aktiviti ²²⁶Ra, ²³²Th dan ⁴⁰K yang diselidik, indeks hazad luaran (seperti indeks gama (I_{y}) , aktiviti setara radium (Ra_{eq}), indeks hazad luaran (H_{ex}) dan dos luaran di luar ruangan (D_{out}) , indeks hazad dalaman (seperti indeks alfa (I_{α}) , indeks hazad dalaman (H_{in}) dan dos luaran di dalam ruangan (D_{in})) dan dos berkesan tahunan (seperti dos luar berkesan (Eout) dan dos dalaman berkesan (Ein)) daripada sampel tanah telah dijumpai. Semua sampel tanah yang tidak digunakan dan digunakan untuk tanaman mempunyai aktiviti setara radium dalam tahap yang disyorkan, 370 Bq kg⁻¹ yang dilaporkan oleh OECD, kecuali sampel dari Taman Desa Anggerik, Baling, Kampung

Stesen Guar, Kampung Kepala Bukit, Kampong Tandop, Kampung Dalam Wang, Kampong Janjung Merbau dan Kampung Bagan Sena. Kadar dos terserap luaran dan dalaman didapati lebih tinggi daripada had keselamatan 70 nGy h⁻¹ dan 51 nGy h⁻¹, yang dilaporkan oleh UNSCEAR. Nilai purata H_{ex} , H_{in} , I_{α} dan I_{γ} dalam tanah tidak ditanam dan ditanam dengan sayuran didapati lebih rendah daripada satu, kecuali tanah tanaman di Baling, di mana nilai-nilai purata H_{in}, I_y adalah sedikit tinggi daripada satu. Nilai-nilai dos berkesan tahunan dalaman dan dos berkesan tahunan luaran didapati di bawah had keselamatan 1 mSv y⁻¹ untuk masyarakat awam yang disyorkan oleh ICRP. Keputusan yang diperoleh untuk kepekatan ²²²Rn dalam tanah yang tidak digunakan untuk tanaman mempunyai saiz butiran berbeza menunjukkan kepekatan²²²Rn meningkat dengan peningkatan saiz butiran. Nilai kadar eskhalasi radon dari tanah tidak ditanam dan ditanam dengan sayuran didapati lebih rendah daripada had keselamatan 57.6 Bg m⁻² h⁻¹. Nilai maksimum radon bawaan air didapati 20.0 ± 2.2 Bq/L di dalam air telaga dan minimum 1.4 ± 0.27 Bg/L dalam air paip. Nilai maksimum Pb, Ni, Cr, Cd dan As dalam tanah ditanam sayuran ditemui di ladang cili dengan nilai-nilai tertinggi masing-masing 2.29 \pm 0.05 mg kg^{-1} , $2.76 \pm 0.045 \text{ mg -kg}^{-1}$, $2.05 \pm 0.029 \text{ mg/ kg}$, $0.52 \pm 0.044 \text{ mg kg}^{-1}$ dan $0.58 \pm 0.029 \text{ mg/ kg}$ 0,042 mg kg-1, dan minimum ditemui di ladang kelapa sawit dengan nilai terendah di bawah had pengesanan, $0.21 \pm 0.022 \text{ mg kg}^{-1}$, di bawah had pengesanan, $0.03 \pm 0.024 \text{ mg}$ kg^{-1} dan 0.04 \pm 0.006 mg kg⁻¹. Nilai maksimum Ni, Pb, Cd, Cr dan As dalam air ditemui di dalam air sungai dengan nilai-nilai tertinggi sebanyak $12.2 \pm 1.2 \ \mu g/L$, 9.74 ± 1.14 μ g/L, 4.82 \pm 0.72 μ g/L, 5.4 \pm 1.16 μ g/L dan 7.2 \pm 0.8 μ g/L, dan nilai minimum ditemui dalam air paip dengan nilai terendah iaitu $0.28\pm0.1 \ \mu g/L$ bagi Ni dan $0.64\pm0.14 \ \mu g/L$, 0.1 \pm 0.04 µg/L, 0.28 \pm 0.06 µg/L dan di bawah had pengesanan bagi Pb, Cr, Cd dan As.

Walau bagaimanapun, semua sampel tanah dan air mempunyai kepekatan logam berat di bawah had keselamatan yang disyorkan oleh agensi yang berbeza.

NATURAL RADIOACTIVITY, RADON CONCENTRATION AND HEAVY METALS IN SOIL AND WATER IN KEDAH, MALAYSIA

ABSTRACT

Natural radioactivity, ²²²Rn concentration and heavy metals (Pb, Ni, Cr, Cd and As) were determined in 31 uncultivated soil, 42 cultivated soil and 51 drinking and irrigated water to investigate the effects of human activities in Sungai Petani, Baling and Kulim in the state of Kedah, Malaysia. This study was conducted using High Purity Germanium (HPGe) to measure natural radioactivity, CR-39 NTDs and Continuous Radon Monitor (CRM) to measure ²²²Rn concentration in soil, Rad-7 to measure ²²²Rn concentration in water and Atomic Absorption Spectrometer (AAS) to measure the level of heavy metals in soil and water samples. The average activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K were found higher in cultivated soil and to be within those reported for other countries worldwide. Based on the investigated activity concentrations of ²²⁶Ra, ²³²Th and 40 K, outdoor hazard indices (such as gamma index (I_y), radium equivalent activity (Ra_{ea}), external hazard index (H_{ex}) and outdoor external dose (D_{out})), indoor hazard indices (such as alpha index (I_{α}) , internal hazard index (H_{in}) and indoor external dose (D_{in})) and annual effective doses (such as outdoor effective dose (E_{out}) and indoor effective dose (E_{in})) from soil samples were found. All the uncultivated and cultivated soil samples have radium equivalent activities within the recommended level 370 Bg kg⁻¹ reported by OECD, except samples collected from Taman Desa Anggerik, Baling, Kampong Guar Station, Kampong Kepala Bukit, Kampong Tandop, Kampong Dalam Wang, Kampong Janjung Merbau and

Kampong Bagan Sena. Outdoor and indoor absorbed dose rates were found higher than the safety limits of 70 nGy h⁻¹ and 51 nGy h⁻¹, respectively reported by UNSCEAR. The average values of H_{ex} , H_{in} , I_{α} and I_{γ} in uncultivated and cultivated soil were found lower than unity, except cultivated soil of Baling where the average values of $\ H_{in}, \ I_{\gamma}$ were slightly higher than unity. The values of indoor annual effective dose and outdoor annual effective dose were found below the safety limit 1 mSv y⁻¹ for general public recommended by ICRP. The results obtained for ²²²Rn concentration in uncultivated soil having different grain size show that ²²²Rn concentration increase with the increase in grain size. The values of radon exhalation rate from uncultivated and cultivated soil were found lower than safety limit 57.6 Bq $m^{-2} h^{-1}$. The maximum value of waterborne radon was found 20.0±2.2 Bq/L in well water and minimum was found 1.4±0.27 Bq/L in tap water. The maximum values of Pb, Ni, Cr, Cd and As in cultivated soil were found in chili farms with the highest values of $2.29\pm0.05 \text{ mg kg}^{-1}$, $2.76\pm0.045 \text{ mg kg}^{-1}$, $2.05\pm0.029 \text{ mg}$ kg⁻¹, 0.52±0.044 mg/kg and 0.58±0.042 mg- kg⁻¹, respectively and minimum were found in palm oil farms with the lowest values of below detection limit, 0.21 ± 0.022 mg kg⁻¹, below detection limit, 0.03±0.024 mg kg⁻¹ and 0.04±0.006 mg kg⁻¹, respectively. The maximum values of Ni, Pb, Cd, Cr and As in water were found in stream water with the highest values of 12.2±1.2 µg/L, 9.74±1.14 µg/L, 4.82±0.72 µg/L, 5.4±1.16 µg/L and $7.2\pm0.8 \mu g/L$, respectively and minimum were found in tap water with the lowest values of 0.28±0.1 µg/L for Ni and 0.64±0.14 µg/L, 0.1±0.04 µg/L, 0.28±0.06 µg/L and below detection limit for Pb, Cr, Cd and As, respectively. However, all the soil and water samples have heavy metals concentration below the safety limits recommended by different agencies.

CHAPTER 1

INTRODUCTION

1.1 Background

Humans are surrounded by radionuclides present in soil, air, water and human bodies. We ingest and inhale radionuclides on daily basis and radioactive materials have been ubiquitous on earth since it was formed. Radioactive materials found in nature are often referred to as Naturally Occurring Radioactive Materials, NORM (NCRP, 1987) and are categorized in three groups of radionuclides, namely primordial or terrestrial, cosmogenic and anthropogenic nature (UNSCEAR, 1988), which are everywhere in the environment. The primordial nuclides 238 U, 232 Th and 40 K are very long lived with half lives of 4.4×10^9 , 1.4×10^{10} and 1.28×10^{9} years, respectively and are present since the earth was formed. These nuclides are produced by the process of nucleosynthesis in stars. The cosmogenic radionuclide's are continuously produced by the action of cosmic rays and are always present on the earth, even though they have half lives shorter than the life of the earth. More than 25 cosmogenic radionuclides have been identified. ¹⁴C is typical example which is produced by the reactions ${}^{14}N(n,p) {}^{14}C$ in atmosphere when the neutrons from cosmic rays interact with nitrogen (Lamarsh, 1983). The anthropogenic radioactivity is manmade radioisotopes (¹³⁷Cs, ¹³¹I and ⁹⁰Sr) produced as a result of nuclear reactions with uranium. These nuclides are found everywhere as a result of nuclear weapons testing.

Fertilizers are usually used for cultivated purpose, which contain natural radioactivities like thorium, uranium and their decay product and traces of heavy metals (Olszewska-Wasiolek, 1995). Different types of fertilizers (containing phosphate) are used to improve the growth of plants in the study area. Plants take some amount of radioactivity from the fertilizer applied to the soil. Humans are exposed externally and internally to radioactivity in rocks having phosphate and its by products. Gamma rays from phosphate rocks and fertilizers are the main sources of external exposure while radon, ingestion of fertilizer dust and radioactivity in food are the sources of internal exposure. Radionuclides of uranium and thorium decay series are relatively more abundant and naturally occurring. An example of the decay products of these series is the radon gas.

Radon is an odourless, tasteless and colorless gas, hence not easily detected. It is noble gas, due to which it is chemically inert._Radon is one of the heaviest noble gas at room temperature. It comprises three significant naturally occurring isotopes, ²¹⁹Rn, ²²⁰Rn and ²²²Rn. These isotopes belong to ²³⁵U, ²³²Th and ²³⁸U decay series, respectively. The half lives of ²²⁰Rn (Thoron), ²¹⁹Rn (Actinon), and ²²²Rn (Radon) are 55.6 s, 3.96 s, and 3.83 days respectively.

²²²Rn is the most significant among these isotopes because of its longer half life Therefore, this study focuses on ²²²Rn. Other isotopes of radon are easily removed from atmosphere because of their short half lives.

For example, ²¹⁹Rn has approximately 0.7% abundance in the earth crust, which is attributable to its short half life and generally dissipates shortly after it is generated. Due to the short half life, ²²⁰Rn decays before reaching the earth surface. The most significant isotope ²²²Rn, can travel a considerable distance from its point of origin (Durrani & Ilic, 1997). That is why, only ²²²Rn is regarded as a health hazard when estimating risk factors associated with radon exposure. Radon is an alpha emitter and considered as a foremost

source of lung cancer among non smokers and is the cause of 2900 deaths of non smokers worldwide (USEPA, 2004). Radon becomes airborne with the attachment of dust particle and pollution, after inhalation it becomes deeply trapped in the lungs, resulting in pathological effects like the decline in respiratory function (Khan et al., 2011). Beta particles are more hazardous than alpha particles due to longer penetration ability and are dangerous to skin. It has been investigated that emission of beta particle from strong sources burn the skin. In comparison to alpha and beta particles, gamma rays are most hazardous due to highest ability of penetration and are able to cross the body due which all organs of body could be effected (Alpen, 1997).

The term heavy metal is probably reserved for those elements with an atomic mass of 200 or greater (Baldwin & Marshall, 1999). It mostly comprises of some metalloids, transition metals, actinides and lanthanides (Appenroth, 2010). Commonly, the term has been used to any metal which is potentially toxic and/or clinically undesirable (Hardman, 2006). Most of heavy metals are toxic and their accumulation over time in the bodies of animals can cause severe diseases. Long-term exposure to heavy metals may result in progressing physical, neurological and muscular degenerative processes which may lead to Alzheimer's disease, muscular dystrophy and Parkinson's disease.

Lead is one of the most common toxic heavy metal while lead paint and lead water pipes are the major sources of the lead hazards. However, ore's smelting, battery manufacturing and traditional remedies are the second largest sources of lead poisoning (Baldwin & Marshall, 1999). Anthropogenic activities such as using of fertilizers, smelter emissions and sewage sludge to land are the most important sources of cadmium release to natural environment (Hutton & Symon, 1986). Industrial effluents and airborne particles from combustion of fossil fuels are the main causes of nickel contamination of hydrosphere and atmosphere. Chromate is the common ore of chromium, commonly used to manufacture, amongst other things, cement, paints, leather products and anti-corrosives which directly contaminate the environment (Pradhan, 2012).

Measurement of natural radioactivity is of interest worldwide. A very limited data about the natural radioactivity in soil is available for Kedah. Almayahi et al. (2012b) found natural radioactivity in soil of Kedah with the maximum values of 79 Bq kg⁻¹ for 226 Ra, 97 Bq kg⁻¹ for 232 Th and 602 Bq kg⁻¹ for 40 K and minimum values of 33 for 226 Ra, 81 Bq kg⁻¹ for 232 Th and 270 Bq kg⁻¹ for 40 K.

1.2 Problem Statements

Human beings depend on soils and good soils depend on human beings and the use they make on them. Soil exists as a mixture of naturally occurring materials on the surface of earth having supporting plants and living bodies. Human activities such as using of fertilizers in improving the properties of plants and reclaiming the land and industrialization can change the soil concentrations. Using fertilizers for long term could enhance the concentrations of natural radioactivity and heavy metals and consequently increase the radiological hazards which would increase the diseases for human beings (El-Farrash et al., 2012). Human beings are exposed to natural radioactivity, radon and heavy metals by consuming contaminated water, plants and animals which result in various biochemical disorders. Sungai Petani, Baling and Kulim have agricultural activity more than other areas of Kedah and have industrial area. Different types of fertilizers are used for improving the properties of plants like Chili, Banana and Palm Oil in the studied areas. Therefore, the knowledge of the distribution and concentrations of natural radioactivity, radon concentration and heavy metals are of interest since it gives very important information in the monitoring of environmental contamination. This research interests in investigating the following problems.

- a. What is the level of natural radioactivity in uncultivated soil and cultivated soil from chili, banana and palm oil farms?
- b. What is the level of radon concentration in soil, drinking and irrigated water?
- c. What is the correlation of radon concentration with grain size of soil? What is the effect of grain size of soil with radon exhalation rate?
- d. To find the concentrations of heavy metals (Ni, Cd, As, Pb, Cr) in cultivated soil from chili, banana and palm oil farms and water?

1.3 Objectives of the Research

The objectives of this research are:

- 1. To measure the concentrations of natural radioactivity in uncultivated soil and cultivated soil from chili, banana and palm oil farms.
- 2. To determine the Rn-222 concentration in soil, drinking and irrigated water.
- 3. To find the correlation between radon concentration and grain size of soil.
- 4. To find the concentrations of heavy metals (Ni, Cd, As, Pb, Cr) in cultivated soil from chili, banana and palm oil farms and water.

1.4 Scope of Research

This study was focused on measurements of natural radioactivity and radon concentration in uncultivated and cultivated soil collected from palm oil, chili and banana farms and on radon concentration in water used for drinking and irrigation in Kedah, Malaysia. Unfortunately a very limited data are available in literature for radon concentration in soil and water. This study is important as it provides a baseline data for natural radioactivity, radon concentrations and heavy metals concentrations in cultivated soil and irrigated water. These were measured by High Purity Germanium (HPGe), CR-39, Continuous Radon Monitor (CRM), RAD-7 and Atomic Absorption Spectrometer (AAS).

1.5 Outline of Thesis

This thesis includes five chapters. Chapter 1 is the background of natural radioactivity, problem statements, and objectives of the research and scope of the research. Chapter 2 summarized the natural radioactivity, radon concentration as well as literature review on natural radioactivity, radon concentration and heavy metals. Chapter 3 provides descriptions of the study area, samples collection and materials and methods whilst Chapter 4 provides the results and discussion. Finally, Chapter 5 presents conclusion and future work related to this research.

CHAPTER 2

THEORY

2.1 Environmental Natural Radioactivity

Uranium and thorium naturally occurs randomly, although in small quantities all over the earth's crust, typically at ppm levels. However, there are specific places where the concentration is high (UNSCEAR, 1988). ²³⁸U and ²³²Th are naturally occurring radionuclide's and are the parent elements of the two radioactive decay series. Their decay products are alpha, beta and gamma rays emitters. Uranium occurs naturally in the form of ²³⁴U, ²³⁵U and ²³⁸U. The relative abundance of ²³⁸U is 99.274% and the equilibrium concentration of ²³⁴U is 0.0054%. The relative abundance of ²³⁵U is 0.7205%. ²³⁴U is a member of ²³⁸U decay series. The contribution of ²³⁵U in the natural pollution is negligible because of its relatively low abundance (IAEA, 1990). ²³⁸U and ²³⁵U decay series are shown in Fig 2.1 and 2.2, respectively.

The ²³⁸U series has fifteen members' ends up to ²⁰⁶Pb after 8 alpha and 6 beta emissions along with many gamma decays. Typical concentration of uranium in Granite, Gabbro, Limestone and Sandstone is 3 to 5, < 1, 1 to 2 and 3 to 5 ppm, respectively with average value of 2.7 ppm. Natural thorium consists almost entirely of ²³²Th, 1.35×10^{-8} % of ²²⁸Th and extremely small amount of ²³⁴Th, ²³⁰Th, ²³¹Th and ²²⁷Th. ²³²Th is the parent of 4n (n varying from 58 to 51) radioactive decay series (Kaplan, 1972). There twelve members in the series and ²³²Th, as shown in Fig 2.3, after 7 alpha and 5 beta emissions along with many gamma radiations decays in to ²⁰⁸Pb. The range of concentration on ²³²Th on the earth's crust varies from zero to several hundreds of parts per million (ppm). Typical concentration of thorium in Granite, Gabbro, Limestone and Sandstone is 10 to 30, 2 to 3, 1 to 2 and 10 to 15 ppm, respectively with average value of 9.6 ppm (IAEA, 1990). Among the naturally occurring potassium isotopes, 40 K is unstable. It has a half life of 1.227×10^9 years.

The relative abundance of 40 K in natural potassium is 1.18×10^{-4} . It decays by ${}^{-3}\beta$ –decay to 40 Ca and by ${}^{+}\beta$ -decay or electron capture (K-capture) to 40 A. The composition of potassium (K) in rocks ranges from 0 to 10 %, typically 1 to 5 % with a mean value of 2% (IAEA, 1990). A similarly significant daughter from of the uranium decay series existing in the environment is ²²⁶Ra, which is the likely emitter of natural radioisotopes ²²²Rn, the radon gas. Human exposure to high concentration of radon and its progenies for lengthy period result in the decline of respiratory functions and emergence of lung cancer (Verma et al., 2012). Radon and its decay product have more than 50% contribution to the total effective dose. (UNSCEAR, 2000b). Thus, radon and its decay products have garnered a lot of interest because of their health hazards, as these radionuclides may attain fairly dangerous levels in dwelling with the lack of sufficient ventilation system or contain strong sources of radon. Therefore, measurement of radon are being performed worldwide at national levels to generate extensive data, which are openly accessible (Almayahi et al., 2011; Faheem, 2008; Ismail & Jaafar, 2013; Rahman, 2006; Saad et al., 2013; Singh et al., 2010; Verma et al., 2012).

Figure 2.1: Uranium-238 decay series (Malain, 2011)

Fig 2.2: Uranium-235 decay series (Malain, 2011)

Fig 2.3: Thorium-232 decay series (Malain, 2011)

2.2 Radon Emanation

Radon occurs in nature due to the decay of radium in mineral grain. Most of the radon produced continues to adhere to the grain particles, while a small fraction permeates into the pore spaces either rapidly or within a few days before it eventually decays (Duenas et al., 1997). The ratio of the radon released from the grain to the produced radon in the grain is measured as the co-efficient of emanation (E).

The quantity of emanated radon to pore spaces is dependent on the spatial distribution of ²²⁶Ra contained in the mineral grain, the radium concentration and pore moisture content (Sasaki et al., 2004). Huge amounts of radon concentrations results generally from minor disparity in radium concentration in the soil. This variation in radon concentration is attributable to random distribution of radium in grains.

2.3 Radon Exhalation

The movement of radon from source environment such as construction sites, building materials and soil to indoors is referred to as radon exhalation. Exhalation rate is the amount of atoms escaping the soil per unit surface area per unit time. It is used to measure exhalation. The exhalation rate of radon is determined to a large extent by atmospheric pressure, forces of wind and temperature. A large volume of small pores are filled with water under such conditions resulting in high exhalation rate (Sun et al., 2004).

2.4 Transport of Radon

Most radon produced by the decay of radium never escapes from its birth mineral; instead it is usually lodged firmly in position inside the crystal lattice for few days pending its decay. The minute fraction of radon that escapes is either released quickly as soon as it is born or within the few days prior to it decays.

The first option for escape is the direct ejection of the radon atom by recoil from alpha emission (Kigoshi, 1971). In relation to the conservation of momentum, the emission of an alpha particle with 4.78 MeV by ²²⁶Ra provides the remaining ²²²Rn nucleus recoil energy of 86 keV, which is enough to initiate the recoil motion of radon through 26 nm of SiO₂. If the radium exists at a distance of 26 nm from the surface of the mineral, the recoil can really dislodge from the grain and go into interstitial space.

If the pore space filled with water, the dislodged recoil most likely ejects into the liquid as illustrated as shown in Figure 2.4. The radon atom subsequently diffuses from the water or be moved by it.

Figure 2.4: Rn-222 stopped by water in pores

The second possibility depicted in Figure 2.5 is for a case where the interstitial space is dry (filled only with soil gas) and not sufficiently wide to impede the recoiling radon. Thus the recoil is ejected to an adjacent grain. If the initially dry grains become wet prior to radon decay, it can be discharged into the interstitial space, from where it can be diffused (Fleischer, 1980).

Figure 2.5: Rn-222 later loosened by water

2.5 Literature Review

Numerous studies have conducted throughout the world to find the natural radioactivity, radon concentration, and heavy metals in soil, water by using different methods. Natural radioactivity in soil, radon concentration in soil and water and heavy metals in water measured by different researchers worldwide are summarized in Table 2.1, 2.2, 2.3 and 2.4, respectively.

Sample	Sample	Method	Results	References
location	type			
Palong, Johor,	Soil	Neutron	238 U= 58.8- 484.8 Bq/kg	(Ramli et
Malaysia		Activation	²³² Th =59.6-1204 Bq/kg.	al., 2005)
		Analysis (NAA)	The concentrations of $^{\rm 238}{\rm U}$ and $^{\rm 232}{\rm Th}$	
			were found higher in all except two	
			locations (sample S2 and S5)	
Ulu Tiram,	Soil	NaI gamma ray	238 U= 1.74 - 4.58 ppm	(Abdul
Malaysia		detector	(mean: 3.63 ppm)	Rahman &
			²³² Th=(10.68- 82.10 ppm) (mean:	Ramli,
			43.00ppm)	2007)
Kinta,	Soil	High Purity	238 U=12 – 426 Bq kg ⁻¹	(Lee et al.,
Malaysia		Germanium	²³² Th =19 -1377 Bq kg ⁻¹	2009)
		detector (HPGe)	40 K = 19 - 220 Bq kg ⁻¹	
			External gamma dose rate = 222 nGy h^{-1}	
Research	Soil	High Purity	40 K= 598.24 Bq kg ⁻¹	(Saat et al.,
Station,		Germanium	226 Ra = 99.13 Bq kg ⁻¹	2011)
Nation Park,		detector (HPGe)	²²⁸ Ra= 139.98 Bq kg ⁻¹	
Malaysia		and Portable	Mean of doses were $0.215 \mu Sv/h$ and	
		Radiation	0.193 μ Sv/h on the ground and one	
		Survey Meter	meter from ground, respectively.	

Table 2.1: Measurements of natural radioactivity in soil worldwide

Table 2.1 continued

Penang,	Soil	High Purity	40 K = (mean: 835 Bq kg ⁻¹)	(Almayahi
Malaysia		Germanium	226 Ra = (mean: 396 Bq kg ⁻¹)	et al.,
		detector (HPGe)	238 U = (mean: 184 Bq kg ⁻¹)	2012a)
			232 Th = (mean: 165 Bq kg ⁻¹)	
			The values of radium equivalent	
			activity (Ra_{eq}), external (H_{ex}) and	
			internal hazard indices (H _{in}), annual	
			gonadal dose equivalent, absorbed	
			dose rates in indoor air, effective	
			dose equivalent rate and ²²⁶ Ra/ ²³⁸ U	
			were found 696 Bq kg ⁻¹ , 1.87, 2.9,	
			2.02 mSv y ⁻¹ , 315 nGy h ⁻¹ , 0.38	
			mSv/y and 2.10, respectively.	
Northern	Soil	High Purity	40 K = (mean: 427 Bq kg ⁻¹)	(Almayahi
Peninsular,		Germanium	226 Ra = (mean: 57 Bq kg ⁻¹)	et al.,
Malaysia		detector (HPGe)	232 Th = (mean: 68 Bq kg ⁻¹)	2012b)
			The mean values of Ra_{eq} , H_{ex} and H_{in}	
			were found as 186 Bq kg ⁻¹ , 0.50 and	
			0.65, respectively while that of	
			annual effective dose rates (ED) and	
			absorbed dose rates (D _R) were	
			found, 108 μ Sv y ⁻¹ and 88 nGy h ⁻¹ ,	
			respectively. Health hazard indices	
			were found higher $(1.1 H_{ex})$ and $(1.1$	
			H_{ex} , 1.6 H_{in}) only in two samples.	
Perak,	Soil	High Purity	238 U = (mean: 127 Bq kg ⁻¹)	(Heru
Malaysia		Germanium	232 Th = (mean: 304 Bq kg ⁻¹) 40 K = (mean: 202 B $\approx 1 \text{ kg}^{-1}$)	Apriantoro &
		detector (HPGe)	External hazard index $(H_{ex}) = 0.35$ -	Termizi
			3.07	Ramli, 2013)
1				

Table 2.1 continued

Jordan	Soil	High Purity	226 Ra = (range: 43.2-228.9 Bq kg ⁻¹)	(Ahmad &
		Germanium	232 Th = (range: 17.9-31.9 Bq kg ⁻¹)	Khatibeh,
		detector (HPGe)	40 K = (range: 290.0-558.4 Bq kg ⁻¹)	1997)
			Average radium equivalent activities	
			were found within acceptable limits.	
Jordan	Soil	High Purity	238 U = (range: 22-104Bq kg ⁻¹)	(Al-Jundi et
		Germanium	232 Th = (range: 21-103 Bq kg ⁻¹)	al., 2003)
		detector (HPGe)	40 K = (range: 138-601 Bq kg ⁻¹)	
Malwa,	Soil	High Purity	226 Ra = (range: 18.3-53.1 Bq kg ⁻¹)	(Mehra et
Punjab, India		Germanium	232 Th = (range: 57.2-148.2 Bq kg ⁻¹)	al., 2007)
		detector (HPGe)	40 K = (range: 211.1-413.2 Bq kg ⁻¹)	
			The values of dose rate (D_R) ranged	
			from 58.08 to 130.85 nGy h^{-1} with an	
			average of 79.11 nGy h^{-1} . The values	
			of external hazard index ranged from	
			0.35 to 0.79.	
South Konkan,	Soil	High Purity	238 U = (mean: 44.97 Bq kg ⁻¹)	(Dhawal et
India		Germanium	232 Th = (mean: 59.70 Bq kg ⁻¹)	al., 2013)
		detector (HPGe)	40 K = (mean: 217.51 Bq kg ⁻¹)	
			Average absorbed dose rate was	
			found 68.08 nGy h ⁻¹ . Radium	
			equivalent activity was found below	
			the recommended value.	
Punjab,	Soil	High Purity	226 Ra = (range: 20-43 Bq kg ⁻¹)	(Faheem &
Pakistan		Germanium	232 Th = (range: 29-53 Bq kg ⁻¹)	Mujahid,
		detector (HPGe)	40 K = (range: 98-621 Bq kg ⁻¹)	2008)
			and Ra_{a0} were found within	*
			recommended values.	

Table 2.1 continued

Azad Kashmir,	Soil	High Purity	226 Ra = (range: 10-47 Bq kg ⁻¹)	(Rafique et
Pakistan		Germanium 232 Th = (range: 18-75 Bq kg ⁻¹)		al., 2011a)
		detector (HPGe)	40 K = (range: 40-683 Bq kg ⁻¹)	
			The reported values of radium	
			equivalent activity, annual effective	
			dose and hazard indices were found	
			within acceptable limits.	

Table 2.2: Measurements of radon concentration in soil worldwide

Sample	Sample	Method	Results	References
location	type			
Pakistan	Soil,	CR-39 NTDs	Radon exhalation rate in soil samples	(Rahman,
	sand		collected from Bahawalpur Division	2006)
			and NWFP ranged from 1.56 to 3.33	
			Bq m ⁻² h ⁻¹ and 2.49 to 4.66 Bq m ⁻² h ⁻¹ ,	
			respectively. In case of sand	
			samples its values ranged from 2.78	
			to 20.8 Bq $m^{-2} h^{-1}$ and 0.99 to 4.2 Bq	
			$m^{-2} h^{-1}$, respectively.	
NW Slovenia	Soil	Alpha Guard	Values of radon concentrations	(Vaupotič et
		Radon Monitor	ranged from 0.9 to 32.9 kBq m ^{-3} ,	al., 2010)
			while radon exhalation rate ranged	
			from 1.1 to 41.9 mBq $m^{-2} s^{-1}$.	
North	Soil	CR-39 NTDs	The maximum radon concentration	(Almayahi
Malaysia			was found 375.42 kBq m ^{-3} and	et al., 2011)
			minimum was found 2.23 kBq m ^{-3} .	
Malaysia	Fertilizer	CR-39 NTDs	The radon concentration ranged from	(Aswood et
			79.25 ± 23.24 to 634.01 ± 51.42	al., 2014)
			Bqm ⁻³ .	
Malaysia	Soil	CR-39 NTDs	Radon concentration ranged: 2,225	(Almayahi
			to 9,950 Bq m ⁻³	et al., 2014)

Sample	Sample	Method	Results	References
location	type			
Karnatak, India	Ground water	RAD-7	 The radon concentrations in Varahi command area ranged from 0.2±0.4 to 10.1±1.7 Bq L⁻¹ having average value of 2.07±0.84 Bq L⁻¹, while in case of water samples collected from Markandeya command area its values ranged from 2.21± 1.22 to 27.3±0.787 Bq L⁻¹ having average value of 9.30±1.45 Bq L⁻¹ 	
Islamabad and Murree, Pakistan	Water	RAD-7	The radon concentrations in water and soil samples from Islamabad region ranged from 25.90 to 158.40 kBq m ⁻³ and 17.34 to 72.52 kBq m ⁻³ with the mean values of 88.63 kBq m ⁻³ and 45.08 kBq m ⁻³ , respectively. In Murree and its surroundings its values ranged from 1.64 to 10.20 kBq m ⁻³ and 0.61 to 3.89 kBq m ⁻³ having mean values of 4.38 kBq m ⁻³ and 1.70 kBq m ⁻³ , respectively.	(Ali et al., 2010)
Punjab, India	Ground water	RAD-7	The concentrations of radon ranged from 2560 to 7750 Bq m ⁻³ with an average value of 5143.33 Bq m ⁻³ . The absorbed dose rate ranged from 1.26 to 3.24 mSv y^{-1} .	(Badhan et al., 2010)
Iraq	Water	RAD, CR-39 NTDs	Minimum value of radon concentration was found 174 Bq m ⁻³ in Tap water, while maximum was found 2050 Bq m ⁻³ in well water. In case of oil-production water its values ranged from 8464 to 5092 Bq m ⁻³ .	(Subber et al., 2011)

Table 2.3: Measurements of radon concentration in water samples worldwide

Table 2.3 continued

Penang,	Water	RAD-7	The estimated radon concentrations	(Muhammad
Malaysia			ranged from 0.49 to 9.72 Bq L^{-1} , 0.58	et al., 2012)
			to $2.54 \text{ Bq } \text{L}^{-1}$ and 7.49 to 26.25 Bq	
			L ⁻¹ in treated, bottled and raw water,	
			respectively. The committed effective	
			doses from radon were estimated	
			were ranged from 0.003 to 0.048 mSv	
			y^{-1} , 0.001 to 0.018 mSv y^{-1} and 0.002	
			to 0.023 mSv y ⁻¹ , for 0 to 1, 2 to 16	
			and > 16 y age groups, respectively.	
Cameron	Irrigation	RAD-7	Average radon concentrations were	(Al-Nafiey
Highlands,	water		ranged from 0.21 to 0.297 Bq L^{-1} .	et al., 2014)
Malaysia				

Sample location	Sample	Method	Results	References
Sumple location	type	ivictilou	i courto	References
Southwestern	Stream	ICP-AFS	The mean values of Cd Cu Ph Zn	(Demirak et
Turkey	water		and Cr were found 0.800 ± 0.600	(Definitian et al., 2006)
1 01110)			u_{α}/L 12 000 + 0 000 u_{α}/L 82 600	, 2000)
			$\mu g/L$, 15.000 ± 9.000 $\mu g/L$, 85.000	
			\pm 56.200 µg/L, 37.000 \pm 26.000	
			μ g/L and 19.700 ± 15.600 μ g/L,	
			respectively.	
Egypt	Lakes	Atomic	The concentrations of Fe, Zn,	(Saeed &
	water	Absorption	Cu, Mn, Cd and Pb were found 1.42	Shaker,
		Spectrometer	mg/L, 0.4636 mg/L, 0.513 mg/L,	2008)
			0.513 mg/L, 0.044 mg/L and 0.099	
			mg/L, respectively. The order of	
			concentrations were found $Fe > Mn$	
			> Pb $>$ Zn $>$ Cu $>$ Cd in Lake Edku.	
			whereas $Fe > Mn > Pb > Zn > Cu >$	
			Cd in Lake Borollus. Its order was	
			found Fe > Mn = $Cu > Zn > Pb >$	
			Cd in Lake Manzala.	
China	Sea water	Atomic	The concentrations of Zn As Pb	(Wang et
0		Absorption	Cd and Cu were ranged from 2.4 to	al., 2010)
		Spectrometer	52.4µg/L, 1.41 to 2.98 µg/L, 0.35 to	, ,
		*	$1.70 \ \mu g/L$, 0.04 to 1.0 $\mu g/L$ and	
			0.03 to 1.18 μg/L for Zn, As, Pb,	
			Cd and Cu, respectively.	
Malaysia	Tap water	Atomic	The mean concentrations of heavy	(He et al.,
		Absorption	metals (Ni, As, Cd and Pb) were	2011)
		Spectrometer	found 0.91 µg/L, 0.81 µg/L, 0.41	
			$\mu g/L$ and 0.28 $\mu g/L$.	

Table 2.4: Measurements of heavy metals in water samples worldwide

CHAPTER 3

MATERIALS AND METHODS

3.1 Area under Study

This study was conducted in selected locations of Kedah. Kedah is a state of Malaysia, situated in the north part of Peninsular Malaysia and covers an area of 9,427 km² (3,640 square miles). It is located at 6° 07′ 42′′ N 100° 21′ 46′′ E on the world map. The north part of Kedah borders the state of Perlis and shares an international boundary with Thailand. In south and southwest it borders the states of Perak and Penang, respectively. Kedah has tropical climate having uniform temperature and average humidity ranged from 82% to 86% per annum. Average annual rain fall ranged from 203 cm to 254 cm. Geologically it is divided into the following groups: Silurian-Ordovician, Triassic, Quaternary, Cretaceous-Jurassic, Carboniferous and Cambrian as shown in Figure 3.1. Samples were collected from Sungai Petani, Kulim and Baling. The locations of cultivated areas were selected according to the suggestions of cultivated departments.

Sungai Petani is a capital of district Kuala Muda in the state of Kedah, and covers an area of 925 km². It is located at 5° 38′ 49′′ N 100° 29′ 15′′ E on the world map. Sungai Petani is the largest town of Kedah with population of 443,458 in 2010. Kulim is located at 5° 21′ 36′′ N 100° 32′ 59′′ E in the southwest of Kedah. On the west it borders the Penang. Baling is located at latitude 5° 40′ 0′′ N and longitude 100° 55′ 0′′ E and lies to the south-east of Kedah, approximately 56 km from Sungai Petani and close to the border

of Thailand. It has a total area of 1530 km^2 (590 Square miles) with population (2009) of 204,300. Figure 3.1 shows map of study area.

Figure 3.1: Map of Kedah, showing the study areas

3.2 Collection of Samples, Materials and Methods

3.2.1 Collection of Soil Samples

A total of 73 soil samples for the measurement of radon concentration, natural radioactivity and heavy metals were collected from uncultivated and cultivated (Chili, Banana and palm oil forms) areas of Sungai Petani, Kulim and Baling. Soil samples collected for the measurement of heavy metals were stored in insulated ice cooler in order to protect it from sun heat and brought to the Medical Physics Laboratory on the same day and stored at 4 °C until processing, dried at 110 °C for 2 hr and passed through sieve of size 0.249 mm after grinding (Jan et al., 2010). Each sample was weighted by using electrical balances. The geographic sites of the soil sampling sites are tabulated in Table 3.1.

S	Site Name	Sample	Co-ordinates		
No		Code			
	Uncu	ltivated soil			
1	Industrial Area Sungai Petani	SPI	N 05° 36' 33.2", E 100° 30' 12.5"		
	(5 samples)		N 05° 36' 22.3", E 100° 30' 10.8"		
			N 05° 35' 32.1", E 100° 30' 09.9"		
			N 05° 36' 05.2", E 100° 29' 48.1"		
			N 05° 35' 09.5", E 100° 27' 13.6"		
2	Kampung Kilang Makau, Sungai	SP11	N 05° 35' 19.4", E 100° 29' 02.7"		
	Patani				
3	Kampung Kubang Sapi, Sungai	SP10	N 05° 33' 51.3", E 100° 33' 13.2"		
	Patani				
4	Kampung Bakar Kapor, Sungai	SP7	N 05° 38' 25.7", E 100° 28' 50.4"		
	Patani				
5	Kampung Pantai Cicak, Sungai	SP9	N 05° 36' 36.5", E 100° 37' 19.5"		
	Patani				
6	Taman Seri Baiduri, Sungai Patani	SP15	N 05° 37' 11", E 100° 37' 19.5"		
7	Taman Sinar Permata, Sungai Patani	SP13	N 05° 36' 02.2", 100° 28' 09.9"		
8	Kumpung Tanah Licin, Sungai	SP8	N 05° 35' 57.2", E 100° 36' 29.5"		
	Patani				
9	Kolej Komuniti Baling	B1	N 05° 39' 18.4", E 100° 52" 25.7"		

Table 3.1: Geographic sites of soil sampling locations