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SUATU MODEL RANGKAIAN NEURAL
WAVELET YANG DITAMBAH BAIK UNTUK

PENGESANAN DAN RAMALAN SERANGAN EPILEPSI

ABSTRAK

Epilepsi merupakan suatu penyakit neurologi yang sangat lazim dan ditakuti

orang ramai. Banyak kajian telah dibuat untuk membangunkan pengelas automatik

yang dapat memberikan ketepatan yang lebih tinggi. Pengelas automatik ini dapat

membantu doktor dalam mengenali pelbagai segmen isyarat electroencephalography

(EEG) yang berbeza. Dalam kerja penyelidikan ini, suatu model rangkaian neural

wavelet (RNW) telah dicadangkan bagi tujuan pengesanan dan ramalan serangan

epilepsi. Arkitektur dan konfigurasi RNW dapat ditambah baik menggunakan

pendekatan metaheuristik. Khususnya, algoritma carian harmoni (CH) digunakan

dan diterapkan dalam proses pembelajaran RNW. Tesis ini mengandungi tiga

sumbangan utama. Pertama, algoritma CH digunakan dalam proses pemilihan

fitur. Algoritma CH, yang pada asalnya digunakan untuk menyelesaikan masalah

pengoptimuman yang melibatkan nombor nyata, telah diubah suai dan digunakan

dalam proses pemilihan fitur yang melibatkan nilai binari. Di samping meringkaskan

arkitektur rangkaian, penurunan dalam bilangan fitur turut dapat mengurangkan

kos komputasi. Kedua, algoritma CH digunakan untuk menentukan lokasi vektor

anjakan dalam neuron tersembunyi RNW. Suatu set vektor anjakan yang baik

secara tidak langsung berupaya meningkatkan kecekapan proses pembelajaran

RNW. Untuk mencapai matlamat ini, algoritma CH dihibridkan dengan algoritma

c-min kabur jenis kedua. Ketiga, algoritma CH diterapkan dalam algoritma

pembelajaran RNW. Algoritma CH secara khususnya digunakan untuk menentukan

nilai pemberat sinaptik dan bias. Strategi inisialisasi memori harmoni dan

improvisasi yang baru diperkenalkan dalam algoritma pembelajaran CH yang

dicadangkan. Keberkesanan ketiga-tiga kaedah penambahbaikan tersebut diuji
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dengan sepuluh set data pembelajaran mesin UCI. Simulasi awal melaporkan

bahawa kaedah hibrid menunjukkan prestasi yang lebih unggul berbanding dengan

algoritma konvensional yang standard. Selain itu, model RNW yang dilatih

dengan CH melaporkan keputusan yang setanding dengan model RNW yang dilatih

menggunakan algoritma metaheuristik yang lain. Model RNW yang ditambah baik

dalam tiga aspek yang berbeza kemudiannya diuji dalam dua aplikasi dunia sebenar,

iaitu pengesanan dan ramalan serangan epilepsi. Kaedah transformasi wavelet diskrit

digunakan untuk memproses isyarat EEG bagi menghasilan kumpulan pekali wavelet

yang berbeza, berpadanan dengan jalur frekuensi masing-masing. Keputusan

simulasi melaporkan bahawa model RNW yang ditambah baik menunjukkan prestasi

yang lebih baik jika dibandingkan dengan kaedah pembelajaran mesin lain yang

dilaporkan dalam literatur. Keputusan ini menunjukkan potensi penggunaan dan

pelaksanaan model RNW yang dicadangkan dalam bidang epileptologi.
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AN ENHANCED WAVELET NEURAL NETWORK MODEL
FOR EPILEPTIC SEIZURE DETECTION AND PREDICTION

ABSTRACT

Epilepsy is a very common and much-feared neurological disorder. Much research

has been done in developing better automated classifiers with higher accuracy that

can help clinicians identify the different segments of electroencephalography (EEG)

signals. In this research work, an enhanced wavelet neural network (WNN) model

is proposed for the purpose of epileptic seizure detection and prediction. The

architecture and configuration of WNNs can be further enhanced using metaheuristic

strategies. Specifically, the harmony search (HS) algorithm is employed and

incorporated in the learning of WNNs. The contribution of this thesis is threefold.

Firstly, the HS algorithm is used in the feature selection stage. The HS algorithm,

which is originally used for optimization problems involving real numbers, is modified

and employed in the task of feature selection, which involves binary values. Apart

from simplifying the network architecture, the reduction in the number of features

also reduces computational cost. Secondly, the HS algorithm is employed to find

the translation vectors of the hidden nodes of WNNs. A good set of translation

vectors will indirectly increase the efficiency of the learning process of WNNs. To

achieve this goal, the HS algorithm is hybridized with the type-2 fuzzy c-means

clustering algorithm. Thirdly, the HS algorithm is incorporated in the learning

algorithm of WNNs. In particular, the HS algorithm is used to determine the

synaptic weights and bias terms of WNNs. Novel harmony memory initialization

and improvisation strategies are incorporated in the proposed HS-based learning

algorithm. The effectiveness of the three aforementioned improved methods are first

tested using ten sets of UCI machine learning data sets. The preliminary simulations

report that the hybridized methods give superior performance than the conventional

xx



stand-alone algorithms. Also, WNNs models that are trained using the HS algorithm

and other metaheuristic approaches report comparable results. The WNNs models

with enhancements in three different aspects are then tested using two real world

applications, namely in the tasks of epileptic seizure detection and prediction. The

discrete wavelet transform (DWT) method is used to pre-process the EEG signals to

yield different groups of wavelet coefficients, which correspond to different frequency

sub-bands. Simulation results show that the enhanced WNN model outperforms

most of the other machine learning methods reported in the literature. This suggests

the potential usage and implementation of the developed classifiers in the field of

epileptology.
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries

Epilepsy is a common neurological disease, affecting approximately 50 millions people

worldwide (WHO, 2015). This medical disorder is characterized by the occurrence

of recurrent seizures. The development of better expert systems in the diagnosis

of epileptic seizure is hence, of utmost importance. Automated classifiers with

higher accuracy can help clinicians identify and evaluate the different segments

of electroencephalography (EEG) signals. Artificial neural networks (ANNs), with

enhancement using metaheuristic methods in various learning aspects, are popular

mathematical models that are used for this purpose.

In the field of biomedical engineering, the classification of biomedical signal is an

important decision-making task. To further clarify the title of the thesis, the three

terminologies, namely classification, detection, and prediction are first made clear.

The term classification refers to the task of classifying a given EEG signal into one

of the many subclasses. Both epileptic seizure detection and prediction fall into the

scope of classification. The task of epileptic seizure detection aims at distinguishing

the normal (interictal) EEG signals and the epileptic (ictal) EEG signals. The term

detection that is used in this context refers to the job of detecting or identifying

the abnormal or epileptic EEG signals from the normal EEG signals. On the other

hand, the task of epileptic seizure prediction is basically a classification task as well,

only this time, it aims at differentiating between interictal and pre-ictal (before

seizure) EEG signals. The term prediction is used because the ANNs models are

used to predict the occurrence of impending seizure attacks. If a given EEG signal is

classified as a pre-ictal signal, then it implies that the mathematical model predicts

that a seizure attack will occur within a given time frame.

The very first chapter of this thesis gives a brief introduction of the medical
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condition of epilepsy. After reviewing the works that have been done in the domain

of epileptic seizure, the motivations are given regarding the use of automated

classifiers in the tasks of epileptic seizure detection and prediction. Next, the problem

statements, objectives, and significance of the research are given. Lastly, an overview

of the outline and organization of the thesis is presented.

1.2 Epilepsy

After stroke, epilepsy is the second most common neurological disorder. The disease

manifests itself in the form of epileptic seizure, caused by the excessive firing of

neurons in the brain (WHO, 2015). Some cases of epilepsy can be treated or

even cured by means of medication and surgery. However, some epilepsy cases are

deemed intractable. Patients diagnosed with epilepsy suffer from both economic

disadvantages and social discrimination.

Much effort and research have been done in the field of epileptic seizure

detection (Orosco et al., 2013) and prediction (Carney et al., 2011; Ramgopal

et al., 2014). The interdisciplinary works in epileptic seizure detection and

prediction involve collaborative efforts from epileptologists, biomedical engineers,

computer scientists, and mathematicians. Different types of expert systems have

been developed using various promising feature extraction techniques and powerful

artificial intelligence-based models (Acharya et al., 2013). Among the models that

are reported in the literature include artificial neural networks (ANNs), mixture

of experts (MEs), and support vector machines (SVMs). Some metaheuristic and

intelligent methods, such as genetic algorithm (GA) and particle swarm algorithm

(PSO) are embedded and integrated in the learning of these models. Mathematical

models with higher accuracy would benefit the epileptic patients and medical

community at large in accident prevention, as well as the development of closed-loop

seizure prediction warning systems.
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1.3 Motivation

Due to the time constraint and inconsistency of human judgment, the use of

automated classifiers and expert systems is invaluable in the decision making process

in the medical field. Apart from reducing medical expenditure, the use of such

artificial intelligence-based approach can also save time. In addition, the feasibility

and practicality of using neural network models in facilitating classification and

pattern recognition problems are corroborated by the fact that these mathematical

models are not affected by human fatigue, emotional states, and other undesirable

factors (Micheli-Tzanakou, 1995).

Neural networks models that can yield classification with high accuracy are

desirable because they are utilized widely in the decision-making process. In medical

domain, mathematical models are used to classify biomedical signals. Furthermore,

these expert systems are used to determine whether a given tissue culture contains

cancerous cells. As such, high classification accuracy is a very important criterion

of efficient neural networks models. ANNs models with very low classification error

and false positive rate (FPR) are imperative in medical diagnosis. In this research

work, the wavelet neural networks (WNNs) models are considered. To improve the

performance of the WNNs models, the enhancements are accomplished by integrating

the metaheuristic harmony search (HS) algorithm in three different learning aspects,

namely feature selection, cluster initialization, and supervised learning.

The main task of the WNNs models developed in this work is to differentiate

between two classes of electroencephalography (EEG) biomedical signals. The

objective of epileptic seizure detection is to differentiate between interictal and ictal

EEG signals. Epileptic patients need to be monitored for pre-surgical evaluation

purpose. Scrutinizing all the EEG data recorded for days or even weeks manually

is a painstaking and meticulous task. As such, a more realistic solution is the

development of automated classifiers that can perform such tasks at high speed

3



with great accuracy.

On the other hand, the ultimate goal of epileptic seizure prediction is to

distinguish between interictal and pre-ictal EEG signals. By identifying the pre-ictal

portion of the biomedical signals, an alarm can be issued to alert the patients of

impending seizure attacks. The realization of such classifiers also paves the way

for better and more efficient epileptic seizure closed-loop intervention strategies, via

drug administration and seizure warning devices similar to vagus nerve stimulator.

The development of such detection and prediction models will not only improve

the quality of life of epileptic patients, but it also benefits the medical community

at large.

1.4 Problem Statements

The emphasis of this work is the development of an enhanced WNN model.

The improvements are accomplished in three aspects, namely feature selection,

initialization of the translation vectors, as well as learning algorithm. All these

enhancements are aimed at designing artificial intelligence-based classifiers that are

able to make fast and accurate judgments with high classification accuracy.

The three main problem statements addressed by this research are:

(i) Finding the optimal feature subset of reduced size

In many scientific and engineering applications, a huge amount of data is

generated and collected. Before the data are fed into the input layer of ANNs,

they need to undergo some pre-processing stages, such as feature extraction and

selection. This is done to eliminate noise and outliers, which are common due

to human error, erroneous measurement, and calibration error. By eliminating

irrelevant and redundant features, a good feature selection algorithm is also able

to reduce the dimension of input data, thereby simplifying network topology

and training time. An efficient feature selection algorithm (Chandrashekar and
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Sahin, 2014) is important so that the number of input nodes of the ANNs

models used is as minimum as possible. The reduction of input nodes implies

a simpler network architecture.

(ii) Determining the locations of the best translation vectors

Central to the topic of discussion in Uykan et al. (2000) and Guillén et al. (2005)

is the issue of selecting the most optimal set of centers or translation vectors for

radial basis function networks (RBFNs). An efficient clustering algorithm that

can find the best locations of the centers is crucial because the performance

of RBFNs is highly dependent on the selection of these centers. A bad choice

of centers will undoubtedly affect the subsequent learning process where the

values of synaptic weights are determined. Similar to the network design of

RBFNs, WNNs also employ localized activation functions in the hidden nodes,

where the locations of translation vectors need to be determined beforehand.

On the contrary, a good set of translation vectors can increase the generalization

capability of WNNs (Ong and Zarita, 2016).

(iii) Devising an effective learning algorithm that can find the optimal weight

parameters

Carefully examining the network architecture and learning algorithm of the

conventional multilayer perceptrons (MLPs), which are one of the earliest

ANNs models, reveal some drawbacks that limit their use and application. The

limitations of the MLPs models include the use of global activation functions,

failure to converge in the case of highly nonlinear data, tendency of getting

trapped at local minima, and time-consuming training process (Ham and

Kostanic, 2000; Oysal et al., 2005). The use of global functions, such as the

sigmoid functions in the hidden nodes of MLPs is undesirable because the

functions span over a wide range and they will activate all the input fed to the

ANNs. Hence, the use of WNNs with localized wavelet functions, coupled with
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metaheuristic method in the learning process is proposed in this work. The

metaheuristic algorithm is used to determine the optimal values of the weight

parameters and bias terms.

In light of this, an enhanced WNN model is proposed to address the

aforementioned shortcomings. Unlike global activation functions, the localized

wavelet functions embedded in the hidden nodes of WNNs have finite support,

which means that they will only activate a subset of input whose values are close to

the translation vectors. Furthermore, to address the dreaded problem of solutions

getting trapped at local minima, the evolutionary harmony search (HS) algorithm is

incorporated in several aspects of the training process of WNNs. The HS algorithm

is capable of finding near-optimal solutions by exploring the entire solution search

space effectively within a reasonable amount of iteration and time.

1.5 Research Objectives

The main objective of this research is to develop an enhanced wavelet neural network

(WNN) model, through the incorporation or hybridization of the metaheuristic

harmony search (HS) algorithm, in three different aspects, namely feature selection,

translation vectors initialization, and learning algorithm.

The objectives of this thesis are listed as follows:

(i) To devise an efficient feature selection algorithm by finding the optimal feature

subset of smaller size so as to reduce the dimensionality of the input nodes and

subsequently, the network topology and complexity. The decision of including

or excluding a particular feature in the proposed feature subset is guided by

a set of rules (governed by global and local search) that are embedded in the

metaheuristic algorithm.

(ii) To develop a novel clustering algorithm that is able to locate the translation
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vectors of the hidden nodes of WNNs for the purpose of increasing the

performance of WNNs in terms of accuracy and generalization capability. The

factors that are taken into consideration when selecting the best translation

vectors include the possible presence of outliers in the input data. Furthermore,

a more flexible rule is introduced by using a fuzzy approach where a particular

input datum can be assigned to all the cluster centers.

(iii) To improve the learning aspects of WNNs through the implementation of a

new learning algorithm by integrating the metaheuristic approach to search

for near-optimal solutions. The best values of the synaptic weight values

and bias terms are determined using the iterative metaheuristic search. The

metaheuristic approach used ensures that the entire solution space can be

explored thoroughly during the initial exploration stage. This is followed by

the local exploitation stage, where the solutions are fine-tuned gradually.

(iv) To demonstrate the effectiveness of the proposed enhanced WNNs in the binary

classification tasks of epileptic seizure detection and prediction by designing

powerful expert systems that can be used in clinical settings. The effectiveness

and robustness of the proposed models are characterized by high classification

accuracy, high sensitivity value, and low false positive rate.

1.6 Thesis Organization

This thesis is divided into five main sections – preliminaries, theoretical frameworks,

contributions, applications, and concluding remarks. Each section is addressed in

one or more chapters.

The first section presents the preliminary concepts of the research work. Chapter

1 gives a brief introduction of the medical condition of epilepsy. The motivation is

then provided to highlight the importance of the research done in the domains of
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epileptic seizure detection and prediction. Additionally, problem statements, main

objectives, and the significance of the research are given.

The second section concerns the theoretical frameworks that are used in this

work. Chapter 2 reviews the concepts of wavelet theory, discrete wavelet transform

(DWT), artificial intelligence (AI), artificial neural networks (ANNs), wavelet

neural networks (WNNs), and the metaheuristic harmony search (HS) algorithm.

In particular, the network architecture, parameters initialization, and learning

algorithm of WNNs are discussed. This is followed by the discussion of the history,

motivation, and development of the HS algorithm. Next, the algorithm of the

standard HS algorithm is presented, followed by the literature review of the variants

of the HS algorithms, developed for optimization problems that deal with real,

discrete, and binary decision variables. Additionally, the applications of the HS

algorithm are illustrated.

The third section of the thesis includes three chapters that focus on the three

main contributions of this research. Chapter 3 begins with the review of the

existing feature selection methods, which are filter, wrapper, and hybrid approaches.

Then, an enhanced feature selection algorithm is proposed. The effectiveness of

the proposed algorithm is verified using the UCI benchmark data sets. Chapter 4

highlights the use of clustering algorithms in the initialization of translation vectors

of the hidden nodes of WNNs. The standard k-means and fuzzy c-means clustering

algorithms are first presented before the proposal of the novel hybridized clustering

algorithm. Numerical simulations are performed on the same benchmark data sets

to validate the robustness of the proposed method. Chapter 5 examines the existing

learning algorithms used for ANNs and in particular, WNNs. The idea of the

incorporation of the metaheuristic HS algorithm in the learning algorithm of WNNs

is then presented. The method is tested using ten UCI data sets.

The fourth section investigates the feasible application of the enhanced WNN
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model in the classification tasks of epileptic seizure detection and prediction. Chapter

6 consists of two main parts. The first part begins with the explanation of some

medical terminologies, such as epilepsy, epileptic seizure, and electroencephalography

(EEG) signals. The literature review on the state of the art of the methods used and

reported in the task of epileptic seizure detection is surveyed. Next, the methodology

and experimental design are given. These include the stages of data acquisition,

feature extraction, feature selection, and the classification using the enhanced WNNs

models. The results obtained are evaluated and the relevant discussion is provided.

The second part of chapter 6 presents a more challenging classification task of

epileptic seizure prediction. The main difference between epileptic seizure detection

and prediction are first made clear. Some technical terms used in the research of

seizure prediction, such as pre-ictal period and seizure occurrence period are defined.

The existing methods used for the purpose of epileptic seizure prediction are covered

in the literature review. Next, the experimental design, results, and discussion are

reported.

The last section, namely section five, is a write up on some concluding remarks.

Chapter 7 concludes the main findings of this work and gives some suggestions for

future work.
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CHAPTER 2

WAVELET NEURAL NETWORKS AND HARMONY SEARCH

ALGORITHM

2.1 Introduction

This chapter presents the theoretical frameworks that are used in the research work.

The first part of this chapter gives an exposition of the many facets of the fascinating

realm of wavelet theory, as well as several sub-disciplines that stem from this field of

study. A brief introduction on wavelets is first reviewed, followed by the exploration

of their properties. Next, a timeline on the development of the field of wavelet theory

is presented. To appreciate the advantages offered by wavelet analysis, the limitations

of Fourier transform (FT) are examined. Then, the distinction between discrete

wavelet transform (DWT) and continuous wavelet transform (CWT) are explained.

The broad spectrum of the applications of wavelets is also given. The notion of

artificial intelligence (AI) is then presented. This is followed by the discussion on

the history, properties, and applications of artificial neural networks (ANNs). The

next part of this chapter introduces the wavelet neural networks (WNNs) models,

where the emphasis of discussion is given to the network topology, parameterization,

and applications.

The second part of this chapter presents the theoretical framework of the

harmony search (HS) algorithm. The concept of metaheuristic algorithms is first

explained, followed by the discussion of the standard HS algorithm. The idea

and motivation of the HS algorithm are presented. To fully comprehend how

the algorithm works, its working mechanism is detailed using a simple illustrative

example. In addition, the convergence of the HS algorithm is presented to

demonstrate that sub-optimal solutions are always guaranteed. Some of the notable

variants of the HS algorithms reported in the literature are covered and discussed in

the subsequent subsections. The applications of the HS algorithm are also given. The
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use of various metaheuristic methods in the domain of machine learning is reviewed

at the end of the chapter.

2.2 Wavelet Theory

Wavelets are versatile mathematical tools that are at the heart of many applications

such as electrical engineering and quantum physics. The fascinating properties of

wavelets, such as finite support, perfect symmetry, and high smoothness, make

wavelet analysis an ideal choice in the disciplines of signal processing, image

compression, and noise removal. Discrete wavelets are used extensively in discrete

wavelet transform, whereas continuous wavelets are employed as activation functions

in the hidden nodes of wavelet neural networks (WNNs).

2.2.1 Introduction to Wavelets

Etymologically, the mathematical lexicon “wavelet” is derived from the French word

ondelette, which means “small wave”. The terminology was first coined by French

geophysicist Jean Morlet and Croatian physicist Alexander Grossmann in their

seminal works in wavelet analysis (Grossmann and Morlet, 1984).

Mathematically speaking, a wavelet is a special type of function that meets

certain criteria. As shown in Figure 2.1, unlike sinusoidal functions (e.g., the

wave-like sine and cosine trigonometric functions), wavelets are localized functions

where they decay rapidly toward zero as their limits approach infinity. In other

words, wavelets have finite energy, whereas sinusoids have infinite energy.

A mother wavelet must meet the following three conditions:

(i) The integral of the wavelet has zero mean.

∫ ∞
−∞

ψ(t)dt = 0. (2.1)
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Figure 2.1: Comparison of Morlet wavelet function and sine wave function

(ii) The integral of the square of the wavelet is unity.

∫ ∞
−∞
|ψ(t)|2dt = 1. (2.2)

(iii) Admissibility condition.

Cψ =

∫ ∞
0

|Ψ(ω)|2

ω
dω <∞, (2.3)

where Ψ(ω) is the Fourier transform of ψ(t), given by the following formula:

Ψ(ω) =

∫ ∞
−∞

ψ(t)e−itωdt. (2.4)

The admissibility condition implies that at zero frequency, the Fourier transform

of ψ(t) vanishes, as shown in the following equation:

|Ψ(ω)|2ω=0 = 0. (2.5)

From a mother wavelet ψ(t), a family or a series of wavelet functions, termed daughter

wavelets, can be generated via translation and scaling parameters. The translation
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parameter shifts the center of the wavelet, whereas the scaling parameter changes

the appearance of the wavelet, either by stretching or shrinking the function. The

daughter wavelets are generated using the following formula:

ψa,b(t) =
1√
|a|
ψ

(
t− b
a

)
, a, b ∈ R, a 6= 0, (2.6)

where a and b are the scaling and translation parameters, respectively. The

normalization term 1√
|a|

is introduced to ensure that the energy ‖ψa,b(t)‖, is

independent of the values of a and b.

2.2.2 Properties of Wavelets

Wavelets are regarded as one of the most promising tools in many useful applications.

Some of their most significant and notable properties are listed as follows:

(i) Vanishing moments

If a wavelet scaling function is able to generate polynomials up to degree p− 1,

then the wavelet function is said to have p vanishing moments. A wavelet that

has a higher number of vanishing moments can represent more complicated

functions.

(ii) Compact support

A wavelet function is non-zero only on a finite or limited range of its domain.

Outside this range or interval, the wavelet function decays to zero. This

property makes continuous wavelet functions a perfect choice as the transfer

functions of hidden nodes, where only a limited amount of input values will be

activated.

(iii) Regularity

The regularity of a wavelet is closely related to its vanishing moments. The

fast decaying characteristic of wavelet is attributed to this property.
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(iv) Smoothness

The smoothness of a wavelet is determined by its vanishing moments. A

smoother wavelet with more negligible wavelet coefficients whose values are

close to zero is desirable, as this property is imperative in the task of image

compression.

(v) Symmetry

A wavelet that is symmetrical in shape is essential because it is used as the

building block of bases. In signal processing, the problem of phase distortion

is caused by asymmetrical wavelet.

2.2.3 Timeline of Wavelets

The subject area of wavelet analysis has witnessed tremendous development and

progress over the past few decades since its inception in the early 20th century.

Table 2.1 highlights the major breakthrough in this field.

2.2.4 Fourier Transform

A complex mathematical problem at hand that is seemingly difficult to solve in its

original setting could be solved seamlessly in another domain. This is the essence of

the brilliant mathematical transformation. By transforming the question presented

into a different domain, the solution can be obtained relatively easier, and in a

faster way. The answer is then converted back to the original domain. Some

common mathematical transformations are such as integration by parts and the

Laplace transform. The former method transforms the antiderivative of a product

of two functions into another antiderivative that can be solved easier, whereas the

latter approach reduces a complicated differential equation into a simpler algebraic

equation.

Another commonly used transformation is the Fourier transform (FT) that
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Table 2.1: Timeline of the development and major breakthrough in wavelet analysis

1807 ·•
Jean-Baptiste Joseph Fourier presented the idea that any complex
periodic function can be expressed as a sum of sine and cosine functions
(also called prototype or basis functions).

1909 ·•

Alfréd Haar proposed the first wavelet. The Haar wavelet consists of
a positive pulse and a negative pulse. The wavelet is discontinuous
and non-differentiable in nature, and these shortcomings limit its
application.

1930 ·•
Paul Lévy discovered that the Haar wavelets outperformed the Fourier
basis functions. The observation was made during his Brownian motion
research.

1946 ·•

Dennis Gabor noticed that Fourier transform could not provide
sufficient information for time-frequency analysis; therefore, he
suggested the use of a window function in short time Fourier transform
(STFT).

1981 ·•

Jean Morlet and Alexander Grossmann suggested the use of different
window functions to analyze signals at different frequency sub-bands.
The technique was used to study seismic signals encountered widely in
underground oil search operations.

1985 ·•
Yves Meyer reported the first smooth orthogonal wavelets that have
better localization properties in both time and frequency domains.

1986 ·•

Stéphane Mallat developed the technique of multiresolution analysis
(MRA), in which discrete signals are decomposed into several frequency
sub-bands using lowpass and highpass filters. The theory of MRA is
similar to quadrature mirror filters (QMF) in electronic engineering.

1987 ·•

Ingrid Daubechies laid the foundation for modern wavelet theory
by introducing a family of Daubechies wavelets. These Daubechies
wavelets are orthogonal and have compact support. They can be
programmed and implemented easily using digital filters.
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decomposes a given signal into its individual frequencies. The process is analogous

to the process of breaking down a chord into its individual notes in the field of music

theory. The FT is defined in terms of Fourier series. Given any 2π periodic function

f(x), it can be expressed as an infinite sum of sine and cosine trigonometric functions.

Mathematically speaking, the Fourier series of a piecewise continuous function f(x)

on [−π, π] is given by

a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)), (2.7)

where the coefficients a0, an, and bn are given by

a0 =
1

2π

∫ π

−π
f(x)dx, (2.8)

an =
1

π

∫ π

−π
f(x) cos(nx)dx, n = 1, 2, 3, ..., (2.9)

bn =
1

π

∫ π

−π
f(x) sin(nx)dx, n = 1, 2, 3, .... (2.10)

The relationship between a function f(x) and its Fourier transform f̂(ω) is given by

f(x) =

∫ ∞
−∞

f̂(ω)e2πiωxdω, (2.11)

f̂(ω) =

∫ ∞
−∞

f(x)e−2πixωdx. (2.12)

The Fourier transform is used to pre-process signals to obtain information that is

not readily available in the raw signals themselves. The raw signals are functions

of time. The dependent variable, amplitude, is plotted against the independent

variable, time. The resulting graph shows a time-amplitude representation of the

signal under study. Nevertheless, the most useful and distinguished information of

a signal is embedded in its frequency spectrum that tells which frequency sub-bands
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exist in the signal.

In the field of signal processing, all signals are divided into two categories, namely

stationary and non-stationary. As the name implies, the statistical parameters of

stationary signals remain constant over time. In contrast, non-stationary signals

have different parameter values on each time interval. In spite of the remarkable

success of FT in analyzing stationary signals, the method proves to be inadequate in

studying non-stationary signals. The main limitation of FT is that it only provides

the spectral or frequency contents of signals and no temporal information at all. In

other words, one could not tell at what time the spectral components appear. This

main drawback is explained using the following example taken from Polikar (1996).

Consider the stationary signal x1(t) and non-stationary signal x2(t) defined by

the following functions:

x1(t) = cos(2π(10t)) + cos(2π(25t)) + cos(2π(50t)) + cos(2π(100t)), (2.13)

x2(t) =



cos(2π(10t)) , 0 ≤ t ≤ 0.3

cos(2π(25t)) , 0.301 < t ≤ 0.6

cos(2π(50t)) , 0.601 < t ≤ 0.8

cos(2π(100t)) , 0.801 < t ≤ 1.

(2.14)

The plot of the stationary signal x1(t) and the non-stationary signal x2(t) are given

in Figure 2.2 and Figure 2.3, respectively.

As shown in Figure 2.2, the four different frequency components that appear in

the signal x1(t) at any given time are 10 Hz, 25 Hz, 50 Hz, and 100 Hz. On the other

hand, the non-stationary signal x2(t) shown in Figure 2.3 is made up of four functions

that appear in different time intervals. Each of the four segments contains only one

frequency component. Observe that the values of the four frequency components are

identical to those of the stationary signal.

The plots of the Fourier transform of the two signals are given in Figure 2.4
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Figure 2.2: Stationary signal x1(t)

Figure 2.3: Non-stationary signal x2(t)
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and Figure 2.5, respectively. An interesting observation is made by comparing these

two figures. Two totally different signals (one stationary and one non-stationary)

yield similar Fourier transform plots. The peaks shown in the graphs correspond to

the frequency components of the raw signals. This example demonstrates that the

Fourier transform method can only provide spectral information (which frequencies

exist in the signals), but not the temporal information (at what time the frequencies

appear).

Figure 2.4: Fourier tranform of x1(t)

Figure 2.5: Fourier transform of x2(t)
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Realizing the pitfall of FT, another alternative, termed Windowed Fourier

transform (WFT), or short time Fourier transform (STFT) is proposed by Gabor

(1946). In this approach, a fixed-size window function is employed to analyze signals.

The signal under study is divided into several smaller regions, where the signal in

each smaller segment is assumed to be stationary. By shifting the window repeatedly

over different regions of a signal, STFT is able to give a good time-frequency

representation of the signal. STFT is essentially the same as FT, just that it differs

in the use of a window function, as shown in the following equation

STFT{x(t)}(τ, ω) ≡ X(τ, ω) =

∫ ∞
−∞

[x(t)w(t− τ)]e−2πitωdt, (2.15)

where x(t) is the signal, which is a function of time t, w(t) is the window function,

and τ is the time index.

Despite the ability of providing a time-frequency representation of the signal

under study, a significant issue arises regarding its resolution. The width of the

window function w(t) plays a vital role in determining the time and frequency

resolutions. To illustrate, a wide window, which covers a longer time interval, gives

poor temporal resolution but good spectral resolution. On the other hand, a narrow

window, which covers a shorter time interval, yields poor spectral resolution but

good temporal resolution. This delicate issue concerning the trade-off between the

temporal and spectral resolutions gives rise to the birth of wavelet transform (WT)

and multiresolution analysis (MRA), where flexible window functions are used to

study signals to preserve good temporal and spectral resolutions simultaneously. A

complete and comprehensive analysis of non-stationary signals requires information

of both spectral (frequency) and temporal (time) components.
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2.2.5 Discrete Wavelet Transform

The main feature of wavelet transform (WT) is the ability to study a given signal

using different scales, which is better known as multiresolution analysis (MRA). The

comparison of FT, STFT, and WT is shown in the form of time-frequency plane

in Figure 2.2.5. Although FT is able to capture good information in the frequency

domain, the method gives poor localization in the time domain. On the other hand,

the STFT uses a constant window function that results in a fixed time-frequency

resolution. To overcome the limitations of the classical FT and STFT methods, the

WT approach is the ultimate solution. WT offers an optimal compromise between

the two spectral and temporal components. At high frequencies, WT employs a

narrower window that gives good time localization but poor frequency localization.

On the other hand, at low frequencies, the method uses a wider window that gives

good frequency localization but poor time localization. The adaptive nature or

flexibility of the time-frequency localization property makes WT an excellent tool in

extracting useful information embedded in raw signals.

Wavelet transform can be accomplished in either continuous or discrete domain.

The continuous wavelet transform (CWT) of a signal f(t) is given by the following

formula:

CWTf (a, b) =

∫ ∞
−∞

ψa,b(t) ∗ f(t)dt

=
1

|a|−
1
2

∫ ∞
−∞

ψ

(
t− b
a

)
∗ f(t)dt,

(2.16)

where a is the scaling parameters, b is the translation parameter, and ψ is the mother

wavelet. The algorithm of CWT is given as follows:

(i) Choose a wavelet function ψ(t) and compare it with a short segment taken

from the start of the signal under study, f(t).

(ii) Calculate the value of CWT. The value measures the similarity between the

wavelet and the segment of the signal.
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Figure 2.6: Time-frequency representation of Fourier transform

Figure 2.7: Time-frequency representation of short time Fourier transform

Figure 2.8: Time-frequency representation of wavelet transform
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(iii) Shift the wavelet to the right using the translation parameter and repeat step

(ii) until the entire signal is covered.

(iv) Choose a scaling parameter for the wavelet function. Repeat steps (i) to (iii).

(v) Repeat steps (i) to (iv) for all the different values of scaling parameter.

It is noticed that for CWT, the values of scaling and translation parameters

are varied continuously over real numbers. As such, the CWT will generate a

huge amount of wavelet coefficients, which is not only redundant, but the process

is time-consuming and computationally costly. This drawback has led to the

development of a more feasible discrete wavelet transform (DWT) approach, where

only discretized values of the parameters are considered.

In DWT, the values of translation and scaling parameters are sampled discretely.

The values of a and b are chosen in the following ways:

a = a
j
0,∀j ∈ Z, (2.17)

b = ka
j
0b0,∀j, k ∈ Z, (2.18)

where a0 > 1 and b0 6= 0 are the dilated and translated steps, respectively. The

family of wavelets generated is given by

ψj,k(t) = a
−j/2
0 ψ(a

−j
0 t− kb0). (2.19)

The most commonly used dyadic scale adopts a geometric sequence with ratio, r = 2.

Here, the values of the dilated and translated steps are set to a0 = 2 and b0 = 1,

respectively. Using these two values, Equation 2.19 is simplified to

ψj,k(t) = 2−j/2ψ(2−jt− k). (2.20)
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Figure 2.9: A four-level wavelet decomposition tree

DWT is computed using a series of low-pass and high-pass filters, known as

decomposition trees, or filter banks, as shown in Figure 2.9. At each level, the original

signal, x(n) is decomposed into low and high frequencies using low-pass filters, G0

and high-pass filters, H0. Low-pass filters, G0 yield approximation coefficients, a(n),

whereas high-pass filters, H0 produce detail coefficients, d(n). Each decomposition

level reduces the time resolution into half of its original value. At the same time,

the frequency resolution of the output signal is doubled. The decomposition process

is repeated until the desired level of decomposition is achieved.

The fundamental tool used in calculating the wavelet coefficients of DWT is

convolution, which is a binary operator. The convolution product, y of filter h and

signal x, denoted by h ∗ x, is given by the following formula:

yn =
∞∑

k=−∞
hkxn−k. (2.21)

The filter h is basically a sequence of numbers that is used to pre-process a signal

under study in order to obtain information embedded in the signal itself. The

numbers are derived based on several conditions and assumptions. The derivation of

the values of the Daubechies 4 (db4) filters (Van Fleet, 2011) is given in Appendix
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