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FABRIKASI SERTA PENCIRIAN GERMANIUM, ZINK OKSIDA 

DAN GABUNGAN SEBATIANNYA MELALUI KAEDAH 

PERUAWAPAN TERMA 

 

ABSTRAK 

Tujuan utama kajian ini adalah bagi mengkaji mekanisma pertumbuhan 

struktur germanium, zink oksida dan sebatiannya melalui kaedah peruapan terma 

yang mudah dan berkos rendah. Keduanya, bagi memfabrikasi dan menyiasat potensi 

struktur yang terpilih untuk aplikasi penderiaan. Dalam bahagian pertama kerja ini, 

penumbuhan struktur unik germanium oksida (GeO2) bersaiz zarah tanpa pemangkin 

telah dikaji. Kesan oksigen dalam pembentukan struktur GeO2 telah dikaji dan sifat-

sifat struktur dan optik serta mekanisme pertumbuhan wap-pepejal (VS) telah 

disiasat dan dicadangkan. Didapati GeO2 bersaiz zarah menggunakan oksigen (O2) 

daripada persekitaran mempunyai ciri-ciri yang hampir sama sepertimana juga 

keputusan diperolehi dengan membekalkan aliran O2 daripada sumber luar. Selain 

itu, pulau-pulau germanium seragam (GIs) telah ditumbuhkan di atas substrat Si 

menggunakan nikel (Ni) sebagai pemangkin. Pengaruh jangka masa yang berbeza 

keatas pertumbuhan dan peranan Ni dalam pembentukan pulau telah dikaji. Satu 

mekanisme terperinci bagi penumbuhan telah dicadangkan bagi mengkaji peranan Ni 

dalam pembentukan pulau. Analisis spektrum Fourier inframerah menunjukkan 

bahawa nilai-nilai jurang jalur optik (Eg) pulau germanium berubah mengikut masa 

pemendapan dari 0.62 ke 0.78 eV berbanding dengan nilai pukal bagi ge (0.66eV). 

Dalam bahagian kedua kerja ini, struktur bersaiz mikro zink oksida (ZnO) telah 

disintesis menggunakan satu proses peruapan terma yang diubahsuai dengan 

mencampurkan serbuk GeO2 dengan serbuk logam Zn sebagai bahan mentah pemula. 

Sifat-sifat struktur dan optik serta mekanisme pertumbuhan dan peranan GeO2 untuk 
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pembentukan struktur ZnO telah dibincangkan secara terperinci dan dicadangkan. 

Tanpa penggunaan mana-mana pemangkin dan aliran oksigen dalam sistem relau, 

struktur mikro ZnO telah berjaya ditumbuhkan dengan menggunakan serbuk GeO2 

sebagai sumber oksigen pada julat suhu 500 - 9000C . Dalam bahagian terakhir, 

pembentukan struktur hibrid pertigaan struktur berasaskan Ge telah dijalankan 

dengan mencampurkan serbuk germanium dan zink oksida dengan nisbah jisim yang 

berbeza (1:2 dan 2:1). Gabungan sebatian struktur berbentuk liang hibrid zink 

oksida/zinc germanat (ZnO/Zn2GeO4) dan struktur germanium / zinc silikat 

(Ge/Zn2SiO4) telah difabrikasikan dan dicirikan, serta mekanisme pertumbuhan telah 

dicadangkan. Sampel bagi struktur ZnO/Zn2GeO4  telah difabrikasikan dengan 

peranti logam-semikonduktot-logam yang menunjukkan kesan fotoelektrik yang 

berkesan dalam kedua-dua julat UV-C (0.252 A/W) pada lingkungan 250 nm dan 

UV-A (0.246 A/W) pada lingkungan 385 nm. Manakala sampel struktur Ge/Zn2SiO4 

yang diuji juga menunjukkan tindakbalas yang berkesan dalam julat panjang 

gelombang UV yang  lebih pendek iaitu 0.280 A/W dan 0.374 A/W pada lingkungan 

290 nm dan 230 nm masing-masing. Ini menunjukkan kedua-dua struktur sangat 

berpotensi untuk digunakan sebagai pengesan cahaya-UV yang berjarak gelombang 

pendek. Seterusnya, struktur Ge/Zn2SiO4 juga diuji sebagai pengesan gas hidrogen. 

Nilai kepekaan dan operasi optima pada suhu bilik menghampiri 90%  ketika kadar 

aliran gas hidrogen 150 sccm menunjukkan ianya berpotensi tinggi sebagai pengesan 

gas H2 pada masa akan datang. 
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FABRICATION AND CHARACTERIZATION OF GERMANIUM, 

ZINC OXIDE AND THEIR COMPOUNDS BY THERMAL 

EVAPORATION TECHNIQUE 

 

ABSTRACT 

This work mainly aims to study the growth mechanism of germanium (Ge), 

zinc oxide (ZnO), and their compounds through simple and low-cost thermal 

evaporation. Potential structures were also fabricated and investigated for sensor 

applications. In the first part, germanium oxide (GeO2) was grown using a novel one-

step method without catalyst. The effect of oxygen (O2) supply in structure formation 

and the structural and optical properties of GeO2 were investigated, and the vapor–

solid growth mechanism was proposed. The particle size of GeO2 grown using 

ambient O2 was similar to that obtained with a fixed O2 flow from an external source. 

Uniform-sized Ge islands (GIs) were also grown on a Si substrate with Ni catalyst. 

The influence of different deposition durations on GI growth and the role of Ni in 

island formation were evaluated, and the growth mechanism was proposed. Fourier 

transform infrared spectrum showed that the optical band gap (Eg) of GIs varies with 

deposition time from 0.62 to 0.78 eV compared with bulk Ge (0.66 eV). In the 

second part, ZnO microstructures were synthesized through modified thermal 

evaporation by using the mixture of GeO2 and metallic Zn powders as raw material. 

The structural and optical properties, growth mechanism, and roles of GeO2 in the 

formation of the ZnO structures were discussed and proposed. The ZnO 

microstructure was grown using GeO2 as oxygen source in a furnace system without 

any catalyst and oxygen flow at temperature range of 500 – 9000C. Finally, Ge and 

ZnO powder were mixed at different mass ratio (1:2 and 2:1) to form the hybrid of 

ternary Ge-based structures. ZnO/zinc germanate (Zn2GeO4) with porous-like 
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structure and Ge/zinc silicate (Zn2SiO4) were fabricated and characterized, and their 

growth mechanisms were proposed. ZnO/Zn2GeO4 structure was used to construct 

metal–semiconductor–metal devices, which exhibited significantly strong 

photoelectric effects under both UV-C (0.252 A/W) at 250 nm and UV-A (0.246 

A/W) at 385 nm regions. The Ge/Zn2SiO4 structure also exhibited similar response to 

deep UV (0.280 A/W and 0.374 A/W) at 290 nm and 230 nm regions. Hence, the 

study demonstrated that both structures can be potentially used as UV-photodetectors 

for applications requiring short wavelengths. Subsequently, a hydrogen-sensing 

properties based on Ge/Zn2SiO4 structure was also performed. The sensitivity and the 

optimal operation at room temperature of the sensor are nearly 90% at 150 sccm flow 

rate of hydrogen gas which heightens potential interest in future H2 gas sensor 

devices. 
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CHAPTER 1 

INTRODUCTION 

1.1 Historical Overview 

Germanium (Ge) was first detected and named as eka-silicon by a Russian 

chemist, D. I. Mendeleev, in 1871 (Haller, 2006). In 1886, Clemens Winkler, a 

German chemist, first initiated and characterized this element. The electrical 

properties of Ge fall between those of a metal and an insulator, and Ge is a chemical 

element in subgroup IVA of the periodic table (C–Si–Ge–Sn–Pb). Ge possesses a 

metallic appearance, but it presents a diamond cubic crystal structure and is fragile 

similar to glass. In addition, Ge is metallic in terms of several physical properties, 

such as its greyish-white appearance and metallic color. 

In subsequent years, the interest for investigating germanium has been 

motivated by its novel applications in electronic and optoelectronic devices. A Ge 

material was used in the first transistor created in 1947 by Bardeen and Brattain 

(1948). Over the last two decades, Ge-based electronic devices are gaining new 

interest since the continuation of scaling down of transistor dimensions driven for 

higher performance at a lower cost per function. Ge is widely used as a dopant in 

fiber optic glasses and semiconductor devices, both as an active layer and as a 

substrate for III to V epitaxy. Ge use is also widespread in infrared (IR) detection and 

imaging and as a polymerization catalyst for polyethylene terephthalate (PET) (Bosi 

et al., 2010; Masini et al., 2005; Nidhi et al., 2014; Sumesh et al., 2013). 

Its advantageous properties in comparison with Si make Ge more applicable 

in many applications. Table 1 shows the comparison of Ge and Si properties, such as 
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hole and electron carrier mobility. The carrier mobility (1900 and 3600 cm2/Vs for 

holes and electrons, respectively) of Ge is higher than that of Si. This property is 

advantageous for application in high-speed devices, in which larger mobility 

provides a higher source injection velocity that can potentially provide higher drive 

current and smaller gate delay. These exceptional characteristics are suitable for high 

frequency operation and permit the design of faster devices with respect to Si. 

However, Ge also allows operation at lower voltage, even if the thermal noise must 

be correctly handled and minimized because of the lower bandgap (0.66 eV).   

Table 1.1: Properties of germanium compared with silicon 

 

Furthermore, combining higher carrier mobility and higher absorption 

coefficient (wavelength range: 800 nm to 1550 nm) compared with silicon (Si) 

makes Ge a feasible candidate for modulators on complementary metal–oxide 

semiconductor circuits for optical interconnection and the integration of optical 

detectors (Dosunmu et al., 2004). The lattice constant of Ge (5.4307 Å) in 

comparison with that of Si (5.6657 Å) is hindered by the 4% lattice mismatch 

between Ge and Si, which results in growth dominated by “islanding” and misfit 

dislocations. This factor is also being considered in the semiconductor industry to 

maximize the properties of Ge and Si, the heterogeneous integration of Ge and Si 

must be made possible because using bulk Ge is not viable. Another advantage is that 

 Ge Si 

Crystal structure Diamond Diamond 

Bandgap energy (eV) 0.66 1.12 

Lattice constant (Å) 5.6579 5.43095 

Intrinsic carrier concentration (cm-3) 2 x 1013 1 x 1010 

Electron mobility (cm2/Vs) 3900 1500 

Hole mobility (cm2/Vs) 1900 450 

Minority carrier lifetime (s) 10-6 10-6 

Lattice thermal expansion (10-6/K) 5.9 2.6 
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the excitonic Bohr radius of bulk Ge (24.3 nm) is considerably larger than that of Si 

(4.9 nm) (Maeda et al., 1991). Therefore, the quantum size effect will be more 

prominent in Ge.   

1.2 Problem Statement 

The development of most electronic and optoelectronic devices depends on 

epitaxial growth. The following two epitaxial processes are normally consumed: (1) 

homo-epitaxy and (2) hetero-epitaxy. Homo-epitaxy includes growth on the substrate 

of the same material (native substrate), whereas hetero-epitaxy involves the growth 

of single crystalline materials on non-native substrates. Prior to epitaxy, homo-

epitaxy and hetero-epitaxy substrate surface preparation and nucleation conditions in 

Ge are critical in obtaining good deposition quality and reproducible results. Several 

familiar difficulties reported in the literature focus on surface contamination and its 

analysis (particularly carbon), oxide elimination with chemical etches, surface 

reconstruction, and roughening/smoothing mechanisms (Gabás et al., 2012; Gan et 

al., 1999; Gan et al., 1998; Hovis et al., 1999; McMahon et al., 2006; McMahon et 

al., 1999; Pukite et al., 1987; S. Zhang et al., 2001). 

Several groups have expended efforts to grow Ge epitaxially with different 

morphologies, as well as with different optical and electrical properties, using 

various growth techniques. One of the most common methods for Ge epitaxial 

growth is chemical vapor deposition (CVD), which includes certain recent advances, 

such as atomic layer deposition and low energy plasma-enhanced chemical vapor 

deposition (C. B. Li et al., 2011; Rudder et al., 1986), molecular beam epitaxy 

(MBE) (Barski et al., 2000; Eaglesham et al., 1990) and atomic layer epitaxy 

(Sugahara et al., 1994; Tillack et al., 2009). In many cases, the widely studied 
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techniques for Ge epitaxy or film growth require complex materials and complicated 

experimental procedures. Among these techniques, thermal evaporation via vapor 

phase transport has shown the most potential because of its comparatively 

straightforward experimental process and its inexpensive, non-hazardous method, 

which uses only powders as source materials (Akl et al., 2009). Another advantage of 

thermal evaporation method is that the grown structures can be controlled by 

precursor and their melting point (Zhi et al., 2005).  

The mainly used Ge precursors are germanium tetrahydride (GeH4) and 

germanium tetrachloride (GeCl4), which are suitable for deposition at low and high 

temperatures, respectively. The SiGe layer growth of different compositions on 

strained Si layers is commonly achieved with Ge and Si deposition in the vapor 

phase with GeH4, which is costly and toxic. Hazards of GeH4 use are also widely 

reported in the literature. GeCl4 and other metal–organic compounds with Ge atoms, 

such as trimethyl germane or monomethyl germane, are alternatives to the hydride 

form, but present high cracking temperatures. Several new precursors, such as Ge-

based powder and Ge base mixed with Zn-based powder, have become increasingly 

important exploration subjects in epitaxial Ge deposition growth.  

Using Ge-based powder and tailoring with Zn-based powder as precursors in 

thermal evaporation technique are becoming increasingly important because different 

structures based on Ge and zinc oxide (ZnO), as well their compounds, are easily 

formed. Several attempts have been conducted to grow structures using Ge-based 

powder, but few have focused on Ge mixed with Zn-based powder. One of the 

reasons is that Ge is easily vaporized after reaching its melting point in thermal 

evaporation technique, and predicting its structural formation and growth mechanism 

is difficult. To date, no studies in the literature have focused on modeling the growth 



  5 

 

 

 

mechanism of Ge-based compound, little information is known regarding its 

structural formation, particularly by a simple thermal evaporation technique. 

Therefore, growth mechanism becomes an important scope to be investigated.  

1.3 Research Objectives 

This research primarily aimed to fabricate and characterize, as well as to 

study, the growth mechanism of Ge, ZnO, and their compounds by simple thermal 

evaporation technique. The aims were achieved by dividing the work into several 

components that carried principal objectives, which can be summarized in the 

following points: 

i. To study the growth mechanisms of germanium-based structures on Si 

substrate using Ge powder by a simple thermal evaporation technique. 

ii. To study the growth of ZnO structures on Si substrate by mixing the GeO2 

and Zn powder at different deposition temperature. 

iii. To study the growth of Ge-based ternary structures on Si substrate by mixing 

of Ge and ZnO powder. 

iv. To study the potential use of the fabricated Ge-based ternary structures for 

sensing applications.  

1.4 Originality of the Study 

Dielectric oxides, such as germanium dioxide (GeO2), can be used in various 

applications. In recent years, GeO2 crystals are typically produced by any physical 

evaporation or thermal oxidation method. Inorganic materials with different 
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morphologies and sizes can exhibit different properties (Charlier et al., 1997), despite 

including the same elements; thus, fabricating new germanium oxide (GeO2) 

structures with different techniques is advantageous. GeO2 is mostly grown by using 

a tube furnace with catalysts, such as gold (Au), under flowing oxygen. In this study, 

particle-sized GeO2 structures were fabricated by simple thermal evaporation in the 

absence of any catalyst.     

The formation mechanisms and properties of GIs on Si substrate are of great 

interest for use in new optoelectronic devices. However, finding a method to 

satisfactorily achieve uniform island sizes with normal spatial distribution remains to 

be a challenge. Growth phenomena by metal-modified nucleation are normally used 

to modify the characteristics of epitaxial islands. One of the processes discovered 

involves GIs that are structured on a Si substrate patterned simply by Au evaporation 

through a stencil mask (Hovis et al., 1999). Given that Au forms deep electronic 

traps in Si and Ge, Au-seeded islands are relatively undesirable for electronic 

applications, and other metals are more applicable as seeds. Nickel (Ni) has been 

shown to be a promising metal catalyst. In this work, uniform GIs were successfully 

fabricated by a simple thermal evaporation technique with a Ni catalyst. 

In thermal evaporation method, ZnO and Zn powders are normally used as raw 

materials to fabricate ZnO structures. The use of ZnO powder as raw material by 

thermal evaporation requires a more complex process because of its high melting 

point. Most growth methods using Zn powder in thermal processes require an oxygen 

source to control the formation of ZnO structures. Exploring new methods for 

synthesizing the ZnO nanostructure using Zn powder without introducing an oxygen 

source remains a challenge, especially for simple, cheap, contamination-free, and 

catalyst-free structures. With certain modifications, GeO2 powder will decompose 
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and release a small amount of oxygen that is sufficient for evaporated Zn to form the 

ZnO structure. In this work, micro- and nanoscale ZnO were fabricated by using 

GeO2 and Zn powder without the presence of an oxygen source, and a growth 

mechanism was proposed. 

Numerous researchers have attempted to enhance the ultraviolet (UV) 

emission of ZnO thin films, either by varying the depositional methods and post-

treatment methods or by doping with various dopants, such as Ga, In, Ag, Cr, and Ni. 

Ge is another possible material for doping with ZnO. Among the different fabrication 

methods of ZnO-doped Ge thin film, thermal evaporation is of particular interest as a 

simple method of producing large quantities of ZnO/Zn2GeO4 compound. The 

Ge/zinc silicate (Zn2SiO4) mixture is another promising by-product compound with 

doped ZnO and Ge. In this work, a combination of ZnO/Zn2GeO4 and Ge/Zn2SiO4 

compounds was deposited on the Si substrate by evaporation process from the mixed 

powder of Ge and ZnO. The potential application of ZnO/Zn2GeO4 and Ge/Zn2SiO4 

compounds as deep UV photodetectors and gas sensors was successfully tested. 

1.5 Outline of Thesis 

The thesis consists of six chapters that describe studies on the fabrication of 

Ge-based powder structures by simple thermal evaporation method. The thesis 

outline is as follows. 

Chapter 1 provides an overview of the study and the motivation for growth, 

discussing introduction to originality and objectives of the research. Chapter 2 

involves a literature review of the growth of Ge and Ge-based powder mixed with 

Zn-based powder. The principles of the thermal evaporation technique and 

mechanism of Ge growth, the process of growth from vapor phase, and the basic 
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principles of several devices (which have been fabricated in this thesis) are also 

presented in this chapter. In Chapter 3, the methodology and instrumentation 

involved in this research work are presented comprehensively. The results achieved 

from the research works are analyzed and discussed in Chapters 4 and 5. Chapter 4 

elaborates on the properties of GeO2 and GIs growth on the Si substrate using a 

physical vapor deposition via thermal evaporation of Ge powder under different 

parameters and conditions. Chapter 5 presents the unique structure of ZnO growth by 

using Zn mixed with GeO2 powder under different temperatures, and the results of 

experiments conducted on the thermal vapor deposition of Ge mixed with ZnO 

powder and their application are also presented. Finally, Chapter 6 summarizes the 

findings in this work and concludes the study by suggesting a number of possible 

directions for future work. 
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CHAPTER 2 

LITERATURE REVIEW AND THEORETICAL BACKGROUND  

2.1 Introduction 

In this chapter, relevant literature review and theories of all work involved in 

this study are presented. The section begins with an overview of Ge epitaxial growth 

techniques and an overview of the thermal evaporation process of Ge-based powders. 

In addition, an overview of GeO2 and GIs growth are presented. An overview of 

ternary oxide Ge-based materials and ZnO growth using Ge-based powder is also 

addressed. Several Ge-based material applications and basic concepts of the devices 

fabricated in this work, which include a metal–semiconductor–metal (MSM) 

photodetector and a gas sensor, are briefly described in this chapter. The general 

principles and theories of all subjects involved in this work are also presented. 

2.2 Background of Ge Epitaxial Growth Techniques 

The word “epitaxy” refers to the growth of a crystalline structure layer on a 

crystalline substrate. The layer is called an epitaxial film or epitaxial layer. The 

epitaxial layer can be classified into different categories, such as homo-epitaxial and 

hetero-epitaxial. A homo-epitaxial layer is performed with only one material, in 

which a crystalline film is grown on a substrate or film of the same material. A 

hetero-epitaxial layer is a crystalline film that grows on a crystalline substrate or film 

of a different material.  

In the case of homoepitaxial deposition, the substrate and the film possess the 

same crystal lattice with the same atoms: d = 0, presenting the best possible scenario 
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in which a virtually defect-free layer may be obtained. A substrate and a film of two 

different materials are commonly applied to achieve greater freedom in designing 

epitaxial structures. In this case, a difference in lattice parameter typically exists, and 

the mismatch is not zero. The lattice mismatch exerts a strong influence on the mode 

in which the epilayer grows on the substrate. Three different models of epitaxial 

growth are usually reported: 2D or Frank-van der Merwe, 3D with island nucleation 

or Volmer–Weber, and an intermediate case between the previous two modes or 

Stranski–Krastanov, in which a 2D layer is initially nucleated and then 3D islands 

develop (Oura et al., 2003; Pimpinelli et al., 1998). 

2.3 Overview of Growth Techniques for Ge Epitaxial. 

Utilizing Ge application in Si-based device materials requires the growth of 

high-quality epitaxial structures. Consequently, several particular techniques, 

including vacuum pyrolysis (Zanio et al., 1978), sputtering and evaporation 

(Krikorian et al., 1966), close spacing chemical transport (Nicoll, 1963), gas source 

and electron beam MBE (Aharoni, 1986; Larciprete et al., 1998; Schmidtbauer et al., 

2014; Strite et al., 1990), atomic layer epitaxy (ALE) (Goodman et al., 1986; 

Sugahara et al., 1994; Takahashi et al., 1989; Tillack & Yamamoto, 2009) and 

chemical vapour deposition (CVD) (Bosi et al., 2008; Cunningham et al., 1991; 

Fitzgerald, 2005; Ginige et al., 2006; Kamins et al., 1997; Kummer et al., 2002; Mo 

et al., 1991; Rudder et al., 1986) have been developed. 

Among the techniques mentioned, the CVD-related processes are the most 

common in Ge epitaxial growth. Kaminis et al (1997) initially reported CVD-based 

techniques. These techniques involve the deposition of 3D GIs on Si at atmospheric 

and reduced pressures. A pseudomorphic coverage of up to 3.5 Ge monolayers was 
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achieved, followed by the nucleation of islands with a constant aspect ratio (11:1 

between diameter and height) but no distinct facets. In addition, Cunningham et al.  

(1991) observed how growth conditions, temperature, and alloy composition 

determined the size, shape, dimension, and homogeneity of islands. Mo et al. (1991) 

stated that nucleation is critically dependent on surface purity and physical 

perfection, involving steps and substrate misorientation. Bosi et al. (2008) also 

reported that certain variants of CVD techniques, such as metal–organic vacuum 

phase epitaxy, are realized to obtain the homoepitaxial Ge layers. In addition, Rudder 

et al. (1986) reported that ultra-high vacuum CVD or plasma-assisted CVD 

technique can be used to study the roughening mechanisms of Ge surfaces and to 

identify a transition temperature. Low-energy plasma-enhanced CVD techniques 

were developed to improve the deposition process and obtain thick GexSi1−x graded 

layers to be used as virtual substrates. However, low pressure processes are often 

used to minimize the contamination of the growth chamber and prevent unwanted 

deposition on chamber walls (Fitzgerald, 2005; Ginige et al., 2006; Kummer et al., 

2002). 

The method used in depositing SiGe layers (Kasper et al., 1975) involves the 

MBE technique, which remains widely used as a research tool for fundamental 

studies and for designing novel device structures. Crystal quality and layer thickness 

can be monitored by reflection high-energy electron diffraction (RHEED) during 

crystal growth. Eaglesham et al. (1990) explained island growth in terms of elastic 

deformation around the islands, which accommodates mismatch, by using RHEED in 

MBE deposition equipment. The growth of extremely high-quality thin films by 

MBE process is not commercially feasible because of their high cost and low growth 

rate contributed by the method. In the case of deposition of high-k oxides for 
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microelectronic devices, ALE is becoming a highly common technique, considering 

that the technique is usually adopted for binary or ternary compounds to prevent 

parasitic reactions between different species and to exert precise control over 

stoichiometry (Sugahara et al., 1994; Takahashi et al., 1989; Tillack & Yamamoto, 

2009). Despite growth occurring in separate steps in the ALE process of elemental 

semiconductors, such as Ge and Si, has not been given wide interest, several works 

regarding Ge film preparation are still using this technique.   

In the case of integrating future devices with the developed Si-integrated 

circuit technology, relying on simple and cheap fabrication techniques is essential. 

The thermal evaporation of solid materials using a horizontal tube furnace and 

employing conventional powders is a low-cost and simple heating technique that will 

contribute to the potential commercialization of products (H. Kim et al., 2009; 

Kovačević et al., 2007; Sorianello et al., 2011). Another advantage of thermal 

evaporation method is that the grown structures can be controlled by the starting 

material source content and their melting point (Zhi et al., 2005). 

Numerous researchers have extensively investigated and studied the growth 

of semiconductor materials by thermal evaporation method. Thermal evaporation 

technique has been widely used recently for the growth of metal oxide structures, 

such as ZnO and gallium nitride (GaN). The growth of perfectly hexagonal-shaped 

ZnO nanorods has been achieved on a Ni-coated Si(100) substrate by thermal 

evaporation (Umar, Karunagaran, et al., 2006). In addition, Abdulgafour et al. 

(2010a; 2010b; 2013; 2011; 2013) successfully fabricated well-aligned ZnO 

nanoflower structure arrays, hexagonal tube-like ZnO nanostructures, coral reef-like 

ZnO nanostructures, and ZnO NWs by a simple thermal evaporation technique 

without catalysts. Saron et al (2013a) also reported the productive growth of GaN 
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structures by thermal evaporation technique. Among the reported study subjects, 

GaN NWs were grown on catalyst-free Si substrates using the thermal evaporation of 

GaN powder at 1150 °C in the absence of NH3 gas (Saron, Hashim, et al., 2013).  

Another reported method involves the catalyst-free growth of GaN nanostructures on 

n-Si(111) substrates, (Saron & Hashim, 2013b) as well as GaN NW flowers on Si 

(111). Therefore, this technique should be applied for Ge-based structure growth. 

2.4 The Growth of Ge-based Structures 

An overview of Ge-based structures fabricated on this work, such as GeO2, 

GIs, ZnO, and Ge-based ternary oxide, are explained in this section. 

2.4.1 Overview of Germanium Oxide (GeO2) Structures Growth 

Germanium dioxide (GeO2) is a dielectric oxide that is considered to be a 

promising material for a variety of applications. GeO2 is an important material that 

exhibits visible luminescence (M Zacharias et al., 1998). Meanwhile, GeO2-based 

glass is known to present a higher refractive index and higher linear coefficient of 

thermal expansion than SiO2 (X. Wu et al., 2001), suggesting potential applications 

in future optical wave guides (Yin et al., 1982) and nanoconnections in optical 

devices and systems. Another important application of GeO2 is in the area of vacuum 

technology (Margaryan et al., 1993). Fabricating materials with novel morphologies 

is an interesting and urgent challenge in the area of materials science. Given that 

inorganic materials with different morphologies and sizes can exhibit different 

properties (Hulliger, 1994), despite comprising the same elements, fabricating new 

GeO2 structures with different morphologies is valuable. 
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2.4.2 Overview of Germanium Island (GI) growth 

The formation mechanisms and properties of GIs on Si structures are of 

considerable interest for use in new optoelectronic devices. Several methods are 

employed to fabricate GIs with different sizes, such as CVD (Borgström et al., 2003; 

Capellini et al., 1997), radio frequency magnetron sputtering (Das et al., 2007; 

Samavati et al., 2012), molecular beam epitaxy (Goldfarb et al., 2004; Merdzhanova 

et al., 2006; K.-F. Wang et al., 2012), and thermal evaporation (Kovačević et al., 

2007). However, establishing a method to achieve sufficiently uniform island sizes 

with regular spatial distribution remains a critical issue. Substantial research focused 

on the size distribution of islands because such islands are an important aspect in 

practical application (Dvurechenskii et al., 2005). The conventional method of 

controlling island formation (size, shape, and density) involves varying growth 

conditions by altering substrate temperature and molecular flux (Dvurechenskii et al., 

2005). 

Metal-modified nucleation and growth phenomena are normally used to tune 

the characteristics of epitaxial islands. Robinson et al. (2007) demonstrated that 

patterned metal over layers enables to control over large areas of GI position and 

shape on a Si model heteroepitaxial system. Stencil masks were used to show that the 

surface is highly preferred in comparison with other patterning routes. One 

discovered process involved GIs being ordered on a Si substrate that has been 

patterned simply by Au evaporation through a stencil mask. Nickel (Ni) is a material 

that presents promising use as a metal catalyst. For instance, Tuan et al. (2005) and 

Hsu et al. (2006) successfully synthesized Ge and Si NWs using Ni catalysts. 

Kolahdouz et al. (2012) recently used Ni as a metal catalyst to form islands based on 

substrate engineering to control the diameter of carbon multi-walled nanotubes. More 
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recently, Thombare et al. (2013), successfully synthesized vapor–solid–solid Ge NW 

growth using a Ni-based catalyst. 

2.4.3 Overview of ZnO growth using Ge-Based powder   

In thermal evaporation method, ZnO and Zn powders are normally used as 

raw materials to fabricate ZnO structures. The use of ZnO powder as raw material in 

thermal evaporation requires a more complex process because of the material’s high 

melting point. The carbon group [i.e., graphite (C), Si, Ge, tin (Sn), and lead (Pb)] 

and metallic elements have been effectively used to reduce the melting point of ZnO 

powder to achieve pure ZnO nano/microstructures (H. D. Li et al., 2008; Lv et al., 

2010; C. Xu et al., 2004; B. Yao et al., 2002). In addition, previous studies reported 

that the use of Zn powder as a raw material does not require any reducing agent for 

synthesizing ZnO nanostructure and that the nanostructure can be grown either with 

the use of catalyst or catalyst-free at lower temperature (Cheng et al., 2011; Y. S. Liu 

et al., 2006; Rusu et al., 2007; Senthil Kumar et al., 2011). Most of the growth 

methods using Zn powder in thermal processes need an oxygen source to control the 

formation of ZnO structures. Exploring new methods for synthesizing the ZnO 

nanostructure using Zn powder without introducing an oxygen source remains a 

challenge, especially for simple, cheap, contamination-free, and catalyst-free 

structures. Shen et al. (2006) introduced an adiabatic layer without using oxygen to 

provide an abrupt temperature decrease and high gas concentration for the growth of 

ZnO structures. Another possible method to synthesize 1D ZnO structures without 

introducing any oxygen flow in the tube furnace involves mixing GeO2 powder with 

Zn powder as raw material. The use of GeO2 powder is unique because the powder 

thermally decomposes to GeO and releases a small amount of oxygen at 500 °C. The 
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oxygen produced from this decomposition can be used by Zn (melting point ~420 

°C) to form a suboxide (ZnOx, x < 1) gas that will be vaporized, condensed, and 

accumulated into a substrate for the formation of ZnO structures. The oxygen 

generated by the decomposition of GeO2 could promote impurities (Brazhkin et al., 

2003). However, such impurities can be minimized through careful selection of 

growth temperature. Hence, developing novel methods capable of synthesizing ZnO 

nanostructure using in the absence of an oxygen source is still a challenge, 

particularly for uncomplicated, inexpensive, impurity-free, and catalyst-free 

structures.  

2.4.4  Overview of Ternary Oxide Growth 

Ternary oxide structures have various applications because of its compelling 

optical properties. Compared with the extensive research on binary oxide materials, 

investigations on ternary oxide NWs are relatively limited. In most cases, complex 

ternary oxide materials are technologically important because their properties, and 

hence functionalities, can be efficiently tuned by adjusting the ratio of doping or 

alloying components (Chaoyi et al., 2010). Ternary oxide nanostructures of Ge-based 

materials, such as indium germanate (In2Ge2O7) and zinc germanate (Zn2GeO4), 

were successfully synthesized by a chemical vapor transport method. Prior to the 

synthesis of these materials, 1D nanomaterials of several ternary oxides were 

successfully synthesized, especially for ZnO-based ternary compounds (Fan et al., 

2009).  

ZnO presents a broad bandgap energy of 3.37 eV and large exciton binding 

energy of 60 meV at room temperature. This material has attracted much attention 

because of its numerous prospective applications in multiple fields. ZnO films with 
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various doping, such as Er and Ga, were studied to satisfy different requirements in 

optoelectronic devices (Cho et al., 2001; X. T. Zhang et al., 2002). Modified ZnO 

can be used as gas sensors, photocatalysts, solar cells, light-emitting materials, and 

field-effect transistors (Anandan et al., 2007; X. L. Chen et al., 2007; Gao et al., 

2005; Ryu et al., 2007; Teng et al., 2006; Z. X. Xu et al., 2007). 

Many researchers attempted to enhance the UV emission of ZnO thin films 

either by varying the depositional methods and post-treatment methods or by doping 

with various dopants, such as Ga, In, Ag, Cr, and Ni (Duan et al., 2006; Jun et al., 

2008; T. Y. Kim et al., 2004; Pál et al., 2008; Singh et al., 2008). However, only few 

reports focused on ZnO-doped Ge. Ge is an indirect band gap semiconductor with 

smaller energy difference between the indirect gap and direct gap (ΔEg = 0.12 eV). In 

addition, a small ionic radius difference is found between Ge ion (0.53 Å) and Zn ion 

(0.74 Å), increasing the probability of Ge ion replacing the Zn ion vacancy. All these 

characteristics lead to the expectation that changing the optical properties of Zn-

based materials through modifying the electronic structure around the band edge is 

considerably easier for Ge than for any other type of dopant. 

Yu et al. (2004) prepared ZnO:Ge compound by solid-state reaction method. 

They discovered that the Zn2GeO4 phase was formed by heavy doping of Ge atoms 

and obtained their PL spectrum. They ascribed the luminescence center to the 

inherent effects of ZnO and impurity effects of GeO2. Zheng et al. (2006) deposited 

Ge/ZnO multilayer films by RF magnetron sputtering and obtained a Zn2GeO4 thin 

film from annealing Ge/ZnO multilayer films. The characteristics of the PL spectra 

for Ge/ZnO multilayer films annealed at various temperatures were recorded at room 

temperature and showed a strong green band (532 nm) and a broad red to infrared 

bands. Fan et al. (2005) prepared Ge-doped ZnO on Si substrates by alternate radio 
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frequency magnetron sputtering. They also investigated the effects of doping and 

annealing on structural and optical properties and found that the crystalline quality of 

the film improves with annealing temperature. A recent report involved fabricating 

Zn2GeO4 nanorod photocatalysts with Ag doping and Ag decorating (Ag-modified 

Zn2GeO4) synthesized by a mild solvothermal method (G. Jiang et al., 2014). 

Attempts to develop uncomplicated and inexpensive methods for efficiently 

synthesizing ternary Ge-based material are still a challenge. Thermal evaporation is 

of particular significance because of the simplicity of its mechanism in producing 

ternary microstructures, its cost effectiveness, and non-hazardous nature, given that it 

utilizes only powders as source materials. Growing interest in the synthesis of Ge-

based ternary structures are stimulated due to promising devices application.  

2.5 Overview of Ge-Based Material Devices Applications 

In recent years, the increasing amount of literature focused on ternary oxide 

materials is technologically important because their properties, and thus their 

functionalities, can be efficiently tuned by adjusting the ratio of doping or alloying 

components. Among these materials, Ge-based Zn2GeO4 and Zn2SiO4, ternary oxides 

with a wide bandgap, have attracted considerable attention for various applications 

because of their compelling optical properties. In the following sub-section, a brief 

description of the most recent devices and applications of Ge-based and ZnO-based 

structures, especially Zn2GeO4 and Zn2SiO4, will be presented. 
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2.5.1 Overview of Ternary Oxide UV-MSM Photodetector  

UV photodetectors perform highly important functions in multiple fields, 

such as missile tracking, ozone monitoring, flame detection, imaging techniques, and 

lightwave communications (Chang et al., 2007b; C.-H. Chen et al., 2009; De Cesare 

et al., 2006). Various wide band gap semiconductors, such as GaN, AlGaN, diamond, 

SiC, III to V compounds, and II to VI compounds (Carrano et al., 1997; Han et al., 

2004; Monroy et al., 2001) are used to fabricate UV photodetectors. Among these 

compounds, ZnO-based UV detectors have recently gained attention because of their 

properties, such wide band gap (3.34 eV), high exciton binding energy (60 meV), 

non-toxicity, high radiation hardness, and higher transparency in the visible region. 

The conductivity of ZnO can be dramatically increased under UV illumination, and 

this fact has been used in UV sensor applications. 

However, less attention has been focused to more complex materials, including 

ternary oxide, because of the difficulty in obtaining high-quality thin films or NWs. 

Extensive research on Ge-based ternary oxides, such as zinc germanite (Zn2GeO4), 

has been carried out to make them suitable for applications, such as visible-blind 

deep-ultra violet photodetection (C. Li et al., 2010; Yan et al., 2010), high-capacity 

anode material of lithium battery (Feng et al., 2011), bright white-bluish 

luminescence (Z. Liu et al., 2007), water-splitting by photocatalysis (Huang et al., 

2008; L. Zhang et al., 2010), photocatalytic reduction of CO2 into renewable 

hydrocarbon fuel (Q. Liu et al., 2010). Ternary oxide NWs are chemically and 

thermally stable as well as superior in deep UV detection because of their large 

bandgap, thereby resulting in high wavelength selectivity. For example, ZnO (Eg = 

3.4 eV) responds to the whole UV band (200 nm to 400 nm), but Zn2GeO4 (Eg = 4.68 

eV) is expected to be UV-A/B (~290 nm to 400 nm) blind and only responsive to 
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UV-C band (~200 nm to 290 nm (Fang et al., 2009). Yan et al. (2010) reported the 

deep-UV photodetection performance of Zn2GeO4 nanonetworks with good 

wavelength selectivity. 

Another ternary oxide from ZnO-based material by simple thermal 

evaporation technique is Zn2SiO4. Zn2SiO4, with its wide band gap of 5.5 eV, is 

widely used as a host material in cathode ray tubes and electroluminescent devices 

(Fan et al., 2009). This ternary oxide can also serve as an electronic insulator, a 

crystalline phase in glass ceramics, and as catalyst and catalyst supports (Fan et al., 

2009). Zn2SiO4, especially Zn2SiO4:Mn2+, is one of the most practical and attractive 

materials that has been identified and widely researched over the last 180 years 

(Takesue et al., 2009). However, Ge:Zn2SiO4 compound applications, such as 

photodetectors, have not yet been explored and reported. 

Various types of photodetectors have been widely studied, including 

photoconductive, avalanche, Schottky barrier, p–n junction, p–i–n junction, 

phototransitive, and MSM photodetectors. Among these devices, MSM-based 

photodetectors offer various advantages, such as simplicity of fabrication, 

compatibility with field-effect transistors in optoelectronic integrated circuits 

(Rogers, 1991), low capacitance, low dark current, high speed operation, and high 

sensitivity. 

2.5.2 Overview of Ge-Based Material Hydrogen Gas Sensor 

Sixty years ago, Brattain et al. (1953) discovered that gas adsorption onto a 

semiconductor produces a conductance change. Since the discovery, a considerable 

amount of research has been carried out to realize commercial semiconducting 

devices for gas detection. Over the past decade, semiconducting metal oxide-based 
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gas sensors have become a primary technology in several domestic, commercial, and 

industrial gas sensing systems. Three different types of solid-state gas sensors are 

widely available (Korotcenkov, 2007; Moseley, 1997). Among the available gas 

sensing methods, semiconducting metal oxide gas sensor devices present several 

unique advantages, such as low cost, small size, measurement simplicity, durability, 

ease of fabrication, and low detection limits (< ppm levels). Given these reasons, 

these devices have been increasingly known, becoming the most widely used gas 

sensors available at present. 

Extensive investigations have been conducted on binary metal oxides 

nanostructures in several applications (Dai et al., 2013; Sen et al., 2010). A 

continuing need for specially designed semiconductors exists, leading to an interest 

in ternary oxides, such as Zn2TiO4 (Y. Yang et al., 2009), CdSnO3 (L. Wang et al., 

2014), ZnSnO3 (J. M. Wu et al., 2012), LiNbO3 (Yun et al., 2014), Cd2SnO4 (Kelkar 

et al., 2012), Zn2SnO4 (Y. Q. Jiang et al., 2012; Z. Li et al., 2012; Lim et al., 2012), 

BaTiO3 (Ma et al., 2012), CdIn2O4 (Cao et al., 2008), CuFe-O2 (Read et al., 2012) 

and SrTiO3 (Ma et al., 2012). Ternary oxides provide greater flexibility in tuning the 

chemical and physical properties of materials by varying the compositions (D. Chen 

et al., 2011). Among these ternary oxides, Zn2SnO4 is frequently reported as the most 

promising material for gas sensing applications. Recently, Tharsika et al. (2015) used 

a carbon-assisted thermal evaporation process to grow Zn2SnO4 NWs under ambient 

pressure and found it suitable for practical applications, such as gas sensing. 

Hydrogen (H2) gas is hard to detect because it is tasteless, colourless and 

odourless. However, it requires special caution in its handling because of its 

inflammable and explosive nature. Thus, precise hydrogen detection and constant 

observation is crucial for safe production, storage and exploitation of hydrogen in 
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industry. Zn2SiO4-based nanostructures have been widely studied because of their 

considerable potential applications and importance in the study of size- and 

dimensionality-dependent chemical and physical properties (Rhoderick et al.; Soole 

et al., 1991). However, Ge/Zn2SiO4 hybrid compound applications, such as H2 gas 

sensors have yet to be explored and reported. 

2.6 Growth Mechanisms of Thermal Evaporation Technique. 

Thermal evaporation (TE) technique has been extensively used for growing 

semiconductor materials in vacuum chambers or in furnace tubes. The TE 

mechanism is based on a vapor transport process, in which a material is physically 

released from a source material by heating and transformed into a substrate by gas 

carriers. No chemical reaction occurs when vapors directly solidify onto a surface. 

According to the difference in structure formation mechanisms, the widely used 

vapor transport process can be classified into two different categories, namely, the 

catalyst-free vapor–solid (VS) and catalyst-assisted VLS process. 

2.6.1 Vapor-solid (VS) process 

Synthesis utilizing the VS process is usually capable of producing a rich 

variety of nanostructures (Z. L. Wang, 2008, 2009), including NRs, NWs, nanobelts, 

and other complex structures. Without the aid of metal catalysts, VS growth is 

mainly used to synthesize metal oxides and certain semiconductor nanomaterials. 

According to the classical theories of crystal growth from liquid or vapor phases, the 

growth fronts perform a crucial function in atom deposition. Two kinds of 

microscopic surfaces exist, the first of which includes rough surfaces on which atoms 
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of about several layers are not well arranged. The deposition of atoms is relatively 

easy compared with that on a flat surface, and crystal growth can continue if enough 

source atoms are continuously provided. The second surface involves atomically flat 

surfaces, on which atoms are well arranged. Atoms from the source present weak 

bonding with flat surfaces and can easily return to the liquid/vapor phase.   

2.6.2 Vapor-liquid-solid (VLS) process 

The VLS process is a growth mechanism using catalyst assistance. The VLS 

mechanism is the most widely used mechanism for NW growth (Wagner et al., 

1964). Mohammad (2006) proposed a familiar mechanism to produce micrometer-

sized whiskers in 1960 to explain the growth of Si whiskers using Au as metal 

catalyst. Three well-known phases of the growth mechanism occur. The first phase is 

the formation of molecules (metal alloys) as catalyst and source materials. The 

second step involves the formation of liquid droplets on the substrate surface and/or 

at polycrystalline mounds, and the last step is crystal nucleation and axial growth of 

NWs  

In this process, various nanoparticles or nanoclusters are used as catalysts, 

such as Au, Cu, Ge, and Sn (Z. Fan et al., 2005). The formation of a eutectic alloy 

droplet occurs at each catalyst site. The alloy droplets absorb the vapor phase, 

resulting in supersaturated structures. Consequently, crystal growth occurs at the 

liquid–solid interface by precipitation, and NW growth commences. Thus, such a 

growth method inherently provides site-specific nucleation at each catalytic site. 

Based on the VLS mechanism, the diameter of NWs can be tuned by using different 

sizes of nanoparticles or nanocluster catalysts. In addition, the control of NW growth 
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location and alignment has been realized by using patterning techniques and 

selecting proper epitaxy substrates. 

2.7 Theory of X-Ray Crystallography 

X-ray crystallography is a method used to examine the coordination of atoms 

in a crystal, whereby an incident X-ray beam on a crystal is reflected into numerous 

specific directions. Based on the intensities and diffraction angles of the beams, a 

three-dimensional (3D) image of the density of electrons in the crystal can be 

acquired. In turn, the electron density determines the mean locations of the atoms in 

the crystal, in addition to their disorder, chemical bonds, and several other details. 

2.7.1 Bragg’s Law 

X-rays are waves of electromagnetic radiation, while crystals are regular 

arrays of atoms. Atoms scatter X-ray waves mainly by their electrons. This 

phenomenon is referred to as elastic scattering, and the electrons are called scatterers. 

Regular arrays of scatterers generate regular arrays of reflected waves. Although 

these waves disrupt each other in random directions through destructive interference, 

these add constructively in a few specific directions as resolved by Bragg's law, 

which was discovered by physicist Sir William Lawrence Bragg in 1912: 

 nd sin2                                          (2.1) 
 
where d (termed d-spacing) is the distance separating the diffracting planes, θ is the 

angle of incident photons, n is any integer, and λ is the wavelength of the X-ray 

beam. The constructive directions emerge as spots on the diffraction pattern referred 

to as reflections. Thus, X-ray diffraction (XRD) is derived from an electromagnetic 




