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IKATAN PASANGAN DALAM ALGORITMA GENETIK

ABSTRAK

Tesis ini membentangkan siasatan komprehensif berasaskan konsep ikatan pasangan (pa-
sangan monogami) yang akan dilaksanakan dalam fasa rekombinasi algoritma genetik (GA).
GA merupakan teknik pencarian heuristik berdasarkan prinsip dan mekanisma pilihan semula
jadi dan teori "survival of the fittest". Biasanya kromosom ibubapa akan dipilih pada setiap
generasi bagi menghasilkan kromosom anak melalui operasi percantuman (crossover) dan mu-
tasi. Proses ini diulangi sehingga syarat berhenti dipenuhi. Tetapi kadang-kala alam semula
jadi mempamerkan pembentukan hubungan yang berkekalan antara pasangan mengawan. Da-
lam masyarakat manusia moden, sesetengah burung, ikan, tikus, dan cicak, ikatan pasangan
merupakan aspek penting dalam tingkah laku sosial mereka. Mereka biasanya mengekalkan
pasangan yang sama sepanjang hidup - monogami sosial. Oleh itu, tesis ini mengkaji kese-
suaian aplikasi ikatan pasangan dalam GA. Dua kaedah GA baru akan dibentangkan: Kaedah
pertama dikenali sebagai Algoritma Genetik Ikatan Monogami (MopGA ). Dalam MopGA, kro-
mosom ibubapa akan berkekalan sehingga beberapa generasi. Kromosom anak yang terhasil
akan mengalami persaingan bagi memastikan hanya yang terbaik dikekalkan ke generasi baru.
Pemilihan kromosom ibubapa pula hanya akan berlangsung selepas ikatan pasangan berakhir.
Curang (infidelity) yang dilaksanakan sekali-sekala boleh menjana kepelbagaian, merebak ma-
klumat genetik di seluruh populasi dan mempercepatkan penumpuan. Kaedah kedua yang akan

dibentangkan dikenali sebagai MopGA Adaptif (AMopGA). Adaptasi parameter akan dilakuk-
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an secara automatik sepanjang operasi evolusi. Ini akan meningkatkan prestasi. Lebih-lebih
lagi, pengguna tidak perlu risau tentang kesesuaian parameter bagi GA lagi. Keputusan uji-
an menunjukan bahawa MopGA dan AMopGA memang berkesan berbanding dengan kaedah

semasa dari segi kualiti and masa pemprosesan.
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PAIR BONDS IN GENETIC ALGORITHM

ABSTRACT

This work presents a comprehensive investigation on the concept of pair bonds (monoga-
mous pairs) for the mating phase of genetic algorithms (GAs). GA is a heuristic search tech-
nique based on the principles and mechanisms of natural selection. Traditionally, parents are
selected at every generation to reproduce offspring through crossover and mutation operations.
The process reiterates until some termination conditions are met. However, nature sometimes
exhibits the formation of enduring relationships between mating partners. In modern human
society, some avian models, fish, rodents, and even lizards, pair bonds are integral aspects
of their social behaviour. These species usually share the same mating partners throughout
their lifetime - socially monogamous. Taking the cue from nature, this thesis studies the fea-
sibilities of pair bonds in GA. Consequently, two methodologies are proposed: Firstly, in the
Monogamous Pairs Genetic Algorithm (MopGA), parents are bonded and mated consistently
over several predefined generations. Selection of new parents pairs will only take place at the
end of pair bond tenure. Meanwhile, competition occurs between siblings to ensure only the
best offspring are retained. Occasional infidelity generates variety, spreads genetic informa-
tion across the population and speeds up convergence. Secondly, to improve the ease-of-use
of MopGA, an adaptive MopGA (AMopGA) is introduced. Algorithm sensitive-parameters
are tuned adaptively throughout the evolutionary process - further improving the performance.
Rigorous performance investigation of both methodologies are carried out on different notable
benchmark problems. The results reveal that the algorithms are very competitive to existing

approaches in terms of solution quality as well as computational effort.

XXX1i1



CHAPTER 1

INTRODUCTION

1.1 Preliminaries

Analogous to the evolutionary processes occurring in living nature, the principles of Ge-
netic Algorithm (GA) were initially conceived by John Holland and his colleagues at the Uni-
versity of Michigan back in the early 1960’s (Holland, [1975). GA, designed to simulate the
natural evolutionary system, grounded on Charles Darwin’s theory of survival of the fittest, is a
heuristic and probabilistic search algorithm. GA is well accepted for its simplicity of operation

and power of effect (Goldberg), |1989).

Unlike traditional optimization or search methods, GA examines a pool of probable so-
lutions simultaneously, not just one. Moreover, GA often does not require priori knowledge
of a problem to be solved. With only random choices, there is tendency to move towards
likelihood of improved regions in the search space. The observed behaviour has made GA par-
ticularly successful in solving problems in wide variety of fields, including scheduling (Chung
and Chan| 2012} |Chen et al.| [2012), engineering (Wang et al., 2012b)), robotic (Koker, [2013])

and transportation (Antony Arokia Durai Raj and Rajendran) 2012}, to name but a few.

The artificial evolutionary process begins with the construction of candidate solutions (anal-
ogous to chromosomes of biological system). They usually take the form of binary strings,
though real-valued and other forms are not by all rare. At each generation, a set of chromo-

somes is created through genetic operators like crossover and mutation. Each chromosome



is associated with a fitness value that is found by evaluating it with an objective or fitness
function. The fitness function provides a measurement of quality used by the selection mech-
anism to guide the search towards regions where average fitness of the population improves.

Crossover and mutation operations facilitate diversity while selection ensures quality.

While GA enjoys a wide range of credits as novel optimization, it too suffers from some
challenges, including premature convergence (Kramer, [2010), low speed of convergence (Shi
et al.l 2013), random roaming, and low accuracy of solution (Zhang et al., [2009)), especially

when dealing with large-scale optimization problems.

In the search for GAs that do not succumb to premature convergence and that efficiently
identify good solutions to computationally difficult problems, many organizations of the popu-
lation and the operations on its members have been proposed. These include the island models
(Cheng and Yang| [2010), cellular models (Villagra et al., [2014), hierarchical models (Yu and
Ma, [2012)), heterogeneous population-based models (Lahoz-Beltra et al., [2009; |Akbari et al.,
2010) and others. Generally, this work presents another such model, based on the idea of

monogamy.

1.2 Background
1.2.1 Exploration and Exploitation

In many literatures, the terms exploration and exploitation often appear with association to
the contribution of selection and genetic operators to search effectiveness. Nevertheless, many
have taken for granted the intuitive meaning of the concepts and left the interpretation open for

readers. Explicit investigation of these terms is rare and as put by [Eiben and Schippers| (1998)



"

. there is no generally accepted perception on exploration and exploitation in evolutionary
computing.". Of course, it is not mandatory to explain the working of GAs merely on explo-
ration and exploitation, but we feel that it is appropriate for the clarification of our research

intentions.

The common view about how GA works is closely associated with the exploration of search
space by genetic operators, and exploitation by selection mechanism. Mutation and crossover
are often seen as playing the roles of exploitative operator and explorative operator, respec-
tively. Understandably, mutation is exploitative because it often resulted in small changes and
preserves most of the existing genetic materials. Crossover performs recombination of genetic
information from parents to form new offspring, thus suited the role of exploring new search

region.

However, a different opinion exists. |[Eiben and Schippers| (1998)) provide an early discus-
sion on evolutionary exploration and exploitation. Their works question the common belief
that selection takes on the role as exploitative operator while crossover and mutation perform
exploration. They find no universally accepted agreement on this topic. They also argue that
mutation can be seen as explorative operator since it introduces new material in an unbiased
manner to the population. Similarly, crossover takes the role of exploitative operator when one

sees it as re-using existing old genetic materials for reproduction.

Nonetheless, most authors (CrepinEek et al., [2013)), including this one, state the essence
of striking a good balance between exploration and exploitation. The two terms are seen as
opposing forces that need to be balanced in order to achieve good results. Following this con-
vention, exploitation can be viewed as the good use of current information, while exploration
is the discovery of new materials. The rest of the research will be grounded on this concept to

improve GA performance.



1.2.2 Convergence Behaviour

In evolutionary search, convergence is related to the uniformity of its population. A popu-
lation is said to have converged when its average population fitness is approximated to the best

individuals.

Convergence can be attributed to the presence of stochastic errors such as the genetic drift.
GAs have been observed to have converged even in the absence of selection pressure (e.g. using
a constant fitness function) or with very low or zero mutation rate. The convergence to (local)
optima can be understood as an instance of genetic drift. The process is however non-ergodic
in nature. That is, the limit population strongly relies on the initial population (Schmitt, 2001).
Consider, if by chance, a gene becomes predominant in the population, then there is a high
chance that it will become more predominant in the coming generations. In a finite population,
if the predominance is sustained over several successive generations, then the gene may spread
to all individuals in the population. Since crossover does not introduce new gene values and

mutation is generally low, each gene eventually becomes fixed over time.

As pointed out by Rudolph|(1994), convergence to global optima is not an inherent property
of canonical GA but rather a result of the algorithmic trick of keeping track of the best solution

found over time.

Kramer (2010) states that "Evolution rewards short term success...". An evolutionary pro-
cess is bound to get trapped in local optima. When the search converges towards local points,
the phenomenon is known as premature convergence. It usually arises when the genes of some
high rated individuals dominate the population too quickly; restricting genetic operators from
producing any more better offspring than their parents (Fogel, |1994). As a result, the algorithm

is halted from searching for other possibly better solutions.
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Premature convergence behaviour is often attributed to the randomness nature of canonical
GA in the mating process even though selection pressure has the tendency to push the algorithm

towards better search regions.

Another cause of premature convergence is related to the decrease in population variance.
Hence, the countermeasure proposed by many authors is to maintain higher diversity in the
population pool. Diversity is the volumes of dissimilarities between individuals within a popu-
lation (Artyushenko) [2009). By virtue maintaining higher population diversity would alleviate

premature convergence, and obtain better results (Popovic and Murty, [1997).

Increasing the population size is an intuitive solution for maintaining higher population
diversity. However, this leads to major increase in solution space and computational time,

especially in large-scale problems. Thus, larger population is not a wise choice at time.

Increasing mutation rate may seem promising at first, but it too, alone is not an attractive
solution. Mutation by itself is not enough to resume diversity for the entire population, espe-
cially when the population is already stuck at a sub-optimal stage. If mutation is too high, then
the population becomes very unstable and will not be able to converge. Determining the choice

of best mutation rate can be both tedious and very much problem-dependent.

Therefore, the likelihood ’ingredient’ to reaching global optima is to strike a balance be-

tween exploration and exploitation in GA (Eiben and Smith, [2003]).

1.2.2(a) Dilemma

Increasing selective pressure speeds up search with the payoft of loosing population diver-
sity fast. On the other hand, maintaining population diversity helps to escape trapping in local

optima, but offsets the effect of increasing selective pressure.



As noted, population diversity is closely related to GA convergence. The effect of loss of
genetic diversity is twofold. On a negative side, it causes premature convergence. But, on a

positive effect, it is required to drive the population towards promising region(s).

1.2.3 Parameter Setting

A common critic in GA applications is the difficulties in deciding the proper control pa-
rameters. Examples of such parameters include the population size, crossover probability and

mutation probability.

Despite the long history of GAs, there appears to be no widely accepted guides for the
use of right parameters. It is obviously time consuming to tune each parameter manually.
Moreover, parameters appear to be problem-dependent. Different set of parameters may work

well on some problems, but not for the others.

The number of published papers on various parameter setting methods has increased dra-
matically over the years (Eiben and Smit, 2011j [Kramer, 2010). This shows how important
parameter settings is in GA. While parameter values largely influence an algorithm’s perfor-
mance, there exists no universally agreeable values for all problems; posing huge challenge to
the GA communities. Some believes that parameter tuning is a special case of Evolutionary

Algorithms (EAs) design and thus, an optimization problem in itself (Kramer, 2010).

Following the parameter setting taxonomy offered by [Eiben et al| (2007), parameters can
be chosen before or during GA runs. The former, also known as parameter tuning is often
time consuming, less accurate and problem-specific. The allocated value remains at constant

throughout evolution. In the latter case (parameter control), an initial value undergoes changes



during GA runs. Included in this category of parameter control are the deterministic, adaptive,
and self-adaptive approaches. Due to flexibility and less time consuming, the parameter con-
trol approaches are receiving much attention in the late (Elsayed et al., 2011; |Rajakumar and

Georgel |2013} |Osaba et al., [2014)).

1.3 Pair Bond

In nature, monogamy implies a social organization in which the male and female organisms
breed exclusively with each other, even though extrapair copulations or infidelity are commonly
found in monogamous species (Young and Wang, |2004; [Hatchwell et al., 2000). In monoga-
mous society, mating pairs display selective (though not exclusive) affiliation, copulation, nest

sharing and biparental care of offspring. Pair bond is a form of intense social attachments.

The duration of pair bond and age have been suggested to be the two main determinants for
reproductive success in long-term monogamous pair bonding. The hypothesis has been proven
true by |Griggio and Hoi|(2011) in their studies of the long-term pair bond duration in socially
monogamous bearded reedling, Panrus biarmicus m They find that the longer the duration of

pair bonds, the more successful they are in breeding attempts, hatching and fledging.

Recent discoveries in molecular, cellular and neurobiology further enable insightful under-
standing of pair bonding. Pair bond has a biological architecture with molecular and neural
mechanisms (Young and Wang|, 2004; [Young et al., 2005). Their research presented a neuro-
logical model of pair-bond formation based on studies in monogamous rodents. They observed
that concurrent activation of neuropeptide E] and dopamine E] receptors in the reward centers of

the brain during mating causes a conditioned partner preference - pair bonds.

IThe bearded reedling is a small orange-brown bird with a long tail, also known as bearded tit or bearded
parrotbill.

2The ability to recognize individual is contributed by neuropeptides oxytocin and vasopressin.

3Mesolimbic dopamine is involved in reinforcement and reward learning.
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Also utilizing neural mechanisms, Resendez and Aragona) (2013)) suggest that monogamous
pair bonds are formed and maintained by a balance between mu- and kappa-opioid receptorE]
activation. Endogenous opioid transmission influences the ability of an animal to see positive
stimuli as reward, whereas harmful ones as aversion. Hence, when bond is seen as rewarding,

they will be maintained properly in the relationship (Resendez and Aragona, [2013)).

To better illustrate the process of pair bonding, we refer to Figure[I.T]- a simplified version
of striatopallidal regulation of pair bonding (Resendez and Aragona, [2013)). Prior to bond, two
individuals must meet - Meeting. Then pair bond is formed through the presence of neural
mechanisms where both parties acknowledge the rewarding neural events - Formation. In
the next stage, the bond must be maintained - Maintenance. That is, the individuals involve
show preference to only one mate and reject other potential mates as mediated by the neural
mechanism. At the same time, the absence of a partner is likely to induce stress and negative
effect on the individual and further promote pair bond maintenance - Isolation (Bosch et al.,

2008).

___

Figure 1.1: Striatopallidal regulation of pair bonding - a simplified version (Resendez and
Aragona, 2013))

4Opioid receptors are a group of G protein-coupled receptors with opioids as ligands. They are widely dis-
tributed in the brain, spinal cord and digestive tract



1.4 Inspiration and Motivation

Fascinated by animal monogamy, this thesis draws inspiration from the fact that apart from
modern human society, 90% of bird species are monogamic and usually exhibit biparental
care of young (Schuiling, 2003). Some species of fish (Oldfield and Hofmann, 2011}, rodents
(Young et al.,[2011)), and lizards (Leu et al.|2011) also display enduring relationships between

mating partners.

Social monogamy has evolved many times and its occurrence has left plethora of studies in
evolutionary biology (Hatchwell et al., 2000; |Schuiling), 2003; Hosken et al., [2009; |Weil3 et al.,
2010). Among the widely studied socially monogamous birds, extrapair or infidelity has been

commonly observed (Hatchwell et al., [2000).

Even though the understanding of monogamy and infidelity is still at its infancy, numerous
hypotheses have been attempted to explain the presence of infidelity in monogamous soci-
ety. These include the good genes and future partnerships hypotheses (Ramsay et al., 2000).
Briefly, the former predicts mating success with bias against maladaptive alleles, while the

latter favours potential mates.

With pair bonding, the highly acclaimed benefits, especially in humans include but not
limited to longer livespan compare to their unpaired counterparts, and ensuring physical and

psychological well-being of offspring (Schuiling, 2003 Hosken et al.,[2009).

To our best knowledge, GAs do not conform to monogamous structure. Nonetheless, if
social monogamy survives the evolution of nature, we believe such structure may have strength

in itself.



1.5 Research Problem

GAs are an important emergent computing methodology and a hot topic for research due to
their versatility in solving difficult problems, especially in the optimization fields. The number

of published papers on GAs has increased by leaps and bounds over the last few decades.

However, in the midst of glory, there exist the two most frequently cited criticisms of GAs:
1) GAs can easily get stuck at local optima (premature convergence), and 2) they often need

careful fine-tuning of parameters (Eiben and Smith, [2003)).

In order to obtain good results, striking a balance between exploration and exploitation is
essential (Crepinsek et al.l 2013). Generally, achieving proper balance between exploration
and exploitation has been done through careful control-parameter setting. For instance, a high
crossover and mutation rates will lead to more exploration of the search space, but at the ex-
pense of exploiting existing solutions and missing the good ones. Conversely, low crossover

and mutation rates result in many unexplored search regions.

To make matter worse, there exists interactions among algorithm parameters (De Land-
graaf et al. 2007, and hence optimizing them cannot be performed independently. Ideally,
all combinations of setting should be experimented. However, in the absence of optimization
experience and prior knowledge, it is almost inconceivable to identify a proper setting for GAs
without resorting to trial-and-error procedure. The trial-and-error scheme usually requires high

computational costs.
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Moreover, parameter setting is often problem-dependent, i.e. the control parameter setting
that leads to best result for one problem may not produce the best result for another problem.
In view of exploration/exploitation, this means that every problem differs in the amount of
exploration and exploitation required. For example, multimodal function optimization requires

more exploration compared to unimodal function optimization.

To achieve best performance, it is also necessary to apply different strategies coupled with
different parameter settings at different stages of the evolution (Qin et al., [2009). In other
words, different amounts of exploration and exploitation are required at different evolutionary

stages.

This thesis presents a method that incorporates and successfully combines two mechanisms
(pair bond and infidelity) for guarding against premature convergence with minimum effort in

parameter tuning. The algorithm is inspired by social monogamous mating system in nature.

Moreover, conventional GAs do not conform to monogamous structure - selection of par-
ents for mating takes place at every generation without enduring partnership between parents.
Conversely in monogamous system, pair bond is retained over successive generations. Ex-
ploration and exploitation of the search space can be effectively controlled by the degree of

infidelity and pair bond, respectively.

1.6 Research Objectives

The overall research aim is to incorporate the pair bond and infidelity concepts inspired
by social monogamy into GA in order to improve performance with least effort in parameter

tuning. The main objectives of this thesis are:
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1. To incorporate pair bond and infidelity roles found in monogamy mating system into GA

in order to improve performance. Performance can be improved by:
(a) maintaining population diversity

(b) increasing exploitation of search space through pair bonding

2. To improve ease-of-use by reducing user effort required in appropriate control parameter-

setting.

1.7 Research Contributions

The key contributions of this thesis to the literature are :

1. Introducing a new variant of GA which employs the concept of pair bond and infidelity.
It is henceforth called the Monogamous Pairs Genetic Algorithm (MopGA).

* Two new parameters are introduced, namely 1) pair bond tenure, and 2) infidelity
rate. The former controls the duration of pair bond and is associated with the role
of exploitation. Meanwhile, the latter determines the frequency of exploring other
search regions. Together, the two operations control the exploration and exploita-

tion of the search space.

* In monogamous state, the number of parents selections is reduced. The longer the
pair bond tenure, the lower the number of parents selection because bonded parents
remain attached for reproduction without the need for re-selection. Consequently,

reduction in computational effort is achieved.

» Enforce the use of crossover operation at every generation. As a result, one con-

ventional parameter tuning (i.e. crossover rate) is reduced.

2. Introducing an enhanced version of the MopGA, known as Adaptive Monogamous Pairs

Genetic Algorithm (AMopGA). .



* Remove parameter tuning burden from GA practitioners by:
— dynamically adapting mutation rate using deterministic rules.
— dynamically adapting pair bond tenure and infidelity rate using adaptive pa-
rameter control approach with feedback from the search as input to the logistic

functions.

* Further improvement in performance accuracy is achieved via optional use of:

— adaptive selection of crossover operators

— secondary mutation operation

1.8 Scope of the Research

The thesis centres around the basic structure or framework of genetic algorithm with focus
on bonds between parents. This directly affects the frequency of parents selection. However,
in order to study the effects of bonds, generic operators are used unless on special occasions

deem necessary.

The research is limited to optimization in static environment with single-objective func-
tions. Furthermore, the choices of test functions are made based on common use in empirical
literature and challenging in a diverse area of applications, though limited to 0/1 knapsack

problems and numerical optimization problems.

1.9 Organization of Thesis

The thesis is organized as follows: Chapter [2]presents a quick and superficial overview of a
standard genetic algorithm, followed by literature survey on the various developments in GAs,

in particular on effort related to this work.
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In Chapter [3] two methodologies are proposed and described in details. They are 1) the
basic monogamous pairs genetic algorithm (MopGA), followed by 2) an enhanced version,
namely the AMopGA, which incorporates adaptive parameters and additional performance

improvement features.

Detailed description of the test problems and basic experimental setup can be found in
Chapter[d Chapter[S]introduces the reader to the properties of MopGA using artificial test func-
tions. The effect of changing various parameters are also tested, further illustrating the search
and convergence behaviour of the proposed methodology. Preliminary tests on AMopGA are

also being carried out using similar test problems in Chapter [6]

Thereafter, applications on widely known NP-hard problems in different domains will be
employed to exhibit the robustness, flexibility and potential of the proposed methodologies.
Two case studies are being applied in Chapters [7] and [§] for the domain of 0/1 knapsack and

real-parameter optimization problems, each separately.

Finally, in Chapter [9]a summary of claimed results and future possibilities are provided. It
is hoped that the reader will be challenged to prove or disprove the claims made throughout

this thesis, and extend the research in new directions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Preliminaries

Evolution by natural selection has been one of the most studied themes of modern science.
Darwin’s theory of evolution (Darwin and Beer,|1951) depicts biological system as the product
of ongoing process of natural selection. Natural selection favours individuals that are well

adapted to the environmental conditions. This phenomenon is also called survival of the fittest.

Likewise, there is a form of evolution, known as Evolutionary Algorithm (EA), which takes
place in a computer system. EA is a general term used to represent a group of related but dis-
similar methodologies that all exploit ideas from natural selection and evolution. Genetic Al-
gorithm (GA) (Holland, |1975)), Evolution Strategies (ES) (Rechenberg, |1994;Schwefel, |1993)),
Evolutionary Programming (EP) (Fogel et al., [1966; Fogel, [2006) and Genetic Programming

(GP) (Koza, |1992) are the four prominent approaches in EA.

Briefly, these approaches share a few common characteristics (Yu and Gen, 2010): population-
based, fitness-oriented and variation-driven. Firstly, EAs maintain a group of potential solu-
tions, known as population, which enables optimization to progress in parallel. Next, every
solution in a population is referred to as an individual. Each individual is associated to some
form of gene representation (encoding) and performance evaluation, called its fitness value. Fit-
ter individuals are usually preferred by EA. Finally, individuals undergo a number of variation
operations (such as mutation, recombination, crossover), which is fundamental to searching the

solution space, until some termination conditions are satisfied.
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Initially conceived by [Holland (1975), GA belongs to a class of stochastic search methods
inspired by natural selection. GA iteratively operates on a population of individuals, each
of which represents a potential solution to a given optimization problem. In each iteration
step, known as generation, individuals in the current population are evaluated and assigned a
fitness value. A complete generation cycle comprises three basic genetic operators, namely
selection, crossover and mutation. Detailed description of a Standard GA (SGA) can be found
in Section [2.2] Theoretical background to better understanding the behaviour of SGA follows

in Section 2.3

GAs’ outstanding performance has been validated through various optimization problems.
A plethora of algorithm variants have also emerged leading to increase efficiency and effective-
ness. These enhancements redefine: 1) the way genes are encoded in chromosome (Kirdly and
Abonyi, 2011; |Abdul-Rahman et al., 2011)), 2) operation of genetic operators (Elsayed et al.,
2011; Mudaliar and Modi, [2013)), 3) evaluation of fitness function (Kim and Cho, 2001}, 4)
interaction of individuals in the population (Gong and Fukunagal 2011} |Villagra et al., 2014),
and 5) hybridization (Meeran and Morshed, [2012)). General overview of these variants will be

discussed in Section 2.4

Furthermore considering the theme of this thesis, special focus will be made on two main
aspects: GAs with multiple offspring (Section|2.4.1]) and parameter setting in GA (Section|2.4.2).
Although far from exhaustive, it is with great hope that one will be able to better appreciate
the significant of the proposed methodologies after following through some previous work.

Finally, we end this chapter with Section [2.5]
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2.2 An Overview of the Standard Genetic Algorithm

This section presents a brief outline of a standard genetic algorithm (SGA). A more detailed
exposition can be found elsewhere (Eiben and Smithl, 2003; Michalewicz, 1998). In what
follows, a concise description of the algorithm is provided in Algorithm [2.1] while postponing

most details to the ensuing subsections.

Algorithm 2.1 Pseudo code of a typical SGA
Require: Fitness function (f), GA parameters: population size (), maximum iteration (G),
crossover rate (P.), mutation rate (BP,,)

Ensure: Best solution

1: t=0

2 init(BY = {p\”,  k=1,2,..,N})

3: while Termination criteria not met do

for j=0to ¥ do

4
5 oj= selection(‘lﬁg))
6: Tj = crossover(cj, P.)
7 T; = mutation(T;, P,,)
8 fj = evaluation(t;)

9: ‘ﬁff) = ‘BE’) Ut

10:  end for

1 ;Bl(jwl) _ glg(()t)

12: t=t+1

13: end while

At generation ¢ = 0, the parental population ‘}35,0) = (p1,P2,...,Pn) is initialized randomly
and their fitness values calculated in line 2. After initialization, the repeat-until-loop is entered
(lines 3-13). From the parental population ‘Bg) at generation ¢, a new offspring population &B((f)
is produced via N /2 number of runs through lines 4-10. Each cycle generates two offspring:
Firstly, in selection step (line 5), two parents ¢ are chosen from ‘Bg). The selection process
is dependent upon the parental fitness values f. This is followed by recombination operation

(crossover) in line 6, where the two parents swap segments (at selective loci), and produce two
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new offspring 7. The probability of crossover is controlled by a crossover rate P, parameter.
Then mutation is applied at mutation rate P, on the resulting offspring in line 7, and their fitness
are evaluated in line 8. Thereafter, the offspring are added into the intermediate offspring pool

B in line 9.

In line 11, the offspring population ‘q3£t> replaces the old parent population ‘435,0 to become
the new parent population *BE,H]) of the next generation. Finally, the termination condition is
verified. The evolutionary process ceases when the conditions are satisfied. In the followings,

a thorough discussion of each SGA components is provided.

2.2.1 Encoding

In any real world applications, the search space is defined by a set of objects with different
parameters each. The goal of optimization problem working on these parameters is to optimize

them.

Likewise in GA, a chromosome or an individual is a set of parameters that define a can-
didate solution to the optimization problem. The smallest unit in a chromosome is known as
gene. A gene consists of two properties, namely its value (also known as allele) and its location
(called locus) (Yu and Gen, [2010). An allele is usually represented by a single symbol. For

instance, in a binary representation, an allele takes on the value of O or 1.

GAs work alternatively between the coding space and the solution space. Analogous to
population genetics (Nagylaki, 2012}, coding space is also known as the genotypic space, while
solution space represents the phenotypic space (see Figure 2.1). Genotype depicts all the in-

formation stored in a chromosome. Meanwhile, phenotype is an overall outward description
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of an individual. The construction (mapping) of phenotype from genotypic information forms
an essential part of GAs. While genetic operators such as crossover and mutation operate on
the level of the genotype, evaluation of individual is performed on the level of the phenotype

(Rothlauf, [2006).

Genotypic space Phenotypic space
{0, 1}t

00011111 Decoding

10011011
10100010
A——
00011010 ]

Encoding
(representation)

Figure 2.1: An example of mapping between binary genotypic space and phenotypic space. L
represents the chromosome length.

Representation or encoding assigns phenotypes to the corresponding genotypes. It has been
shown that the performance of GA may be affected by the underlying encoding scheme used
(Abdul-Rahman et al,2011)). There exists a variety of encoding schemes within the literature,

with binary and real (floating point) encodings being the most popular.

Binary representation is one of the earliest encoding scheme found in GAs (Whitley, [1991;;
Mitchell et al., 1992; Watson and Pollack, 2000). The search space is defined by {0, I}L, where
L is the length of a binary vector x = (x1,x2,...,x1,) € {0, I}L (Goldberg, 11989). This makes the
search space size 2L. The genotype-phenotype mapping is dependent upon the optimization
problem undertaken by GA. In general, a majority of the other representations are convertible

to binary scheme, with the exception of permutation problem.
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On the other hand, in real-valued encoding each gene takes on the form of floating-point
numbers (Picek et al., 2013} Elsayed et al., 2013a). The search space is presented by R”, where
L represents the real-valued chromosome length. In this case, the genotype space is identical

to the phenotype. The real-valued encoding is conceptually closest to real design space.

In combinatorial optimization problems, the commonly employed encoding scheme is
based on integer or literal permutation (Liu and Zeng, 2009; |Chang et al.l |2010; Noraini and
Geraghty, [2011). The size of the search space is Q, where Q is the Q-ary alphabets used for

representation, e.g. ternary, quaternary, quinary, etc.(Rothlaut] 2006).

2.2.2 Fitness Function

Each individual in a GA population comprises two properties, namely its encoding structure
(recall Section [2.2.1)) and its quality. These two components are usually problem dependent

(Whitleyl [1994).

The quality of an individual is determined by a fitness value. That is, fitness value is used
to evaluate how much an individual fits the problem undertaken. The function that is used to
calculate this fitness value is known as fitness function. Meanwhile, evaluation refers to the

process of obtaining a fitness value from an individual (Yu and Genl 2010).

2.2.3 Selection

According to Blickle and Thiele|(1995), the central tenet of selection operator is to select a
set of individuals in a way that improves the average quality of the population. To achieve this
goal, the selection operator gives higher quality individuals a higher chance of being used for
generating the next generation population. The quality of an individual, in turn is pertained to

a fitness function.
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There exists many different selection schemes for GAs, each with varying characteris-
tics. The most prominent are proportionate selection (Holland, |1975) and tournament selection
(Goldberg, [1989)). In the former, individuals are selected for reproduction in proportion to their
fitness relative to the other individuals in the population (also referred to as roulette wheel

selection). The probability of an individual x; being selected is calculated as:

f(xi)

7:1f(Xj)

where N symbolizes the population size. The higher the individual’s fitness, the higher its

chances of being selected for reproduction.

On the other hand, in tournament selection, s number of randomly chosen individuals com-
pete for a place in the mating pool, with the high fitness individuals winning the tournament.

The value s is referred to as the tournament size. It controls the selection pressure [}

2.2.4 Crossover

Crossover is one of the primary variation operators in GAs. It is a reproduction technique
that usually employs two parents to produce two offspring by exchanging portions of the par-
ents’ internal representation. These offspring carry partial information from both parents. The
frequency of crossover is determined by a crossover rate P, that is recommended between 0.5

and 0.9 (Garai and Chaudhuril, 2002]).

S5The selection pressure is the degree of favouring better individuals - the higher the selection pressure, the more
better fitness individuals are selected (Miller and Goldberg] |1995)
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Various crossover procedures exist in GA literature. Perhaps, the simplest form is the
single-point (also known as 1-point) crossover. Here, a point of exchange is set at any ran-
dom locations in the two individuals’ genomes. The two individuals then exchange genomes
at the ’breaking point’. Whereas in 2-point crossover, as the name implied, two crossover lo-
cations are randomly selected and the genomes between them are exchanged. The two types of

crossover operators described are visualized in Figure[2.2]

Example (a): 1-point crossover

Parent1: ‘ ‘ ‘ ‘ ‘ }—) Childl:‘ ‘ ‘ ‘ ‘ ‘
Parent2: ‘ ‘ ‘ ‘ ‘ }—) Childz:‘ ‘ ‘ ‘ ‘ ‘

Example (b): 2-point crossover

Parentl: ‘ ‘ ‘ ‘ }—) Childl:‘ ‘ ‘ ‘ ‘
Parent2: ‘ ‘ ‘ ‘ }—) Childzz‘ ‘ ‘ ‘ ‘

Figure 2.2: Examples of 1-point and 2-point crossover operators

In general, there can be n number of crossover points selected at random. The n-point
crossover (Eshelman et al., |1989) and uniform crossover (Syswerda, |1989) are the other two
commonly used crossover operators in binary encoded GAs. In a uniform crossover, alleles at

each parents loci will be swapped with probability 0.5.

De Jong and Spears| (1991) show the relationship between crossover and population size.
They conclude that with 2-point crossover, performance improves with large population size.
On the other hand, uniform crossover gives better results for small population size. |[Eshelman

(1991) also make similar arguments, enlisting the advantages of disruptive operators ﬂ

% An operator is disruptive if it destroys schemata that are common to both parents (Spears et al.,[1992).
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As |Eshelman et al.| (1989)) analyse crossover operators in terms of "positional" and "distri-
butional" biases, their empirical studies suggest that no n-point, shuffle, or uniform crossover

is universally better than the others.

More recently, Picek et al.|(2013) compares 16 real-coded crossover operators on 24 bench-
mark functions to show that there are significant differences in efficiency of different crossover
operators as affected by the distinctive properties of each fitness function. The researchers

conclude that combining crossover operators yields the best results.

2.2.4(a) Roles and Characteristics of Crossover in GAs

Generally, crossover serves two roles, namely disruption and construction. Additionally,
it exhibits the characteristics of exploratory power. The following sub-sections discuss each

element in further details.

Disruption role. Following the formal schema analysis of GAs by Holland! (1975)), investi-
gations on the disruption rate of crossover have gained momentum (De Jong and Spears),[1992).
They study the likelihood that a sampling of the k-th hyperplane H; will be disrupted by a par-
ticular crossover. For instance, a string 11110 with schema H = 1 % %10 has an order schema
o(H) = 3 such that k = 3 and Hj represents the 3rd order hyperplane (more description about
schema can be found in Section 2.3)). In other words, a crossover operator that produces off-
spring that are not members of the same subspace as their parents is more disruptive than the

one that produces offspring that are in the same subspace as (or more similar to) their parents.

Even though disruption is often associated with exploration, that does not necessarily mean
useful exploration. Rather, it implies that a hyperplane sample has been modified and it is now

different from the original.
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According to [Syswerdal (1989), the uniform crossover is more disruptive than 1- and 2-
point crossovers. Whereas, the 2-point crossover is best at minimizing disruption. |De Jong
and Spears| (1992) further show that the disruption rate of uniform crossover is independent of

hyperplane defining length. The disruption ability of the crossover operator depends on:

1. position of crossover point(s)

2. alleles common to both parents of the k-th hyperplane

Construction role. In contrast to disruption, when an operator can preserve the similarity
exhibited by parents, it takes on the constructive role. This idea stems from|Syswerda) (1989)’s
hypothesis that a more positive theory of crossover is constructive in nature (rather than dis-

ruptive). |De Jong and Spears| (1992) calls this the recombination potential.

In construction theory, the probability that an offspring within a hyperplane can be con-
structed from existing parents are calculated, instead. |De Jong and Spears (1992) shows that
highly disruptive crossover operators are also highly constructive. For instance, the uniform
crossover (which is also highly disruptive) has higher recombination potential compared to the

1- and 2-point crossover (De Jong and Spears, |1992; |Syswerda, [1989)).

In a diverse population, especially, crossover displays considerably higher constructive
level than mutation (Spears et al., [1992). The recombination ability of crossover is a spe-
cialized form of survival (Syswerda, [1989)); ensuring any lower order schema will appear on

the same string and leading to the construction of higher order schema.
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