OPTIMIZING CROWD EVACUATION IN THE EMERGENCY ROUTE PLANNING PROBLEM

MOHD NOR AKMAL KHALID

UNIVERSITI SAINS MALAYSIA

2015
OPTIMIZING CROWD EVACUATION IN THE
EMERGENCY ROUTE PLANNING PROBLEM

by

MOHD NOR AKMAL KHALID

Thesis submitted in fulfilment of the requirements
for the degree of
Master of Science

May 2015
ACKNOWLEDGEMENTS

"In the name of Allah, most Gracious, most Compassionate"

First and foremost, I am most grateful to my supervisors Dr. Umi Kalsom Yusof, School of Computer Sciences in Universiti Sains Malaysia, for her unconditional support, encouragement, and unequivocal time, energy and opinion that have been given throughout the duration of my study in accomplishing this thesis.

Besides that, I would like to express my gratitude to Professor Dr. Ahamad Tajudin Khader, the project leader of Hajj Project (Long Term Research Grant Scheme), respectively, for stimulating useful and encouraging feedbacks as well as insightful comments. I would also like to express my gratitude and appreciation to most lecturers in School of Computer Sciences that have given me many valuable knowledge, insight, and support along the years of my study.

Personally, I would like to thank Nur Izzah Azhar, which is both companion in works and in life, for the continues support in various aspects until the completion of this research. Additionally, I would like to thanks to many “companion in arm” friends that have helped me stay strong while giving me valuable opinion and knowledge throughout these challenging years. I greatly value their friendship and I deeply appreciate their support and concern towards me.

Above all, none of this would have been possible without the love and patience of my family who has been a constant source of love, concern, support, and strength for all these years. Last but not least, I thank my parents for their undivided support, their patience and prayers in making me what I am today.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>x</td>
</tr>
<tr>
<td>List of Publications</td>
<td>xi</td>
</tr>
<tr>
<td>Abstrak</td>
<td>xii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER 1 – INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Problem Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Challenges of Emergency Route Planning (ERP) Problem</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Problem Statement</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Goal and Objectives of The Study</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Study Scope and Significance</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Outline of the Thesis</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 2 – LITERATURE REVIEWS</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Emergencies</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Emergency Evacuation</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Emergency Route Planning (ERP)</td>
<td>17</td>
</tr>
<tr>
<td>2.4.1 ERP Approaches</td>
<td>20</td>
</tr>
<tr>
<td>2.5 The Proposed Artificial Immune System (AIS) Approach</td>
<td>30</td>
</tr>
<tr>
<td>2.6 Trends and Directions</td>
<td>37</td>
</tr>
<tr>
<td>2.7 Chapter Summary</td>
<td>40</td>
</tr>
</tbody>
</table>
CHAPTER 3 – RESEARCH METHODOLOGY

3.1 Introduction ... 41
3.2 Research Framework .. 41
3.3 Problem Descriptions .. 45
 3.3.1 Crowd Evacuation Model ... 45
 3.3.2 The Optimization Algorithm 46
 3.3.3 The Proposed Integrated Evacuation Route Planning (iEvaP and iEvaP+) Approaches .. 46
3.4 Data Preparations ... 47
3.5 Instrumentations and Result Analysis 49
 3.5.1 Hardware and Software Requirements 49
 3.5.2 Experimental Setups ... 49
3.6 Performance Measure .. 51
 3.6.1 Notations and Parameters 54
 3.6.2 Performance Measure ... 55
 3.6.3 Constraints .. 56
3.7 Chapter Summary .. 56

CHAPTER 4 – DESIGN AND EVALUATION OF AN INTEGRATED EVACUATION PLANNING (IEVAP) APPROACH

4.1 Introduction ... 58
4.2 The Integrated Evacuation Route Planning (iEvaP) Approach ... 58
 4.2.1 Evacuation Network ... 60
 4.2.2 The Crowd Model .. 60
4.3 The Proposed Artificial Immune Algorithm in iEvaP Approach for ERP Optimization ... 63
 4.3.1 The Natural Immune System 63
 4.3.2 Population Representation and Initialization 66
 4.3.3 Cellular Reproduction and Survivability 68
6.4.4 Possible Tangible Implications .. 113
6.5 Chapter Summary .. 114

CHAPTER 7 – CONCLUSION

7.1 Concluding Remarks ... 116
7.2 Research Contributions .. 118
7.3 Future Works .. 121
7.4 Closing .. 123

References .. 124

APPENDICES ... 134

APPENDIX A – CASE STUDIES DATASETS .. 135
LIST OF TABLES

Table 2.1 Summary of the approaches in ERP problems 22
Table 2.2 Summary of AIS approaches in their respective domain problems 34
Table 3.1 Experiments summary 52
Table 4.1 Overall evacuation plan 73
Table 4.2 iEvaP parameters settings 75
Table 4.3 iEvaP parameter options 75
Table 4.4 Result summary of iEvaP options 76
Table 4.5 Options of additional parameters with different group size (d_{gr}) 77
Table 5.1 iEvaP+ parameters settings and parameter options 90
Table 5.2 Result summary of iEvaP+ 90
Table 5.3 Percentage change comparison of pre-optimization against post-optimization of iEvaP+ approach 92
Table 5.4 Group size distribution of iEvaP+ options 92
Table 5.5 Compliance rate distribution of iEvaP+ options 93
Table 5.6 p-value of T-test for comparison of iEvaP+ approach against CCRP approach 93
Table 6.1 BJ case study descriptions 100
Table 6.2 QB case study descriptions 101
Table 6.3 iEvaP+ parameters settings and parameter options 103
Table 6.4 Result summary of iEvaP+ for Bukit Jambul case study 104
Table 6.5 Result summary of iEvaP+ for Queensbay case study 105
Table 6.6 Percentage change comparison of pre-optimization against post-optimization of iEvaP+ approach for BJ case study 107
Table 6.7 Percentage change comparison of pre-optimization against post-optimization of iEvaP+ approach for QB case study 108
Table 6.8 p-value of T-test for comparison of iEvaP+ approach against CCRP approach 109

Table 6.9 Overall findings summary 114

Table A.1 Crowd density and velocity approximation 135

Table A.2 Bukit Jambul Complex Logical Graph Detailed Information 136

Table A.3 Queensbay Mall Logical Graph Detailed Information 136
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Scenarios of the ERP problem</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>The main research goal</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Structure of the thesis</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>The content structure of Chapter 2</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Research methodology</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Logical structures of the public data</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Illustration of the difference between TET and NCT evacuation performances</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>The performance measure and influences</td>
<td>54</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The proposed iEvaP framework</td>
<td>59</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>An influence diagram of the crowd evacuation model</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The natural immune system</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>The representation of population instance (antibody and antigen)</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>The proposed two types of somatic hyper-mutation (Type-1 Ab-Mutate and Type-2 Ag-Mutate)</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Network clearance time (NCT) analysis of iEvaP options</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Analysis of network clearance time (NCT) for iEvaP additional options against original options</td>
<td>79</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Illustration of crowd grouping phenomenon and effect of their respective compliance level</td>
<td>84</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>The influence diagram of the dynamic crowd evacuation model</td>
<td>86</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>The iEvaP+ framework</td>
<td>88</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>The logical map of the Bukit Jambul shopping complex</td>
<td>99</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>The logical map of the Queensbay mall</td>
<td>100</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Research summary</td>
<td>119</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AIS Artificial Immune Algorithm
CCRP Capacity Constrained Route Planner
DT Danger Theory
DCA Dendritic Cell Algorithm
DSS Decision Support System
ERP Emergency Route Planning
iEvaP Integrated Evacuation Route Planning
iEvaP+ Integrated Evacuation Route Planning with Dynamism
NCT Network Clearance Time
RSD Relative Standard Deviation
LIST OF PUBLICATIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Publications</th>
<th>Journals</th>
<th>Related Chapters</th>
</tr>
</thead>
</table>

Proceedings

<table>
<thead>
<tr>
<th>No.</th>
<th>Publications</th>
<th>Proceedings</th>
<th>Related Chapters</th>
</tr>
</thead>
</table>
MENGOPTIMUMKAN PELAN EVAKUASI ORANG RAMAI DALAM MASALAH PERANCANGAN LALUAN KECEMASAN

ABSTRAK

Situasi bencana, yang berlaku secara semula jadi (kebakaran, banjir, taufan) atau buatan manusia (contohnya pengeboman pengganas, tumpahan bahan kimia, dan lain-lain), telah meragut ribuan nyawa, mencetuskan keperluan untuk pemindahan kecemasan. Biasanya, mengoptimumkan pelan pemindahan kecemasan melibatkan berkesanan pemodelan orang ramai dan pemilihan laluan, dimana pelan yang optimum penting dalam masalah perancangan laluan kecemasan (ERP). Pelbagai pendekatan ERP telah dibangunkan dimana diklasifikasikan kepada pendekatan matematik, keputusan sokongan, heuristik, dan meta-heuristik. Ulasan kesusasteraan menyeluruh telah menunjukkan kepentingan untuk merapatkan jurang antara pemodelan dan pemilihan laluan, di mana di mana pendekatan bersepadu dan berdaya maju diperlukan. Dalam kajian ini, satu perancangan pemindahan rangka kerja bersepadu menggunakan model pemindahan orang ramai dan sistem imun (AIS) algoritma tiruan, yang dipanggil iEvaP, telah dicadangkan. iEvaP telah disahkan terhadap Lu et al. (2003) dan parameternya telah ditentukan untuk prestasi yang optimum. Di samping itu, untuk merakamkan dinamik dalam orang ramai yang mimik keadaan dunia sebenar, dinamik perpaduan kumpulan dimasukkan dalam rangka kerja ini, dipanggil iEvaP+, membaik pulih pemindahan bersepadu merancang dengan dinamisme. Pendekatan ini telah diuji ke atas data awam dan keputusan telah menunjukkan akan pemindahan pelan yang telah mencatatkan peningkatan sehingga 62% berbanding dengan pendekatan kapasiti dikekang perancang laluan (CCRP) yang dicadangkan oleh Lu et al. (2003). Selepas itu, iEvaP+ juga digunakan untuk dua kajian kes untuk menilai keberkesanan dan kebolehan dinaiktaraf dengan keadaan...
dunia sebenar. Keputusannya telah menunjukkan pelan pemindahan telah memperolehi peningkatan statistik yang ketara (p-value ≤ 0.05091 dalam sebahagian besar keputusan) berbanding dengan pendekatan CCRP.
OPTIMIZING CROWD EVACUATION IN THE EMERGENCY ROUTE PLANNING PROBLEM

ABSTRACT

Disastrous situations, either natural (e.g. fires, floods, hurricane) or man-made (e.g. terrorist bombings, chemical spills, etc.), have claimed the lives of thousands, triggering the needs for emergency evacuation. Typically, optimizing an emergency evacuation plan involves both the effectiveness in crowd modelling and route selection, where an optimum evacuation plan is vital in the emergency route planning (ERP) problem. Various ERP approaches have been developed which are classified into mathematical, decision-support, heuristic, and meta-heuristic approaches. Exhaustive literature reviews have shown the significance of bridging the gap between modeling and routing, where an integrated and viable approach is needed. In this study, an integrated evacuation planning framework utilizing crowd evacuation model and an artificial immune system (AIS) algorithm, called iEvaP, was proposed. iEvaP was validated against Lu et al. (2003) and its parameters were calibrated for optimum performance. In addition, to capture the dynamism in crowd that mimics the real world situation, dynamic group cohesion was incorporated to the framework, called iEvaP+, refurbishing the integrated evacuation planning with dynamism. The approach was tested on the public data and the results showed that the evacuation plan charted an improvement of up to 62% compared with capacity constrained route planner (CCRP) approach proposed by Lu et al. (2003). Subsequently, iEvaP+ was also applied to two case studies to evaluate its effectiveness and scalability with the real world situation. The results indicated the evacuation plan had obtained statistically significant improvement (p-value ≤ 0.05091 in most of the results) compared to CCRP approach.
CHAPTER 1

INTRODUCTION

1.1 Problem Background

Disastrous situations, be it natural or man-made, often lead to emergency situations that require immediate action (Chiu et al., 2007). Examples of natural disasters include hurricanes, floods, landslides, and tsunamis. Examples of man-made disasters include terrorist attacks or bombings, stampedes, and hazard material releases. These disastrous situations have affected populated areas, inducing a situation that is both immediate or life-threatening, which causes the triggering of an emergency response. The usual emergency response team’s operation involves evacuating the residents, which typically requires immediate mobilization and time-critical actions that necessitate efficient coordination, space capacity utilization, and availability of emergency logistical resources (Alsnih and Stopher, 2004). Thus, emergency evacuation can be deduced as a solution for human survivability, which is paramount in risk mitigation.

An emergency evacuation can be defined as the removal of residents as quickly as possible and with utmost reliability from areas considered as dangerous zones to safe locations (Saeed Osman and Ram, 2011). The occurrence of disastrous situations tends to spark a very chaotic reaction (Yersin et al., 2008), inducing a large surge of demand (number of evacuees) which exceeds the available resources (pathway capacity). Therefore, planning a suitable evacuation route and identifying the shortest evacuation route before the occurrence of disastrous situations are crucial for an effective evacuation process.

Although evacuation plans can be orchestrated in advance, probable crowd dynamics,
especially group-based characteristics (e.g. group formation, group relation, group competition, etc.), may occur, often rendering unfeasible evacuation plan. Therefore, in order to make timely decisions and efficient planning, understanding crowd dynamics is needed in order to enable real-time updates of immediate threats, identify patterns or impacts, and pinpoint crowds’ location relative to the hazard source (Radianti et al., 2013). To address these issues, creating a practical yet computationally effective emergency evacuation plan is of utmost importance.

1.2 Challenges of Emergency Route Planning (ERP) Problem

To evacuate crowds effectively is a challenging issue because emergency events may propagate in uncertain ways due to the effect of the perceived environment, space capacity constraining the speed of crowd movement, and shifts in crowd behavior due to psychological aspects (Wang et al., 2008). In the context of planning, emergency evacuation, also known as emergency route planning (ERP), focuses on three important factors (Chiu et al., 2007): the routing of the residents, scheduling the resident egress, and regulating the resident’s flow rates. These factors typically centralize on two interrelated continuums: the crowd dynamic and their perceived environment.

Crowds are formed by several or thousands of people that move in a bounded environment with respect to their individual goals in space, avoiding obstacles, blocking, or stampede, and remaining close to friends or family (Yersin et al., 2008). In addition, crowd may regulate their movement in groups or individually. This is dependent on three aspects (Lee et al., 2007; Sharma, 2009): (1) goals and needs; (2) social and physical attributes (e.g. level of interaction, age, or social differentiation); and (3) psychological and situational aspects (stress levels at a respective time or place). The crowd dynamic considered in this particular study, is tuned towards the first two aspects. Group cohesion, which is defined as the tendency for a group to
be in unity while working towards a goal or to fulfill the demands of its members (Carron and Brawley, 2000), is one of the crowd dynamics that is considered for this study.

The perceived environments are used to choose the shortest path in time and space that leads to their goal (Yersin et al., 2008). The need for evacuation is crucial for residents in a bounded environment (within a structure or enclosed area) as opposed to those in an open space. As such, there are a number of attributes that can be associated with the bounded environment, including the environment’s architectural design (Shukla, 2009), its relation to risk factors (e.g. narrow staircases and corridors, exit’s width, etc.) (Park et al., 2007), the environment’s evacuation support (e.g. signboards, signposts, etc.) (Wang et al., 2009), and number of exit choices (Pu and Zlatanova, 2005).

With respect to the previously mentioned ERP factors, determining the best route while regulating crowd flow within the acceptable performance of an evacuation plan, poses as another computational challenge. The complex combination of multiple routes and crowd sizes have elicited the need for an effective and efficient ERP approach. Therefore, adopting a suitable ERP approach is vital for successive risk mitigation prior to the occurrence of an disastrous situation.

Various ERP approaches have been proposed, which including a mathematical-based model (Chiu et al., 2007; Chien and Korikanthimath, 2007; Wang et al., 2008, 2009), heuristic-driven model (Lu et al., 2003; Kim et al., 2007; Zeng and Wang, 2009), meta-heuristic model (Cepolina, 2005; Kongsomsaksakul et al., 2005; Banarjee et al., 2005; Yuan and Wang, 2007; Li et al., 2010; Zong et al., 2010), and even others (Fang et al., 2011; Li, 2011; Guo et al., 2011). However, studies on crowd dynamics are rarely emphasized in the ERP community, which induces significant impacts on the evacuation efficiency and crowd survivability (Wang et al., 2008). In order for an effective emergency evacuation plan to be
elicited, an optimal routing of the evacuation route, which considers crowd dynamic, should be emphasized. Using the meta-heuristics model applied in the ERP problem, it had been found that, not only it able to reduce the computational complexity (Yuan and Wang, 2007) but it also provides an optimum solution despite their stochastic nature (Yusoff et al., 2008). As such, this motivates this study to adopt a meta-heuristic model as the dominating solution for solving the ERP problem.

1.3 Problem Statement

The problems faced in producing an effective emergency evacuation plan includes the difficulty of incorporating the evacuee’s crowd model, determining the best route selection of a specific crowd group with respect to the route capacity constraint, and satisfying the global target (performance measure) of evacuating all evacuees in an evacuation plan. As such, an embedded meta-heuristic approach is applied to optimize the route selection of the crowd while capturing dynamism in crowd. In addition, the efficiency of the proposed ERP approach should be able to be demonstrated in varying crowd sizes. Thus, the main research question of this study is:

How to come out with an optimum evacuation plan for varying crowd sizes that encompasses both the dynamism of crowd evacuation model and efficient route selection?

Figure 1.1 summarizes the scenarios prominent to the ERP problem. There are two main issues within the considered ERP problem. When planning the emergency evacuation, the emergency evacuation plan should consider the complexity factors of the crowd and the environmental constraints (especially within an enclosed area). The first issue suggests designing an appropriate route selection mechanism that focuses on finding optimum evacuation route(s). The second issue is the prominent effect of crowd dynamics, integrated in
the crowd evacuation model.

1.4 Goal and Objectives of The Study

To optimize the evacuation plan, an effective optimization technique in routing the crowds of evacuees and a model that captures certain aspects of crowd dynamism, are needed. The crowd model should consider the evacuee’s behavior (e.g. group cohesion) where a possible bottleneck of the evacuation could occur while the optimization technique should consider the evacuation constraints (e.g. capacity) where the global time-based performance of the emergency evacuation can be improved. In general, the aim of this research is to develop and provide a dynamic crowd evacuation model and best route selection for optimizing the emergency evacuation plan to fulfill varying crowd sizes. Specifically, there are three objectives this study aims to achieve:

1. To design and propose an ERP approach embedded with a crowd evacuation model and optimization algorithm for optimum emergency evacuation plan.
2. To enhance and evaluate the ability of the proposed ERP approach, where crowd dynamism is incorporated, in producing optimum emergency evacuation plan.

3. To apply and evaluate the overall performance of the proposed ERP approach with dynamism using actual case studies.

1.5 Study Scope and Significance

Solving the ERP problems involve addressing a number of varying factors. Therefore, various parameters, constraints, and behavioral properties which may pose as challenges in solving the underlying problem, are considered. Thus, the scopes and limitations have to be made transparent in order for the study to be manageable. The scopes of this research are given as follows:

1. The abstraction of environment

The environment involves the building structure which is represented through graph-based networks, known as a logical map. This excludes the signage, lightings, and any other decorations within the building structure. However, the buildings compartmentalized capacity and floor elevation (e.g. staircases) is considered and predetermined and acts as constraints imposed for the basic and dynamic crowd model, respectively.

2. The evacuee properties

The total number of evacuees within the building structure is known and their locations are predetermined. The considered dynamic factor is specific to only group-related behaviors (e.g. size and compliance). However, distinctive behaviors (e.g. leader), personalized or hidden behaviors (e.g. sabotaging agent), and intuitive characteristics (e.g. profession, age, etc.) are negligible.
3. The emergency services

Emergency services such as ambulances, medical staff, logistics, and authorized personnel (e.g. fireman, policeman, etc.) are assumed to be readily available for the evacuation planning procedure, thus it is also negligible.

This study is considered crucial as it attempts to bridge the gap between efficient route selection and dynamism of crowd models of an emergency evacuation plan for the ERP problem. The discrepancy of selecting the best route that fulfills the contradictory of the performance measures while the crowd model that adequately captures real-world dynamics of a crowd, had induced a poor evacuation plan and affect crowd survivability. Therefore, this research attempts to minimize this discrepancy. In addition, this research is aligned with the aims of reducing loss of life during actual conduct of the evacuation plan, which is paramount in risk mitigation. Therefore, the success of this research will support the advancement and implementation of risk mitigation policies as well as promoting the chance of human survivability in an actual disastrous situation.

This study is tuned towards modelling an approach that captures dynamism of crowd, such as group formation and levels of interactions, as well as their collective pattern (macro) in the context of ERP problem. In addition, this study also considers formulating the environmental attributes (exits, walls, etc.) for best route selection. Both the dynamic crowd model and the route selection mechanism will compose the evacuation plan for an effective evacuation simulation. In essence, this study is locally focused on the crowd model with dynamism and best route selection mechanisms while globally optimizing the overall evacuation plan. The study’s main goal is graphically depicted as in Figure 1.2.
Proposed ERP Approach

- Crowd Evacuation Plan
- Meta-Heuristic Algorithm
- Dynamic Crowd Model

Mesoscopic
- Maintaining individual relation and the collective pattern of the crowds

Capacity
- Able to conform to capacity constraints and give acceptable performances

Scalability
- Support variations of evacuees size and varying network sizes

Fulfilling

Research Aim/Goal
- To provide an optimum evacuation plan by integrating dynamic crowd evacuation model and best route selection mechanism to fulfill varying crowd sizes

Figure 1.2: The main research goal
1.6 Outline of the Thesis

This thesis is organized into seven chapters. Figure 1.3 shows the structure of the thesis.

Brief descriptions of the content of each chapters are given as follows:

(i) Chapter 1 of the thesis begins with a discussion on the problem background, goal, objectives, scopes and significance of the research topic in general.

(ii) Chapter 2 outlines the important aspects and challenges posed in the domain problems. This chapter also provides some insight of the theoretical background of the focused domain problems as well as prior works.

(iii) Chapter 3 describes the research methodology employed in this research including the research framework, data sources, instrumentation, problem description, performance measures, and experimentation and analysis conducted in the study.

(iv) Chapter 4 elaborates the proposed integrated evacuation planning (iEvaP) approach that is optimized using a meta-heuristic algorithm. iEvaP approach is designed specifically to tailor and solve the ERP problems. The results and evaluation of the proposed crowd evacuation approach is also discussed.

(v) Chapter 5 discusses the enhancement of the proposed iEvaP approach that integrates the crowd dynamic (group formation and in-group compliances), namely integrated and dynamic evacuation planning (iEvaP+) approach. The results and evaluation of the proposed iEvaP+ approach performance is measured while discussion on the effect of considering the dynamic crowd behavior(s) in the model is emphasized.

(vi) Chapter 6 focuses on application of the proposed iEvaP+ approach which incorporates dynamic crowd evacuation model, where detailed analysis on the results are obtained
Figure 1.3: Structure of the thesis
using the case studies. In addition, the performance and evaluation of the proposed
iEvaP+ approach is also formalized and discussed.

(vii) Finally, Chapter 7 provides the concluding remark regarding the findings and
ccontributions, potential future works, and the outcome of the research in detail.
CHAPTER 2
LITERATURE REVIEWS

2.1 Introduction

This chapter will outline the background study of the problem domains considered in this thesis by reviewing the related crowd evacuation approaches in the area of the emergency route planning problems. Throughout this chapter, the outlook of the domain problems will be identified from a top-down perspective of emergency evacuation which will be elaborated in details, whereas the potential gaps will also be highlighted. The organization of this chapter is given as in Figure 2.1.

2.2 Emergencies

Emergencies can be defined as a situation which are induced by a extreme or immediate situation requiring time-critical response that potentially causes loss of human life and related risks (Alsnih and Stopher, 2004). A situation may not be defined as an emergency if the need of time-critical response is not present, absent of chaotic or immediate event, no threat on the human life, or potential risk is not involved. When the emergency response is elicited, evacuation is the typical strategy for mitigating risks which requires immediate mobilization and time-critical actions involving efficient coordination, space capacity utilization, and availability of emergency response resources (Alsnih and Stopher, 2004). However, responding effectively during the needs for an emergency event is crucial.

Emergency response preparation is vital before the occurrence of disastrous situation because the affected region tend to be chaotic (Simonovic and Ahmad, 2005). Communication
Trends and Future Directions

Section 2.6

Danger Theory & Others

Negative Selection

Immune Network

Clonal Selection

Artificial Immune System

Section 2.5

Emergency Evacuation

Emergency Route Planning (ERP)

Crowd

Network

Extreme Event

Approaches

Traditional

Mathematical

Heuristic

Decision Support

Others

Meta-Heuristic

Section 2.4

Section 2.3

Emergencies

Extreme Event

Man-Made

Natural

Emergency Route Planning (ERP)

Section 2.2

Emergency Evacuation

Planning

Management

Control

Figure 2.1: The content structure of Chapter 2
and command structures can break down because of logistics or communications failure, causing unpredictable human behavior during the emergency and affect their survivability. Emergency responses are dependent on the available, lead-time predictability in which consequently induces a chaotic response and low level of compliance (Alsnih and Stopher, 2004). Therefore, instead of immediate response which is very unpredictable, proper planning and management before occurrence of disastrous situation are important.

Typically, emergencies can be divided into two broad classes: management and planning. Castle and Longley (2005) had summarized emergency management into four cyclic, management components, which can be broadly interpreted as a longitudinal point-of-views of emergency, which are: (1) Mitigation, (2) Preparedness, (3) Response, and (4) Recovery. These components can be described as follows:

- **Mitigation**: This involves activity such as risk assessment in order to accomplish steps that will limit or, in some cases, eliminates the effects of emergency altogether. This component usually conducted on the pre-event stage.

- **Preparedness**: This crucial task can be important for emergency that cannot be sufficiently mitigated. This management component also limits the loss of life and enhance the response. This component usually conducted on the pre-event stage.

- **Response**: This management component contains activities those that is conducted immediately during or after an event to assist victims, stabilize the situation, and reduces the possibility of secondary event’s damage.

- **Recovery**: This involves activity which starts after an emergency (post-event stage) and continues until the community structure returns to normal or operational. Typically, this involves a two step process: short-term recovery that returns vital life-support systems
to minimum operating standards; while long-term recovery may continue for a number of years after a disastrous situation.

Emergency planning involves a multi-leveled decision making processes which can be broadly interpreted as a vertical point-of-views of emergency, which subdivided into three different but interrelated perspectives; strategic, tactical, and operational. Evacuation in a strategic perspective involves assessing the risks and if possible, eliminates the needs for emergency for the long run. This typically conducted through policy amendments or risk mitigation (Castle and Longley, 2005); which are carried out through changing the current policy or operational procedures (i.e. altering the normal routine), or by physical actions which involves preventive activities to minimize the needs for emergency (i.e. reinforcing or relocating structures, posting security guards), respectively.

From a tactical perspectives, planning is carried out to reduce the risks in medium-term, where an advanced technique is used to identify and evaluate risks, define the possible escape route or alternatives routes, develop emergency procedures, ensure coordinated interagency response and inter or intra-agency communications, define a clear chain of command, conduct training, and others (Castle and Longley, 2005). Usually, this tactical perspective of evacuation directly related to both the preparedness and response of the emergency management, which commonly known as the evacuation planning and management.

Evacuee’s movement, people behavior, and crowd flow are main classes of studies in the operational perspective. Hajibabai et al. (2007) had pointed out that the most disastrous forms of collective human behaviors are stampedes, which induced by panic which often leads to serious fatalities. The ability to enable efficient movement of people in heavily populated enclosures is vitals to the daily operation of large and complex structures. More importantly, it is an essential design feature in the event of emergency situations. To support emergency
planning, the operational system model is an essential tool in providing effective decision-making, enhancing the capability of response to disaster, and reducing any adverse impacts on both human beings and surroundings (Lv et al., 2013).

2.3 Emergency Evacuation

In the management perspective, Saeed Osman and Ram (2011) had defined emergency evacuation as the removal of residents from areas that had been considered dangerous zone to safe locations as quickly as possible and with utmost reliability. Tavares and Galea (2009) had defined evacuation during an emergency situation involves the escape movement that the occupant(s) of an enclosure makes. Additionally, Kobes et al. (2010) had defined evacuation in a specific emergency context where people in the present of hazards, experiences several mental processes and carry out several actions before and/or during movement to a safe location whether in or out of an enclosed areas.

During emergency evacuation, the most generalized aim is to eliminate the need for emergency for the long run. This typically conducted through policy amendments or risk mitigation (Castle and Longley, 2005); which are carried out through changing the current policy or operational procedures (i.e. altering the normal routine), or by physical actions which involves preventive activities to minimize the needs for emergency (i.e. reinforcing or relocating structures, posting security guards), respectively. In addition, emergency evacuation may also be carried out to reduce the risks through an advanced planning where identifying and evaluating the potential risks, defining the possible escape route or alternatives routes, developing emergency procedures, ensuring coordinated interagency response or intra-agency communications, defining a clear chain of command, conducting training, and others (Castle and Longley, 2005).
Additionally, emergency evacuation studies encompass the way people orientate themselves within a structured, enclosed region. Crowd evacuation process involves activities which can be characterized based on: (1) Awareness of danger, (2) Validation and response from perceived danger, and (3) Movement or egression towards safety (Kobes et al., 2010). During an emergency evacuation, guiding the crowd in an emergency situation is crucial in order to manage and/or mitigate the outcome of the occurring emergency and the risks associated with it. Alternatively, route planning problems can be perceived as one of the main affecting components of the emergency evacuation solution.

In bridging the gaps of evacuation planning and management, four important factors are established which has pioneered the main foundation of the emergency route planning (ERP) problem (Chiu et al., 2007): (1) deciding where to evacuate people (goal); (2) deciding the best routes to take (routing); (3) determining the rate at which evacuees need to be permitted to enter the network from different areas of the regions (flow rate); and (4) determining how to regulate flow rates on these routes (schedule). These decisions are methodologically and computationally challenging due to the following reasons: decision interdependence, simultaneous decision making, and concurrency (Chiu et al., 2007). Therefore, ERP-specific approaches are needed in order to address these challenging issues that are faced during emergency evacuation.

2.4 Emergency Route Planning (ERP)

The cognition of the ERP approaches involves three distinct and inter-related components that are relevant to this study: (1) disasters (critical or disastrous situations), (2) resources (network or route layouts), and (3) demands (crowd of people). When a disastrous situation occurs, crowds will become unruly in their attempts to escape the danger zone (Yersin et al., 2008). However, effect of disaster on the crowd has yet to be realized. Most literatures
assumed disaster as figments during the emergency route plan and management. This is done by assuming disaster happens at a certain static location (Kwan and Lee, 2005; Castle and Longley, 2005; Cepolina, 2005; Zong et al., 2010), whereas the actual situation would infer otherwise. Others would categorize disaster as a possible scenario (Lu et al., 2005; Kim et al., 2007; Zeng and Wang, 2009; Li et al., 2010; Fang et al., 2011; Guo et al., 2011) instead of considering disaster as an element of inevitability. Disaster as a possible scenario provides the opportunity to consider a secondary disaster occurrence (i.e. bridge failures or blocked pathway) (Shekhar et al., 2012). In addition, limited literatures stress disaster as an entity which is modelled and propagated through the simulated environment with each passing time (Wang et al., 2008, 2009). Disaster can be propagated by defining the initial state, the transition probability, and the spreading area in a given time horizon.

The network or route layouts are used to model the perceived environments in time and space that enable evacuees to reach their respective goal (Yersin et al., 2008). Network or route layouts (resource) in crowd evacuation involves a continuous models which accomplished by means of a connective networking of a set of destination points that represents the real roadways or network for utilization by the crowd during emergency evacuation. Graph-based method, representing information of the enclosed region of a structure through network of nodes and edges (Kemloh Wagoum et al., 2012), is the most popular method adopted mainly because the destination points can be pre-determined (i.e. exits) or adjustable (i.e. crossings, turning point at the end of a corridor) while the graph’s visibility of a minimal network at any location is ensured based on the facility that is within the visibility range of at least one node. As such, logical approximation of the perceived environments is represented and enables integration of variety crowd models.

Crowds are formed by several or thousands of people that move in a bounded environment with respect to their individual goals (i.e. avoiding obstacles, blocking, or stampede, and
remaining close to friends or family) (Yersin et al., 2008). Generally, the crowd are modelled based on theoretical models, ranging from analytical ones to those based on matrices or cells (Bandini et al., 2005). Radianti et al. (2013) had conducted a study on the existing models which are categorized as microscopic, macroscopic, and mesoscopic models. Microscopic models treat every individual in the crowd as a separate “particle”. Several variants of microscopic approach include the encoding of human desires in the form of social force model (Helbing et al., 2000) and representing pedestrian as a node that occupies a cell known as cellular automata (Yuan and Tan, 2011). Macroscopic models describe crowds through their average flow and density. Fluid dynamic model (Helbing et al., 2000), flow tiles (Chenney, 2004), continuum crowd (Treuille et al., 2006), and non-local crowd dynamics (Colombo and Lécureux-Mercier, 2012) are the variants of microscopic models. Bridging the gap between the former two models, mesoscopic models introduce a key concept to understand the relationship between local inter-individual interactions (micro) and collective patterns (macro) (Wang et al., 2008, 2009). Most of the studied literatures have employed microscopic model (Hoogendoorn and Bovy, 2004; Amaldi et al., 2010; Kwan and Lee, 2005; Cepolina, 2005; Fang et al., 2011; Guo et al., 2011) and macroscopic model (Lu et al., 2005; Kim et al., 2007; Zeng and Wang, 2009; Li et al., 2010; Zong et al., 2010; Lv et al., 2013), while only some applied mesoscopic model (Wang et al., 2008, 2009).

One of the core factors that affect ERP problems is the crowd. The ability to assist for an efficient movement of people in heavily populated enclosures or structures is vital to the daily operation of large and complex structures (Hajibabai et al., 2007). More importantly, it is an essential design feature in the event of emergency situations. To support emergency evacuation operation, the crowd model is an essential tool in providing effective decision-making, enhancing the capability of response to disaster, and reducing any adverse impacts on both human beings and surroundings (Lv et al., 2013).
Crowd dynamic, especially grouping, is a common phenomenon where both isolated individual and persons in groups can be found (Qiu and Hu, 2010; Aveni, 1977). Simple scenario such as peoples in museum and shopping mall, family members walk beside each other in a clustered way while friends maintain in loosed-group during their movement. This grouping phenomenon may influences the flow as well as the efficiency in emergency evacuation plan such as the group size, individual characteristic, relationships among groups, and influences among group member (Qiu and Hu, 2010; Moreland et al., 2013). These grouping phenomenon is generally known as the group cohesion, where these cohesive properties (e.g. group size and influences among group member) are vital due to following reasons: (1) The group size determines the group structure and composition of a group; (2) Individual compliance influences a specific group structure in term of their flow rate. Thus, the main interest of this study involves locally focus on the modelling of the crowd dynamic and efficient route selection mechanism while globally focus in optimizing the overall evacuation plan (actual flow rate and performance measure).

2.4.1 ERP Approaches

Traditional ERP approach simply conveys warning and threat descriptions where the need for evacuation is issued via mass media communications to the affected population (Lu et al., 2005). Fire-alarming system is another good example of the traditional ERP approach which conveys warning during an event of fire within a structure. However, this solution do not provide any information as how to escape (Pu and Zlatanova, 2005). Directional Sound Evacuation (DSE) beacons are also another traditional ERP approach during disaster and they can eventually give clear audible navigation to nearest exit (http://www.soundalert.com/dse_buildings.htm), which can be combined with sophisticated analogue addressable Fire Alarm Control Panels (FACP) (e.g. http://www.adt.co.uk/fire_panels.html). However, these kinds of systems still react when fire
occurred and unable to give clear insights about situation after the fire alarm is triggered. Another traditional ERP approach is the emergency lighting designed within enclosed area, to allow evacuees to continue their occupancy and assist in finding a safe exit.

Although these traditional ERP approach successfully reaches the affected population, such solution lacks proper planning and management which causes unanticipated effects on crowds such as massive congestion, massive confusion, and chaos. These includes lacks of flexibility, insufficient information, less intelligence, dynamic and/or current information, and lack of means of providing interactivity (Pu and Zlatanova, 2005). Since then, the combined knowledge of practitioners and academicians, have introduced variety of ERP approaches to produce an efficient evacuation plan and manage affected population during disastrous situations.

Table 2.1 summarizes the ERP approaches based on their respective model features, disaster instance, and the adopted algorithm. The model features implies the accountable features in crowd which are based on crowd type, crowd dynamism, and multiple objectives. Crowd dynamism implies the cognition, decision making, and social behaviors of evacuees (Cepolina, 2005), as well as unforeseen incidents and deviations in the subjective judgements (Lv et al., 2013). The disaster instance column highlights the instances of disaster as either figment (assumed scenarios or occurrences) or entity (included in formulation as a moving object or probabilistic occurrence) which is associated with the respective literatures.

DSS approach is one of the earliest ERP approach to produce an evacuation plan and manage affected population by providing timely decision making before and during a disastrous situation. Some examples include: intelligent emergency response system (Kwan and Lee, 2005) equipped with 3-dimensional geographic information system (GIS) representing structures of multi-storey buildings, providing real-time navigation and
<table>
<thead>
<tr>
<th>Approaches</th>
<th>Model Features</th>
<th>Disaster</th>
<th>Algorithm Adopted</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model Type</td>
<td>Crowd Dynamism</td>
<td>Multi Objectives</td>
<td>Figment</td>
</tr>
<tr>
<td>Micro</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Math-Based</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Meso</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Decision Support</td>
<td>Micro</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Macro</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Heuristic</td>
<td>Micro</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Meta</td>
<td>Micro</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Heuristic</td>
<td>Macro</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>
negotiation within multi-level structures for supporting better emergency management; and GIS-based Spatial-DSS (Castle and Longley, 2005) that integrates topological support and analysis to determine pedestrian distribution, simulation of pedestrian dynamics, and scenario generation functions to aid decision support in emergency management and planning.

Chang et al. (2009) had focused on different sets of problems. The author proposed a dual route generation system for two separate but related problems of evacuation: one for rescues and the other for retreat. This method produced a network suggestion in real-time and successfully bridge the two prominent problems in hazard situations, route planning and emergency management problem. However, the setback imposed is, the scales of evacuation are assumed to be “unknown”, which the effect and impacts of the solution may turn out to be infeasible in terms of computational complexity (higher evacuation scale); consequently produces untimely decisions. Pu and Zlatanova (2005) proposed a knowledge-based DSS based on a 3-dimensional indoor geo-information to provide a dynamic, specific, and accurate evacuation route to people with an interactive instructions. Considering the uncertainty of a disaster, dynamic factors had been incorporated where dynamic search tree is used for solution search in the combined logical and geometry model with the consideration of non-spatial information, environmental factors, and human factors in the overall model design.

DSS emphasizes on a timely and accurate decision-making process. However, successful realization of DSS solution is highly dependent on information availability, secured data usage, and complying public privacy (Kwan and Lee, 2005). Other setbacks of DSS include information unavailability of past incidents, timely computational data formalization, and unknown emergency scenario’s evolution, in order to properly prepare and plan for future incidents. Simulation of DSS using a suitable crowd model (micro, macro, or meso) is still debateable due to the lack of evidence (Castle and Longley, 2005). In addition, timely and
accurate decision-making remains subjective and may change based on nationality, social, and cultural preferences.

Some studies proposed a prominent ERP approach through the means of mathematical-based algorithms. Wang et al. (2008, 2009) had proposed a stochastic programming model with rollout scheme within Lagrangian relaxation framework for evacuating crowd in a building network. Amaldi et al. (2010) had used a linear programming model for evacuating injured people through transport assignment in the context of medium/maxi health-care emergencies, while Hui et al. (2010) has used a stochastic programming model to allocate rescue route which compared with a shortest path generated from particle swarm optimization algorithm, respectively. Lv et al. (2013) had designed an integer programming model for supporting emergency management under uncertainties.

Sayyady and Eksioglu (2010) had designed a model for transit-dependent residents during a no-notice disasters using a mixed-integer linear model to simultaneously optimize the emergency response with respect to objectives of minimizing the total evacuation time and the number of casualties. A Tabu search algorithm is incorporated to reduce the long running time of the simulation package. Qiu and Hu (2010) had proposed a framework for intra-group and inter-group relationships which effects the crowd modelling behaviors, where an agent-based crowd simulation system is developed. The framework applies vector-based approach to represents the force applied to an individual as well as maintaining the group behavior.

Bretschneider and Kimms (2011) had proposed a basic mixed-integer model which provides a reorganization of traffic routing of a certain area during emergency to minimize evacuation time while prohibiting intersection conflicts. A relaxation approach, namely as the adjustment heuristic, is also integrated to reduce the computational efforts of the time-expended graph of the model. Kaisar et al. (2012) had designed a linear programming