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PENILAIAN CIRI-CIRI ANTI-OKSIDA DAN ANTI-PENUAAN EKSTRAK 

DARIPADA EMPAT JENIS TUMBUH-TUMBUHAN 

 

ABSTRAK 

Ciri-ciri anti-penuaan ekstrak daripada empat jenis tumbuh-tumbuhan yang berbeza, 

iaitu O. stamineus, C. hirta, P. sarmentosum dan C. caudatus telah disiasat. Kaedah 

pengekstrakan yang mudah telah dijalankan sebelum analisis yang seterusnya. Asai 

DPPH menunjukkan bahawa ekstrak etanol C. hirta menunjukkan aktiviti 

memerangkap radikal yang tertinggi, dengan IC50 33.3±1.8μg/ml manakala ekstrak 

etanol P. sarmentosum menunjukkan aktiviti memerangkap radikal yang terendah, 

dengan IC50 660.4±14.4μg/ml. Toksisiti ekstrak tumbuh-tumbuhan telah diuji dengan 

menggunakan sel-sel fibroblast kulit manusia dewasa. O. stamineus dan C. caudatus 

adalah toksik kepada sel-sel pada kepekatan 100μg/ml. Kesan-kesan daripada ekstrak 

tumbuh-tumbuhan terhadap prokolagen I telah diuji dan didapati bahawa O. 

stamineus, C. hirta dan C. caudatus meningkatkan ekspresi PICP apabila diuji pada 

kepekatan 50, 100, 250 dan 500ng/ml. Untuk kesan perlindungan ekstrak tumbuh-

tumbuhan pada kepekatan 50, 100, 250 dan 500ng/ml terhadap dos sublethal 

hidrogen peroksida pada 750μg/ml, hanya 50ng/ml O. stamineus menunjukkan 

perlindungan terhadap tekanan oksidatif. Ekstrak tumbuh-tumbuhan telah disiasat 

selanjutnya dengan menggunakan C. elegans sebagai model organisma in vivo. 

Nematod telah diradiasi dengan ultraungu B selama 3 minit dan dirawat dengan 

ekstrak tumbuh-tumbuhan pada kepekatan 1, 10 dan 100μg/ml, O. stamineus dan P. 

sarmentosum pada kepekatan 10μg/ml meningkatkan jangka hayat purata kepada 

7.0±0.3 dan 6.9± 0.2 hari berbanding dengan 6.2±0.1 hari untuk nematod yang tidak 

dirawati. Liposome digunakan sebagai pembawa untuk menyampaikan O. stamineus 

kepada C. elegans untuk mengkaji keberkesanannya dalam menyampaikan jumlah 
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ekstrak yang konsisten kepada nematod. Walaupun kecekapan pengkapsulan yang 

tinggi telah diperolehi, tetapi formulasi liposom tidak memanjangkan jangka hayat C. 

elegans. Oleh itu adalah penting untuk menguji keberkesanan ekstrak tumbuh-

tumbuhan secara in vivo dan in vitro untuk kajian anti-penuaan kerana penuaan kulit 

merupakan satu proses biologi yang kompleks. 
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EVALUATION OF THE ANTI-OXIDANT AND ANTI-AGING PROPERTIES 

OF EXTRACTS FROM FOUR TYPES OF PLANTS 

 

ABSTRACT 

The anti-aging properties of extracts from four different plants, namely O. stamineus, 

C. hirta, P. sarmentosum and C. caudatus were investigated. A simple extraction 

method was carried out before further analysis. DPPH assay indicated that ethanol 

extract of C. hirta showed the highest radical scavenging activities, with IC50
 of 33.3 

± 1.8 µg/ml whilst ethanol extract of P. sarmentosum showed the lowest radical 

scavenging activities, with IC50 of 660.4 ± 14.4 µg/ml. Toxicity of plant extracts was 

tested on adult Human Dermal Fibroblast (HDFa). O. stamineus and C. caudatus 

were toxic to cells at the concentration of 100µg/ml. The effects of the plant extracts 

on Type I pro-collagen production were tested and it was found that O. stamineus, C. 

hirta and C. caudatus accelerated PICP expressions when tested at the concentrations 

of 50, 100, 250 and 500ng/ml. For the cytoprotection effects of plant extracts at the 

concentrations of 50, 100, 250 and 500ng/ml towards the sub-lethal dose of hydrogen 

peroxide at 750µg/ml, only 50ng/ml of O. stamineus showed protection against the 

oxidative stress. Plant extracts were further investigated by using C. elegans as the 

model in vivo organism. The nematodes were irradiated with ultraviolet B for 3 

minutes and treated with plant extracts at the concentrations of 1, 10 and 100µg/ml. 

O. stamineus and P. sarmentosum at the concentration of 10µg/ml increased the 

mean lifespan to 7.0 ± 0.3 and 6.9 ± 0.2 days respectively compared to 6.2 ± 0.1 days 

for untreated nematodes. Liposome was used as a carrier to deliver O. stamineus to C. 

elegans to study its efficacy in delivering consistent amounts of the extract to the 

nematodes. Even though high encapsulation efficiency was obtained, the liposomal 

formulation did not prolong the lifespan of the C. elegans. Therefore it is important 
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to test the efficacy of plant extracts both in vivo and in vitro for anti-aging studies as 

skin aging is a complex biological process. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Chronological aging and photoaging  

Aging is a complex process involving progressive physiological changes that 

eventually lead to senescence in an organism, resulting in the decline of biological 

functions and the organism’s ability to adapt to metabolic stress (Rabe et al., 2006).  

 

Human skin undergoes two different types of aging; intrinsic and extrinsic aging. 

Intrinsic aging or chronological aging is a genetically programmed aging which 

depends on the passage of time while extrinsic aging is caused by environmental 

factors such as ultraviolet rays, harsh weather, pollution and cigarette smoke 

(McCullough and Kelly, 2006; Tigges et al., 2014). Chronological skin aging is 

characterized by fine wrinkles, reduced elasticity and paleness. The main factor 

contributing to human skin aging is continuous exposure to ultraviolet irradiation 

from the sun, resulting in photoaging. Photoaging is a cumulative process 

superimposed on intrinsically aging skin. It causes the skin to age prematurely and 

affects more severely individuals with lighter skin colour. Photoaged skin has uneven 

tone, leathery appearance, is coarsely wrinkled and affected with telangiectasia. 

Photoaged skin is also associated with increased development of benign and 

malignant neoplasms (Rabe et al, 2006). Solar ultraviolet (UV) rays, consisting of 

UVA (wavelength 320 – 400nm) and UVB (wavelength 290 – 320nm) radiation 

cause photoaging. Both UVA and UVB exert significant impairment to the skin, with 

UVA penetrating more deeply into the dermis layer while UVB is completely 

absorbed in the epidermis layer (Sjerobabski-Masnec and Šitum, 2010). In addition 
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to that, the UVA is 10-fold more abundant in sunlight compared to UVB (Zussman et 

al., 2010).  

 

Ultraviolet radiation induces the formation of reactive oxygen species (ROS) in the 

photoaged skin. Reactive oxygen species are toxic to cells and damage 

macromolecules such as lipids, protein and cellular DNA (Wu and Cederbaum, 2003; 

Rabe et al., 2006).  

 

1.2 Ultraviolet radiation and reactive oxygen species  

Reactive oxygen species are generated in small amounts during mitochondrial 

metabolism. The hypothesis that reactive oxygen species lead to aging process was 

popularised by Harman (1956; Harman, 2006). Oxygen with reduction of one or two 

electrons produces reactive oxygen species such as superoxide radicals and peroxide 

radicals (Clancy and Birdsall, 2013; Lushchak, 2014). The imbalance between 

reactive oxygen species production and removal results in a state known as oxidative 

stress (Wu and Cederbaum, 2003).  Reactive oxygen species cause DNA damage, 

such as mutations, degradation, deletions, single-strand breakage and rearrangements 

(Meng et al., 2009).  Reactive oxygen species increase signal transduction pathways, 

leading to inhibition of protein-tyrosine phosphatase and finally up-regulation of 

nuclear transcription factor activator protein 1 (AP-1) and nuclear factor-κB (NF- 

κB). AP-1 is composed of c-Jun and c-Fos proteins, which regulates the transcription 

of genes for matrix metalloproteinase (MMP). The MMPs are a large group of 

proteolytic enzymes responsible for the degradation of collagen, elastin and other 

proteins in the extracellular matrix (Naylor et al., 2011). MMPs which are involved 

in matrix degradation include MMP-1 (collagenase), MMP-2 (72-kd gelantinase), 



3 
 

MMP-3 (stromelysin 1), and MMP-9 (92-kd gelatinase). For example, MMP-1 

cleaves collagen type I, II and III whereas MMP-9 cleaves collagen type IV, V and 

gelatins (Krutman, 2009). AP-1 which is activated by the presence of reactive 

oxygen species will increase the transcription of MMP and consequently suppress 

type I collagen synthesis. Activation of NF-κB stimulate transcription of pro-

inflammatory cytokines including interleukin-1 (IL-1), IL-6, IL-8 and tumor necrosis 

factor (TNF-α). Both AP-1 and NF-κB are triggered at low dose of ultraviolet 

radiation through an iron dependent mechanism (Rabe et al, 2006). The increase in 

expression of MMPs and decrease in the collagen synthesis lead to the reduction in 

the extracellular matrix.  

 

Elastin decreases with age; however it is induced upon ultraviolet radiation (Lewis et 

al., 2004; Rabe et al., 2006). Elastin makes up about 2 – 4% of skin (Bernstein et al., 

1994; Daamen et al., 2007) and is found in the upper and middle dermis layers. The 

function of elastin is to provide elasticity and resiliency to the skin. Normal elastic 

fibres network is disrupted in photodamaged skin causing accumulation of 

amorphous, abnormal elastin containing material (Knott et al., 2009). Solar elastosis 

is used to describe the elastin containing material. Solar elastosis is the histologic 

feature of photoaging and stains strongly with elastin-specific Verhoeff van Gieson 

stain.  In addition to that, fibrillin microfibrills is the major component of elastic 

fibres (Kielty et al., 2002). Fibrillin made up of a group of three proteins, fibrillin-1, 

fibrillin-2 and fibrillin-3. Mutation in fibrillin-1 causes Marfan syndrome, a 

connective tissue disorder, which is associated with ocular, skeletal and 

cardiovascular defects (Kielty et al., 2005). Melanocytes are present in the epidermis 
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and function to produce melanin. Melanin is responsible for the skin colour and 

provides the protection against ultraviolet radiation.  

 

1.3 Enzymatic and non-enzymatic antioxidants 

The disturbance in the redox system can be counteracted by skin via a network of 

antioxidant systems. There are two important antioxidant activities in human body, 

namely enzymatic and non-enzymatic systems. The enzymatic antioxidants include 

glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase 

(SOD) and catalase (CAT). Non-enzymatic antioxidants can be divided into 

lipophilic antioxidants (α-tocopherol, ubiquinol and ubiquinone) and hydrophilic 

antioxidants (ascorbic acid, dehydroascorbic acid, and glutathione). Generally, both 

enzymatic and non-enzymatic antioxidants are higher in epidermis than dermis 

(Pandel et al., 2013). 

 

The function of superoxide dismutase is to convert superoxide radicals rapidly to 

form hydrogen peroxide while catalase converts hydrogen peroxide into water 

(Sander et al., 2002). There are various types of superoxide dismutase in human 

body, e.g. copper-zinc superoxide dismutase can be found in cytosol while 

manganese-containing superoxide dismutase (MnSOD) is presented in mitochondria. 

In a study carried out by Okada et al (1994) (Pandel et al., 2013), the responses of 

enzymatic and non-enzymatic antioxidants in epidermis and dermis of hairless mice 

towards solar light were compared. After irradiation, losses of catalase and 

superoxide dismutase activities were observed. α-tocopherol, ubiquinol 9, 

ubiquinone 9, ascorbic acid, dehydroxyascorbic acid and glutathione reductase 

activities were reduced by 26 – 93% in both epidermal and dermal layers. However 
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oxidised glutathione did not increase significantly. Based on the result obtained, they 

concluded that ultraviolet light is less damaging to the antioxidants in dermal layer 

(Pandel et al., 2013). The study of Poswig et al (1999) (Godic et al., 2014) 

performed repetitive exposure of UVA onto the skin. UVA irradiation increased the 

induction of MnSOD. The adaptive response of MnSOD enzyme contributed to the 

protective response of the skin during light hardening in phototherapy of various 

photodermatoses.  In another study done by Sander et al (2002), it was shown that 

chronic and acute ultraviolet light exposure decrease the antioxidant enzyme 

expression and increase oxidative protein damage in the epidermis layer. They also 

concluded that the antioxidant enzymes are low in dermal layer. Tissues were taken 

from photodamaged skin with histologically confirmed solar elastosis, non UV-

exposure skin as control and young skin without disease. All of the antioxidant 

enzymes within the stratum corneum were reduced in highly ultraviolet-exposed 

human skin if compared to young controls and intrinsically aged skin.  

 

1.4 Antioxidants 

1.4.1 Vitamin A 

The treatment of photoaged skin can be categorised into primary, secondary and 

tertiary treatments. The two main forms of vitamin A found in nature are retinols and 

carotenoids. Retinols are found in animal food source and are the most biologically 

active form of vitamin A (Zussman et al., 2010). Carotenoids are found in fruits and 

vegetables and also shown to possess strong antioxidant capabilities. The common 

forms of carotenoids include β-carotene, α-carotene and β-cryptoxanthin (Zussman et 

al., 2010). Retinoic acid, a metabolite of vitamin A, exerts its effects on the nuclear 

receptor families by binding to the receptor, i.e. retinoic acid receptors (RARs) and 
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retinoid X receptors (RXRs). Ultraviolet radiation reduces the expression of nuclear 

retinoid receptors RAR-γ and RXR-α in vivo. As a result, ultraviolet irradiation 

causes vitamin A deficiency in the skin. However, pre-treatment with retinoic acid 

reduces the loss of RAR/RXR receptors (Wang et al.,1999; Karlsson et al., 2004).  

 

Retinoic acid pre-treatment in advance was demonstrated in another study by using 

human fibroblast cells in vitro (Fisher et al., 2000). The exposure of ultraviolet 

irradiation was found to activate c-Jun protein which inhibited type I and III 

procollagen expression. However, human skin pretreated with 0.1% of all-trans-

retinoic acid for 24 hours protected skin cells against loss of type I and III 

procollagen mRNA and protein by inhibition of ultraviolet-induced c-Jun protein 

(Fisher et al., 2000).  

 

In another in vitro study performed by other group (Varani et al., 1998; Varani et al., 

2001), retinoic acid stimulated the keratinocyte and fibroblast cells growth in 

monolayer culture, irrespective of the origin of cells isolated from sun-protected or 

sun-exposed sites. This implied that retinoic acid may counteract the effect of 

photodamaged cells as well as intrinsic aging. Although treatment with retinoic acid 

seems promising, use of this compound is known to be associated with several side 

effects. Treatment with retinoic acid may cause irritation, redness, peeling and 

burning of the skin (Zussmann et al., 2010).  

 

On the other hand, MDI 301, a picolinic-acid-substituted 9-cis, a non-irritating 

retinoic acid ester was used to treat diabetic patients with foot ulcer. MDI 301 is 

reported to be less irritating than retinoic acid (Varani et al., 2003; Appleyard et al., 
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2004) and pre-treatment with MDI 301 on hairless mice enhanced the wound closure 

time (Varani et al, 2002; Warner et al., 2008). Effects of MDI 301 and retinoic acid 

were evaluated on skin structure, MMP and procollagen expression (Zeng et al., 

2011).  Initially the percentage of MMP’s activity was higher and tissue inhibitors of 

metalloproteinase’s (TIMP’s) activity was lower in diabetic subjects, type I 

procollagen synthesis was decreased and skin structure was deficit at the early stage 

of the study. However, 3 µM of MDI 301 was found to significantly reduce the 

activity of MMP-1 and MMP-9 by 29% and 40% respectively, while at the same 

time increase TIMP activity by 45%. In addition, MDI 301 also increased type I 

procollagen synthesis and was able to repair skin structure. 2 µM of retinoic acid did 

not affect skin structure significantly but was found to reduce MMP-1 activity (Zeng 

et al., 2011). 

 

1.4.2 Vitamin E 

Vitamin E provides protection against adverse conditions such as photoaging and is 

the major lipid-soluble antioxidants agent in human skin. The term vitamin E 

comprises both tocopherols and tocotrienols derivatives. Tocopherols and 

tocotrienols are further categorised into α, β, δ and γ, according to the position and 

number of methyl substitution on the chromanol ring. The antioxidant capability of 

the vitamin E depends on their ability to donate phenolic hydrogen to lipid free 

radicals (Kamal-Eldin and Appelqvist, 1996; Blokhina et al., 2003). Vitamin E can 

be found in food sources such as vegetable oils, nuts and green leafy vegetables.  

 

Vitamin E has been recommended for the treatment of various skin disorders, such as 

yellow nail syndrome, prevention of the scar formation, melasma and atopic 
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dermatitis, although the supportive data is insufficient (Thiele et al., 2005). 

Nevertheless, oral supplementation of vitamin E may aid in chronic wound healing 

(Thiele et al., 2005). There are several studies indicating that dietary deficiency in 

vitamin E leads to an increase in reactive oxygen species and further accelerates skin 

aging (Nachbar and Korting, 1995; Stojiljković et al., 2014).  

 

Although tocopherols and tocotrienols are closely related, it has been reported that 

these different forms of vitamin E showed varying biological activities. Tocotrienols 

have shown to possess unique biological activities when compared to tocopherols. 

The beneficial effects of tocotrienols and tocopherols on cell damage caused by 

oxidative stress were evaluated. Tocotrienols proved to be a better inhibitor 

compared to tocopherols against selenium deficiency-induced cell death (Saito et al., 

2003; Saito et al., 2010).  

 

In a study by Adachi and Ishii (2000), tocotrienols was found to increase the mean 

lifespan, but not maximum lifespan of the nematode C. elegans. In addition to that, 

pre-administration and post-administation of tocotrienols protected C. elegans from 

UVB irradiation. This protective effect was not observed with α-tocopherol acetate 

(Adachi and Ishii, 2000).  
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1.5 Plants of interest 

Malaysia is blessed with vast green tropical vegetation and forest. The biodiversity of 

plants in Malaysia warrants investigation in view of the vast varieties and many of 

them are known in folklore to possess medicinal values. It is a normal practice for 

Malaysians to seek herbal and traditional remedies as an alternative treatment for 

disease or as tonic to maintain one’s health.  

 

In addition to that, polyphenols being the secondary metabolite in the plant are 

generally involved in defence against ultraviolet radiation. They possess several 

beneficial biological properties, such as antioxidant, anti-aging, anti-inflammation, 

anti-apoptotic, anti-artherosclerosis, anti-apoptotic, cardiovascular protection and 

improvement of the endothelial function (Chanudom et al., 2014). Thus, plants with 

high polyphenols content were chosen in this study.   

 

1.5.1  Orthosiphon stamineus 

Orthosiphon stamineus or locally known as ‘misai kucing’ has been studied 

extensively. O. stamineus, Benth, belongs to the family of Lamiaceae and is used for 

the treatment of epilepsy, gallstone, hepatitis, rheumatism, syphilis, eruptive fever 

and renal calculus (Akowuah et al., 2004). In Malaysia, O. stamineus is consumed as 

tea to improve health and treatment of diabetes, kidney, gall inflammation and gout. 

Bioactive compounds such as sterols, phenolic compounds and terpenoids can be 

found in O. stamineus (Tezuka et al., 2000; Chan and Loo, 2006). Among all these 

bioactive components, phenolic compounds are one of the most important 

compounds and closely correlated with the antioxidant property in O. stamineus 

crude extract (Khamsiah et al., 2006).  



10 
 

Leaves of O. stamineus are reported to possess the highest antioxidant properties 

compared to other parts of the plant attributed to its polyphenol (Akowuah et al., 

2005; Farhan et al., 2012). The main polyphenols in O. stamineus leaves are 

sinensetin, eupatorin and 3'-hydroxy-5 6 7 4'-tetramethoxyflavone and caffeic acid 

derivatives such as rosmarinic acid (Alshawsh et al., 2012). 

 

Antioxidant and antibacterial properties of methanol extract of O. stamineus were 

investigated by Ho et al., 2010. Whole parts of the O. stamineus were extracted at 

different concentrations 0%, 25%, 50%, 75% and 100% of methanol. Antimicrobial 

activity of the methanol extracts of O. stamineus against 9 species of bacteria was 

determined by using disc diffusion test. O. stamineus extracted with 50% and 75% 

methanol showed strong inhibition against Vibrio parahaemolyticus, a type of 

bacteria that causes mild gastroenteritis in human upon the consumption of infected 

seafood. The high antibacterial property was due to the high rosmarinic acid content 

in both extracts as determined by HPLC.  

 

Acute toxicity of standardised extract of O. stamineus was evaluated in Sprague-

Dawley rats. Male rats of 8 weeks old were chosen and administered as a single dose 

of 5000 mg/kg body weight orally on day 0. There were no deaths recorded and no 

signs of toxicity observed during the 14 days of experimental period. There were no 

behavioural changes such as body weight, food and water intake.  The results of 

relative organ weight did not differ significantly from the control group. Hence, the 

oral acute toxicity of O. stamineus was expected to be higher than 5000 mg/kg of 

body weight (Abdullah et al., 2009).  
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Other than oral acute toxicity, genotoxicity of O. stamineus was evaluated as well by 

Muhammad et al. (2011). Aqueous extract of O. stamineus up to concentration of 

5000 µg/plate did not show toxicity towards Salmonella tester strains and the number 

of revertant colonies over the background incidence was not increased. In the mouse 

bone marrow assay, the aqueous extract of O. stamineus did not change the 

polychromatic:normochromatic erythrocytes (PCE:NCE) ratio nor increase the 

incidence of micronucleated polychromatic erythrocytes (MNPEs). Moreover, no 

toxicity, myelotoxicity nor changes in liver cytochrome CYP1A (EROD) and 2B9/10 

(BROD) activity were observed.  

 

Besides, the diuretic and hypouricemic effects of the methanol extract of O. 

stamineus on Sprague-Dawley rats were studied (Arafat et al., 2008). Methanol and 

methanol water (1:1) leaves extracts of O. stamineus at 0.5g/kg were administered 

consecutively for a week. In addition to that, hypouricemic effect of methanol:water 

extract at various concentrations (0.25, 0.5, 1 and 2g/kg) were tested and allopurinol 

was used as the positive control (Arafat et al., 2008). A single dose of the extract 

(2g/kg) increased the sodium and potassium excretion significantly in the first 8 

hours of the treatment. On the other hand, 0.5, 1 and 2g/kg of methanol:water 

extracts and allopurinol decreased the serum urate level in hyperuricemic rats 6 hours 

later after the extract was administered. The results suggested that methanol:water 

extract was potent as a diuretic and a hypouricemic agent in rats (Arafat et al., 2008). 
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1.5.2 Clidemia hirta 

Clidemia hirta, known as ‘senduduk bulu’ locally, comes from the family of 

Melastomataceae. It is also known as Koster’s curse (a Hawaiian name), which is a 

kind of weed that is commonly found in disturbed areas, such as landslides, old fields, 

plantations, roadsides, river banks, tree tips mounds, burned areas, fence rows and 

pastures. C. hirta is native to southern Mexico, South and North America, Northern 

Argentina and Bolivia (Stevens et al., 2001) and subtropics to Peninsular Malaysia, 

Hawaii and Fiji (Wester and Wood, 1977; Peters, 2005).  

 

Methanol extract of C. hirta showed antibacterial property against 10 bacterial 

isolates (Musa et al., 2011). The crude extract displayed the best MIC (minimum 

inhibitory concentration) and minimum bactericidal concentration (MBC) against 

Vibrio anginolyticus, with the values of 0.39mg/ml and 6.25mg/ml respectively. 

Scanning Electron Microscope analysis showed that methanol extract of C. hirta at 

the concentration of 0.195mg/ml disrupted the cell surface and was able to inhibit the 

growth of V. anginolyticus. When thin layer chromatography plates were sprayed 

with 2,2-diphenyl-1-picryhydrazyl (DPPH), C. hirta extract showed potent radical 

scavenging activities indicated by colour changes from purple to yellow. The 

phytochemical test of methanol extract of C. hirta showed positive results for 

flavonoids, tannins, terpenoids and saponins while negative result for the presence of 

steroid. Tannins and flavonoids were antioxidants which act as free radical scavenger 

(Ayoola et al., 2008). Besides antioxidant, tannins in C. hirta also displayed 

antibacterial property (Chopra et al., 2007).   
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C. hirta is used to treat Leishmania braziliensis skin infections in Brazil (Franca et 

al., 1996; Braga et al., 2007). This species appeared as a serious weed in topical 

plantations such as rubber.  C. hirta rebuilds disturbed areas and provides food for 

wildlife. The chemical compound hydrolysable tannins are toxic to goats (Murdiati et 

al., 1990; Hervás et al., 2003). Sheep was found to control most of the weed in 

plantations but will not consume C. hirta (Chee and Faiz, 2002).  

 

 

1.5.3 Piper sarmentosum 

P. sarmentosum, known as ‘Kaduk’ locally, is herbaceous plant belonging to the 

Piperaceae family, which can be found easily in tropical and subtropical region. The 

leaves are cordate, simple and alternate, 7 – 15cm wide and 5 – 10cm long. The 

phytochemical compounds in the plant are flavonoids, alkaloids, phenols, vitamin C, 

vitamin E, tannins and xantophylls (Chanwitheesuk et al., 2005, Hussain et al., 2009).  

Antioxidant activity of P. sarmentosum was attributed to the presence of these 

chemical compounds, especially xantophylls and vitamin E.  

 

P. sarmentosum was shown to have pharmacological activities by several research 

groups. Various kinds of different extraction had been done, such as chloroform, 

ethanol, methanol and aqueous extraction on the plant. Myricetin, quercetin and 

apigenin were found in the aqueous-methanol extract of P. sarmentosum (Miean and 

Mohamed, 2001). Methanol extract of P. sarmentosum was found to contain 

naringenin (Subramaniam et al., 2003). 
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In Malaysia, P. sarmentosum has been used to treat diabetes mellitus and 

hypertension. In Thailand, P. sarmentosum is known as “Chaplu” locally and and 

water extract of the plant has been traditionally used to treat diabetic patients.  

 

Three different extracts of P. sarmentosum, aqueous, methanol and hexane were used 

to test on hydrogen peroxide induced human umbilical vein endothelial cells 

(HUVEC). All the concentrations of P. sarmentosum were potent in decreasing the 

levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and 

glutathione peroxidase (GPx) in hydrogen peroxide induced HUVECs (Hafizah et al., 

2010). They proposed that extract of P. sarmentosum exhibited the protective effect 

on membrane damage by penetrating the lipid bilayers. However, the main 

component for its antioxidant activity was unknown. 

 

A paper reported by Ugusman and colleagues (2012) revealed that aqueous extract of 

P. sarmentosum contained high total flavonoid content (48.57 ± 0.03 mg GAE/g DM) 

and total phenolic content (91.02 ± 0.2 mg QE/g DM). By using HPLC, they showed 

the presence of rutin and vitexin as the main flavonoids in aqueous extract of 

P .sarmentosum. Both of the compounds at the concentration of 150 – 400µM 

enhanced the viability of HUVEC induced by hydrogen peroxide. Therefore, rutin 

and vitexin were proposed to be involved in the protective effects against oxidative 

stress.    
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1.5.4 Cosmos caudatus 

Cosmos caudatus Kunth, also known as ‘Ulam Raja’ (King’s salad), belongs to the 

family Asteraceae.  It is an edible plant and can be found in tropical areas, such as 

Mexico, Central America, South America, United States, Malaysia and Thailand 

(Shui et al., 2005). In Malaysia, C. caudatus has been used traditionally to reduce 

body heat, promote fresh breath, as an anti-aging agent, strengthening bone marrow, 

and to treat infections related to pathogenic microorganisms (Rasdi et al., 2010). 

Methanol extract of C. caudatus was reported to demonstrate a moderate antioxidant 

activity when tested using xanthine-xanthine oxidase enzymatic assay (Norhanom et 

al., 1999; Abas et al., 2003). Phytochemical screening of the leaves extract of C. 

caudatus displayed the existence of fatty acids, flavonoids, tannins, alkaloids, 

saponins and terpenoids (Harbone, 1998; Rasdi et al., 2010).   

 

In a study performed by Faridah et al. (2006), antioxidant activities and the nitric 

oxide inhibition activity of C. caudatus were investigated. C. caudatus showed a 

better antioxidant activity than α-tocopherol but not butylated hydroxytoluene (BHT). 

C. caudatus displayed strong antioxidant activity in both thiobarbituric acid (TBA) 

method and ferric thiocyanate (FTC) method. Therefore it was suggested that 

consumption of C. caudatus provides dietary benefits to health as C. caudatus is able 

to scavenge free radical and gives protection against lipid peroxidation. They 

concluded that C. caudatus has strong antioxidant properties. This was supported by 

another study performed by Sukri (2012). C. caudatus extracts exhibited the highest 

DPPH (2,2-dipheyl-1-picrylhydrazyl), ABTS (2,2’-azino-bis-(3-ethylbenzthiazoline-

6-sulphonic acid), ferric cyanide antioxidant activities and inhibition of linoleic acid 

oxidation. C. caudatus was reported to have high flavonoid and phenolic contents.  
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Other than antioxidant properties, antimicrobial property of different extracts of C. 

caudatus was studied as well (Rasdi et al., 2010). Antimicrobial potential of crude 

ethanol, n-hexane, diethyl ether and phosphate buffer saline (PBS) extracts of C. 

caudatus leaves were investigated. The tested concentrations were 1, 20 and 

50mg/ml. 5 pathogenic microbial strains were tested, 2 Gram-positive strains 

(Staphylococcus aureus and Bacillus subtilis), 2 Gram-negative strains 

(Pseudomonas aeruginosa and Escherichia coli) and a fungal strain (Candida 

albicans). Higher concentration of extracts showed bigger zones of inhibition. All of 

the various extracts tested exhibited different levels of antimicrobial actions towards 

all of the strains tested, and all of the strains were liable to the extracts especially 

when treated with higher concentrations. The lowest MIC was exhibited by 

phosphate buffer saline extract (6.25 mg/ml on E. coli and B. subtilis) and the highest 

MIC was displayed by n-hexane extract (25 mg/ml on all the strains).  As a 

conclusion, there were higher chances to find potential antimicrobial agents from 

ethanol, diethyl ether and n-hexane extract rather than phosphate buffer saline. 

Furthermore, the plants can be studied further as a new source of antibiotic agent if 

the compounds that responsible for the antimicrobial property can be isolated (Rasdi 

et al., 2010).   
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1.6 Scope of study 

The present study aimed to investigate the antioxidant and anti-aging properties of 

plant extracts for topical use. Leaves of O. stamineus, C. caudatus and P. 

sarmentosum are edible plants and consumed by local people for health purpose. C. 

hirta is a weed that has been traditionally reported to possess wound healing 

properties. All of them have high antioxidant properties as discussed earlier. There is 

increasing demand towards natural products.  

 

In addition to that, the efficacy of the plant extracts was tested in vitro by using cell 

culture. Other than that, the antioxidant and anti-aging properties of the plant extracts 

were studied in whole organisms, by using C. elegans. The nematode, a multicellular 

organism, shares 40% homologous similarity to human being, making it a good 

model in general biological process. In addition to that, C. elegans is very suitable to 

be used in the anti-aging study due to its short generation time, ease of culturing in 

the laboratory and production of lots of progeny. For conventional method, chemical 

compounds are delivered orally to the nematodes, either by mixing them with 

bacteria food source or by incorporating them into the nematode growth medium.   

 

Besides conventional method, efficiency of liposome-mediated delivery was done as 

well. Plant extracts-loaded liposomes were fed to C. elegans and lifespan was 

determined.  The whole study was conducted in several stages in order to achieve the 

objectives of the present study: 

1. To carry out plant extraction for C. hirta, O. stamineus, P. sarmentosum and 

C. caudatus, and to test the radical scavenging activities of the extracts by 

DPPH assay.  
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2. To investigate the cytotoxicity of the plant extracts on fibroblast cells, effects 

on the Procollagen Type I C-Peptide (PICP) expression and cytoprotection 

against hydrogen peroxide (H2O2).  

3. To evaluate the protective effects of plant extracts on the lifespan of C. 

elegans after stressed with UVB. 

4. To prepare and examine the protective effects of plant extract-loaded 

liposomes.  

5. To determine whether C. elegans is a good surrogate for predicting anti-aging 

properties of the plant extracts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

CHAPTER 2 

EXTRACTION METHODS AND RADICAL SCAVENGING ACTIVITY OF 

PLANT EXTRACTS 

 

2. 1 Introduction  

Antioxidant phytochemicals are valued as free radical scavengers which inhibit the 

propagation  of  free  radical  reactions,  as  well  as  protect  human body  from  

chronic and degenerative ailments (Terao  and  Piskula,  1997; Pham-Huy et 

al.,2008). Plant-derived antioxidants, such as phenolic compounds, are the largest 

category of phytochemicals (Ang, 2007). Phenolic compounds comprise one or more 

aromatic rings with one or more hydroxyl groups and are generally categorised as 

phenolic acid, flavonoids, stilbenes, coumarins and tannins (D’Archivio et al., 2007). 

Phenolic compounds are the secondary metabolites of plants and were reported to 

possess various biological functions. They may act as phytoalexins (Popa et al, 2008), 

antifeedants, attractant for pollinators, contributors to plant pigmentation, 

antioxidants and protective agents against UV light (Ignat et al., 2011). A category of 

such compounds, flavonoids, is found commonly in fruits, vegetables, wine, tea and 

coffee, and is responsible for two-thirds of the phenolics in our diet (Ang, 2007). 

Flavonoids have strong antioxidant activity, metal chelating potential (Tsao and 

Yang, 2003) and give protection against diseases such as cancer and heart disease 

(Cook and Samman, 1996; Beecher, 2003; Liu et al., 2008).  

 

The antioxidant activities of phenolic compounds can be evaluated by several 

antioxidant assays. One of the simplest antioxidant tests is the DPPH assay. DPPH or 

1,1-diphenyl-2-picrylhydrazyl is a stable free radical which has been used 
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extensively in many research to assess the radical scavenging activity of various 

plant materials. Upon accepting an electron or a hydrogen atom from a donor, it will 

become stable diamagnetic molecule of DPPH, which is non-radical. The reduced 

form of DPPH can be indicated by the color change, from purple to yellow. DPPH 

assay was first developed by Blois in 1958 and later several modifications were done. 

One of the parameters to interpret the results of DPPH is to determine the EC50 

‘efficient concentration 50’ EC50 values or ‘Inhibition concentration 50’ IC50 values. 

The meaning of IC50 is the concentration of the samples that causes 50% loss of 

DPPH (Tirzitis and Bartosz, 2010). DPPH assay can be run by using 

spectrophotometer in the wavelength of 515 – 528 nm (Pyrzynska and Pekal, 2013).  

 

2,2’-diphenyl-1-picrylhydrazyl, the DPPH free radical, after combining with a 

hydrogen atom will be reduced to 2, 2’-diphenyl-1-picrylhydrazine (Pyrzynska and 

Pekal, 2013).  

 

The purpose for this part of study is to do plant extraction and test the radical 

scavenging activities of the plant extracts by using DPPH assay.  

 

2.2 Materials 

Dried leaves of C. hirta were collected from Air Hitam Dam, Penang. Plant samples 

for the dried leaves of O. stamineus, P. sarmentosum and C. caudatus were 
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purchased from Herbagus Sdn. Bhd. All of the plants were identified by Dr. Rahmad 

Zakaria, a senior lecturer from School of Biological Science, Universiti Sains 

Malaysia (USM). Voucher specimens for O. stamineus (Voucher number:11545), P. 

sarmentosum (Voucher number: 11546) and C. caudatus (Voucher number: 11547) 

and C. hirta (Voucher number: 11035) were deposited at the Herbarium Department 

of School of Biological Science, USM. The leaves of C. hirta were air dried in the 

air-conditioned room for about 14 days until a constant weight was obtained. 

Ascorbic acid and mixed tocotrienols (containing α-, γ- and δ-tocotrienols of 12.3%, 

20.6% and 5.3% respectively) were a token from Carotech Bhd. (Ipoh, Perak). 1,1-

diphenyl-2-picrylhydrazyl (DPPH, molecular weight 394.32 g/mol) in powder form 

was purchased from Sigma-Aldrich (St. Louis, USA). 99.7% ethanol was bought 

from QRec™, Selangor, Malaysia. Gregar extractor was bought from Kontes Glass 

Company (Vineland, New Jersey, USA).  

 

 

2.3 Methods 

2.3.1 Ethanol extraction 

All the leaves were extracted with 99.7% of ethanol (QReC™, Selangor, Malaysia). 

Before that, the leaves were blended with a domestic blender (Panasonic, Japan). The 

ratio of leaves to ethanol solvent was 1:20. The extraction process was run by using 

Gregar extractor for 24 hours at 80 °C. The solvent with dissolved plant substances 

was collected and subjected to centrifugation at 3000 rpm, for 15mins. Later on, 

rotary evaporation was carried out to remove the solvent and crude plant extract was 

collected. Crude plant extract was stored in freezer (-20°C) until further analysis.  
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Figure 2.1 Gregar Extractor (Product Technical Notes, Chemglass Life Sciences, 
2011) 
 

 

2.3.2 Aqueous extraction 

Dried leaves of Cosmos caudatus were extracted by using double-boiled method. 

The ratio of leaves to distilled water was 1:10. A fixed volume of boiling water was 

poured into Schott bottle with leaves. The Schott bottle was placed in a beaker with 

boiling water. One hour later, the hot water with extract was filtered out and leaves 

were discarded. Centrifugation at 3000rpm, for 15 minutes was done in order to 

remove the plant residue. The supernatant was kept and the pellet was thrown away. 

The dried form of plant extract was collected by using freeze-dried method 

(Labconco, USA).  



23 
 

2.3.3 DPPH radical scavenging method 

DPPH radical scavenging activities were carried out according to the method 

performed by Lim (2012). Ascorbic acid and mixed tocotrienols were used as 

positive control. Stock solution of plant extracts was prepared at 10 mg/ml while 

ascorbic acid and mixed tocotrienols was prepared at 1 mg/ml. The plant samples 

were serially diluted down to concentrations of 2000µg/ml, 1000µg/ml, 500µg/ml, 

250µg/ml and 125µg/ml respectively. For C. hirta, a series of concentrations in the 

range of 15.63 – 2000µg/ml were prepared as well. Ascorbic acid and mixed 

tocotrienols with concentrations ranging from 6.25µg/ml to 200µg/ml were prepared. 

0.008g of DPPH powder was carefully weighed and dissolved in 100ml of 99.7% 

ethanol.  A stock solution of 200µM was obtained and diluted to 50µM for the 

experiment use. Later on 50µl of sample was added to 950µl of DPPH in ethanol 

solution, vortexed for 10 seconds and incubated in the oven at 37 °C for 30 minutes. 

The samples were measured at wavelength 517nm with Multiskan Spectrum 

(Thermo Scientific, Finland).  The experiment was carried out in the dark because 

DPPH is light sensitive. All the analysis was run in triplicates. The radical 

scavenging activities of the sample can be determined as below:  

% RSA = [ ஺್೗ೌ೙ೖି(஺ೞೌ೘೛೗೐ି஺ೞೌ೘೛೗೐	್೗ೌ೙ೖ)
஺್೗ೌ೙ೖ

] x 100%                                     Eq. 2.1 

 

2.4 Statistical analysis 

The experiments were run in triplicates. Data were presented as mean ± standard 

deviation. Data were analyzed by using one way analysis of variance (ANOVA) with 

Tukey’s test to determine the significant difference between the variance. P < 0.05 

was considered as statistically significant difference.  
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2.5 Results 

2.5.1 Ethanol extraction  

The leaves were blended into small pieces to increase the surface area of extraction. 

Gregar extractor allowed the extraction to be carried out in a closed loop system and 

therefore decrease the evaporation rate of solvent. Extraction of the leaves was 

carried out for 24 hours. After that, the discoloration of leaves can be observed and 

dark green coloured ethanol with leaves residues in powdered form was collected. 

The leaves residues were removed by using centrifugation. Rotary evaporation was 

done to remove the ethanol solvent and the whole process took about 2 – 3 hours. 

When the process completed, a sticky paste was left inside the round bottom flask. 

The crude ethanol extract was then removed from the flask by using spatula. Ethanol 

collected from rotary evaporation was reused for the next extraction. The yields of 

the plant extracts were about 6.4%, 16.0%, 2.4% and 14.4% from ethanol extracts of 

O. stamineus, C. hirta, P. sarmentosum and C. caudatus respectively. The crude 

ethanol extract was stored in bottle and kept in freezer (-20°C) until further analysis.  

 

 

2.5.2 Aqueous extraction  

Hot plate was used to boil water and then the boiling water was poured into Schott 

bottle containing the C. caudatus leaves. The Schott bottle was then placed in a 

beaker with boiling water in order to avoid the harmful effects of direct heating on 

the leaves. Besides, double boil is also a method practiced by the old folks when they 

are using the leaves as medication. A strong herbal smell will be noticed during the 

one hour of extraction. One hour later, the leaves were filtered immediately to avoid 

the continuous decoction. After the aqueous extract was cooled down, centrifugation 


