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MENCIRIKAN SELULOSA NANOFIBRIL DARIPADA TANDAN KOSONG 

BUAH KELAPA SAWIT DAN PENGARUHNYA SEBAGAI AGEN 

PENGUAT DALAM BIONANOKOMPOSIT BERASASKAN EPOKSI  

 

ABSTRAK 

 

Tujuan kajian ini adalah untuk menentukan pengaruh hidrolisis asid sulfurik, 

penguraian mekanikal dan penghomogenan bertekanan tinggi sebagai proses kimia-

mekanikal berkesan untuk pengasingan selulosa nanofibril (NFC) berkualiti daripada 

gentian tandan kosong buah kelapa sawit (OPEFB). Kumpulan berfungsi dan 

penghabluran gentian telah dijalankan oleh spektroskopi Fourier inframerah (FT-IR) 

dan pembelauan sinar-X (XRD). Morfologi dan kestabilan haba telah disiasat 

menggunakan mikroskop pengimbas elektron (SEM), mikroskop penghantaran 

elektron (TEM) dan analisis termogravimetri (TGA), kalorimetri pengimbasan 

berbeza (DSC). Keputusan FT-IR menunjukkan bahawa lignin dan hemiselulosa 

telah dikeluarkan secara berkesan daripada selulosa yang diekstrak dan nanofibril. 

Analisis XRD menunjukkan bahawa peratusan penghabluran telah meningkat 

daripada gentian mentah kepada selulosa mikrofibril (MFC), tetapi penurunan bagi 

NFC adalah disebabkan oleh penceraian ikatan hidrogen. Saiz diameter NFC yang 

diperolehi adalah dalam lingkungan 5 hingga 10 nm. Analisis TGA menunjukkan 

bahawa NFC mempunyai kestabilan haba yang tinggi. Hasil kajian ini menunjukkan 

bahawa gabungan hidrolisis asid sulfurik, penguraian mekanikal dan 

penghomogenan bertekanan tinggi telah terbukti sebagai proses kimia-mekanikal 

berkesan untuk mengasingkan gentian nanoselulosa daripada gentian selulosa 

tumbuhan. Sebahagian lain daripada kajian ini adalah pembangunan bod 

bionanocomposit berasaskan epoksi. Objektifnya adalah untuk mengkaji dan 

menganalisis kesan penguat dan penyebaran bagi NFC yang diisi dalam peratusan 
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rendah (kurang daripada 1%: 0%, 0.25%, 0.5% dan 0.75% NFC) dalam bahan 

matrik. Keputusan yang diperolehi dibandingkan dengan epoxy tulen yang 

disediakan, 0% NFC (kawalan). Pencirian sifat morfologi, fizikal, mekanikal dan 

haba bagi bionanokomposit telah dinilai sewajarnya. Melalui imej mikroskop cahaya 

(LM) dan mikrograf TEM yang diperhatikan, keputusan mempamerkan bahawa NFC 

yang diisi 0.25% dan 0.5% tersebar secara seragam di dalam matrik epoksi dan 

secara rawak di seluruh sampel, sementara NFC yang diisi 0.75% menunjukkan 

taburan dan penyebaran yang lemah. Nilai penyerapan air meningkat dengan 

peningkatan dalam NFC terisi berbanding epoksi tulen. Ujian mekanikal 

menunjukkan bahawa sifat-sifat tegangan dan lenturan bionanokomposit menyamai 

pola yang sama di mana mereka meningkat dengan peningkatan peratusan NFC yang 

diisi dari 0 hingga 0.75%. Manakala bagi pemanjangan pada tahap maksimum, 

nilainya menurun dengan peningkatan NFC yang diisi manakala epoksi tulen (0%) 

menunjukkan nilai yang paling tinggi. Kekuatan impak bionanokomposit diperkuat 

NFC yang rendah berbanding epoksi tulen adalah disebabkan oleh ciri-ciri impak 

gentian semula jadi yang rendah. Walau bagaimanapun, dengan peningkatan 

peratusan NFC yang diisi, kekuatan impak menunjukkan perubahan peningkatan 

yang disebabkan oleh sifat unik NFC. Analisis terma (TGA dan DSC) menunjukkan 

bahawa kehadiran NFC walaupun pada peratusan yang rendah dan dengan 

peningkatan jumlah NFC membawa kepada peningkatan dalam kestabilan haba bagi 

bionanokomposit. Oleh itu, melalui pencirian penguat NFC bionanokomposit 

berasaskan epoksi, keputusan yang diperolehi telah menunjukkan bahawa penguat 

NFC terisi yang rendah (di bawah 1%) mempengaruhi sifat resin epoksi dan 

menunjukkan peningkatan terhadap bionanokomposit tersebut. 
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CHARACTERIZING NANOFIBRILLATED CELLULOSE FROM  

OIL PALM EMPTY FRUIT BUNCH AND ITS INFLUENCE AS 

REINFORCEMENT AGENT IN EPOXY BASED NANOBIOCOMPOSITE  

 

ABSTRACT 

 

The aim of the present study was to determine the influence of sulfuric acid 

hydrolysis, mechanical disintegration and high pressure homogenization as an 

effective chemo-mechanical process for the isolation of quality nanofibrillated 

cellulose (NFC) from oil palm empty fruit bunch (OPEFB) fibers. The functional 

groups and the crystallinity of all fibers were carried out by Fourier transform 

infrared spectroscopy (FT-IR) and X-ray diffraction (XRD), respectively. The 

morphology and thermal stability were investigated by Scanning electron microscopy 

(SEM), Transmission electron microscopy (TEM) and Thermogravimetric analysis 

(TGA), Differential scanning calorimetric (DSC), respectively. The FTIR results 

showed that lignin and hemicellulose were removed effectively from the extracted 

cellulose and nanofibrils. XRD analysis revealed that the percentage of crystallinity 

was increased from raw to microfibrillated cellulose (MFC), but the decreased for 

NFC was due to a breakdown of the hydrogen bond. The diameter size of the NFC 

determined was within 5 to 10 nm. The TGA analysis showed that the isolated NFC 

had high thermal stability. The finding of present study reveals that combination of 

sulfuric acid hydrolysis, mechanical disintegration and high pressure homogenization 

had proven to be an effective chemo-mechanical process to isolate cellulose 

nanofibers from cellulosic plant fiber. Another part of this present study was the 

development of epoxy based nanobiocomposite board. The objective was to 

investigate and analyze the reinforcing effect and dispersion of low percentage NFC 

loading (less than 1 %: 0%, 0.25%, 0.5% and 0.75% NFC) in the matrix material. 
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The results obtained were compared with the prepared neat epoxy, 0% NFC 

(control). The characterizations including morphological, physical, mechanical and 

thermal properties of the nanobiocomposite were evaluated accordingly. In light 

microscopy (LM) images and TEM micrographs observation, the results illustrated 

that 0.25% and 0.5% NFC loading are homogenously dispersed in the epoxy matrix 

and randomly distributed throughout the sample, while the 0.75% NFC loading 

showed poor distribution and dispersion. The water absorption value increased with 

the increase in the NFC loading as compared to the neat epoxy. Mechanical testing 

showed that tensile and flexural properties of nanobiocomposite had posed a similar 

trend/pattern where they increased with increasing NFC loading percentage from 0 to 

0.75%. While for the elongation at break, the value decreased with increasing NFC 

loading where neat epoxy (0%) showed the highest value. Low impact strength of 

NFC reinforced nanobiocomposite as compared to the neat epoxy was due to the low 

impact properties of the natural fiber. However, by increasing the NFC loading 

percentage, the impact strength showed incremental change due to unique properties 

of NFC. Thermal analysis (TGA and DSC) indicated that incorporation of NFC even 

at low percentage and with increasing NFC amount led to increase in thermal 

stability of nanobiocomposite. Therefore, from NFC reinforced epoxy based 

nanobiocomposite characterization, the results obtained had indicated that low NFC 

reinforced loading (below 1%) influenced the resin epoxy properties and showed 

improvement to the nanobiocomposite. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Introduction and Research Background  

 

Palm oil producer are generating large amount of oil palm biomass waste in the form 

of empty fruit bunches and fruit shells, arising serious environmental impacts 

(Fahma et al., 2010). Malaysia alone has been reported to produce oil palm biomass 

around 40 million tons annually including 280,000 tons empty fruit bunches, which 

represent cheap, plentiful and enthusiastically available source of lignocellulosic 

biomass (Jonoobi et al., 2011b; Turunawarasua et al., 2013). Moreover, the cellulose 

content in oil palm empty fruit bunch (OPEFB) is 44.4% along with 30.9% 

hemicellulose and 14.2% lignin (Fahma et al., 2010). This very large generation of 

OPEFB and its high cellulose content have attracted a great deal of research interest 

to produce nanocellulose for use as a reinforcing agent in composites materials.  

 

Cellulose, a ubiquitous organic compound, is a common structural component in 

most of the plant’s cell wall. The cellulose is considered nearly inexhaustible source 

of raw material due to increasing demand for the green biocompatible products 

(Abdul Khalil et al., 2012a; Jawaid et al., 2014). The excellent mechanical 

properties, remarkable reinforcing capability, low density, thermal stability, and 

environmental benefits of cellulose have attracted scientist’s interest in utilizing 

cellulosic fibers to develop environmentally friendly composite materials. Over the 

years, numerous research have been conducted on the isolation of nanocellulose from 

various cellulosic plant sources, such as oil palm biomass (Fahma et al., 2010, 2011; 
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Nazir et al., 2013), kenaf (Jonoobi et al., 2011a; Chan et al., 2012), wood pulp 

(Siddiqui et al., 2011), rice straw (Lu and Hsieh, 2012), bamboo (Yu et al., 2012), 

and flax (Qua et al., 2011).  

 

The term microfibrillated cellulose (MFC) is applied to those fibril aggregates with a 

diameter between 30 and 100 nm and of several micrometers in length. However, 

MFC can also be considered as nanofibrillated cellulose (NFC), as the definition of 

NFC is a size <100 nm in one dimension (Jonoobi et al., 2011a,b). Nanocellulose 

extracted from plant, agricultural/forest crops or residues can be categorize in two 

main subcategories, nanofibrillated cellulose (NFC) and nanocrystalline cellulose 

(NCC), based on the structure, condition, isolation method and cellulosic source. 

NFC consists of alternating crystalline and amorphous domains are long, flexible, 

entangled network with a diameter of approximately 1–100 nm (Brinchi et al., 2013). 

While NCC exhibits a relatively low aspect ratio of straight crystalline rod-like 

shapes with typical diameter of 2–20 nm and the length varies between 100 and 500 

nm. The particles are highly crystalline, accumulated around 54% and 88% (Abdul 

Khalil et al., 2012a, Abdul Khalil et al., 2014).  

 

There are various methods for preparing nanocellulosic fibers from cellulose fibers 

including chemical, mechanical and chemo-mechanical treatment processes (Abdul 

Khalil et al., 2012a, 2014; Ireana Yusra et al., 2014). Acid hydrolysis has been 

extensively studied to isolate nanofibers from different cellulosic sources (Fahma et 

al., 2010; Qua et al., 2011; Brinchi et al., 2013). It is being reported that hydrolytic 

conditions, such as temperature, acid-to pulp ratio, reaction time and acid type, have 

a remarkable influence on the surface charge and dimensions of the nanocellulose 
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fibers. Sulfuric acid (H2SO4) and hydrochloric acid (HCl) are commonly used in the 

acid hydrolysis process for NCC production to remove the amorphous regions (Qua 

et al., 2011; Brinchi et al., 2013). However, sulfuric acid provides a highly stable 

aqueous suspension with the introduction of sulfate groups on the surface of 

crystallites (Jonoobi et al., 2011a; Qua et al., 2011).  

 

Nowadays, high pressure homogenizers (HPH) have been extensively used to isolate 

cellulose nanofibers from various lignocellulosic sources (Abdul Khalil et al., 2012a, 

2014). The HPH has been viewed as an efficient method for refining the fiber 

through high pressure. The HPH alone is not sufficient to fibrillate cellulose into 

nano-sizes, requires pre-treatment and combination of further mechanical treatment 

to reduce the fiber size, and prevents from stacking the small orifice of HPH 

(Lasseuguette et al., 2008; Siro et al., 2011; Jonoobi et al., 2011a,b). 

 

The study on cellulosic nanofibers as a reinforcing agent in nanobiocomposites had 

started two decades ago (Dufresne et al., 2000; Eichhorn et al., 2010). Theoretically, 

the utilization of cellulose nanofibers as reinforcement in nanobiocomposite is 

basically due to the potentially high stiffness of the cellulose crystal. High 

crystallinity from hierarchical structure in plant can be break down into 

individualized nanofibers that will result in lowering the amorphous material amount. 

Since the plant fibers are hierarchically fibrous in nature, fibrous material in the form 

of nanowhiskers or nanofibrils is feasible to be isolate, whereas therefore due to their 

aspect ratio (length/diameter) and reinforcing capabilities are believe potentially 

suitable for the nanobiocomposite materials (Abdul Khalil et al., 2012a).  
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In this new field, the researchers with nanotechnological bent of mind are interested 

in nanocellulose reinforced polymer nanobiocomposites fiber because of the unique 

promising properties and great advantages. The cellulose nanocomposite materials is 

more favourable as compared to conventional composites due to the superior 

mechanical, thermal and barrier properties at low reinforcement loading, 

transparency, recyclability and lightweight of the cellulose nanocomposite (Abdul 

Khalil et al., 2012a,b). In addition, the nanocellulose reinforced polymer 

nanocomposites with high flexibility, considerable improvement in their properties 

and allows biodegradability in nature is expected to enhance far beyond the 

possibilities of the micro-size components and as well as the conventional composite 

(Voronova et al., 2012). Therefore, this could also lead to environmentally 

compatible and high-performance components and end-products.   

 

1.2   Problem statement 

 

Some researchers have reported similar methods in preparing MFC to those 

introduced by Turbak et al. (1983) (Nakagaito and Yano, 2005; Andresen et al., 

2006; Stenstad et al., 2008). However, the obtained materials are quite 

inhomogeneous and as for the microfibrils appearance consideration, they contain 

large residual fiber fragments and fibril bundles (Kaushik, 2011). Therefore, this 

research work was conducted to explore and develop new technique/method for NFC 

isolation through combination of chemical and mechanical treatment well known as 

chemo-mechanical process using acid hydrolysis, high shear mechanical dispersion 

and high pressure homogenizer. It is also expected to produce better fibrillation and 

properties from this combination process as compared to other previous research.   
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Nanocellulose, including NFC and NCC structure form, can be isolated from a 

variety source of lignocelluloses material including plant, agricultural/forest crops or 

residues and some bacterial. Although acid hydrolysis, high shear mechanical 

dispersion and high pressure homogenization have been utilized to produce 

nanocellulose fiber and viewed as effective with the combination of other cellulosic 

fiber processing methods, there are very few studies that have considered preparing 

nanofibrillated cellulose from OPEFB with the combination method of sulfuric acid 

hydrolysis and high pressure homogenization as a chemo-mechanical process 

(Fahma et al., 2010; Jonoobi et al., 2011a,b; Ferrer et al., 2012; Nazir et al., 2013; 

Haafiz et al., 2013, 2014). Furthermore, research and comprehensive detail on the 

study, characterization and properties of nanofibrillated cellulose (NFC) from this 

abundant agro-waste OPEFB fiber were lacking and less available (Jonoobi et al., 

2011b; Ferrer et al., 2012).  

 

During fibrillation, besides the high energy consumption from the HPH process as it 

increases with the increasing number of cycles (Zhang et al., 2012), cleaning and 

disassembling the long fibrils that often clog the system, mostly at the in-line valves, 

was detected to be main drawback of the homogenization process. Hence, 

researchers have introduced and combined some chemical, biological and 

mechanical pre-treatments such as alkaline-acid pre-treatment, enzyme pre-

treatment, refining, cryo-crushing, high intensity ultrasonication, high shear 

mechanical disperser, microfluidizer and etc. before homogenization process which 

helps to overcome these drawbacks (Pan et al.,2013; Abdul Khalil et al., 2012a, 

2014). In this particular study, the function of sulfuric acid pre-treatment is to reduce 

the cellulose fiber size and slow the sediment from fast settle down by good 
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dispersion in the HPH inlet. Whereas, the high shear mechanical dispersion was done 

to liberate the treated MFC and reduce the energy consumption of HPH machine.  

 

Sulfuric acid (H2SO4) and hydrochloric acid (HCl) are two strong acids commonly 

used in acid hydrolysis processes at high concentration for the NCC production to 

remove the amorphous regions (Qua et al., 2011; Brinchi et al., 2013). Nevertheless, 

sulfuric acid hydrolysis can also be conducted as a pre-treatment process of the 

cellulosic fiber, with the hypothesis that the utilization of low acid concentrations in 

the sulfuric acid hydrolysis process might fibrillate the micro-size cellulose 

(microfibrillate cellulose) fiber, since the acid to fiber ratio, acid concentration and 

treatment time plays an effective role on fibrillation and the properties of the 

cellulosic fiber. From the literature, there is no chemical treatment approach that was 

carried out using sulfuric acid hydrolysis at low concentration for a safety 

environment concern (Nazir et al., 2013; Lidia et al., 2014). 

 

So, sulfuric acid has been preferred and widely used in the hydrolysis as compared to 

the hydrochloric acid due to its ability on providing a highly stable electrostatic 

aqueous suspension with the introduction of sulfate groups on NFC surface (Jonoobi 

et al., 2011a,b; Qua et al., 2011). Regarding the agglomeration that can occur in 

either during NFC drying process (irreversible agglomeration) or during mixing with 

hydrophobic matrix is a challenge for the hydrophilic and polar nature of cellulosic 

fiber (Eyholzer et al., 2010). In order to fix this matter, it is believed that NFC 

suspension treated with sulfuric acid can form a better distribution, dispersion as well 

as good chemical bonding and compatibility with the hydrophobic polymer matrix in 

the nanobiocomposites development. 
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The development of nanobiocomposites which related with nanocellulose as 

reinforcement material derived from renewable sources is currently an interesting 

research area. Upon the promising properties of nanobiocomposites, scientists 

believe that high potential applications from nanocellulose fiber can be utilized as 

extremely strong and transparent films in various diverse areas. Currently, 

nanocellulose is produce to manufacture the nanobiocomposites in a form of strong 

film, thin film for food packaging, quality paper, thin component in bio-medical, 

electric and electronic device, as coating material and etc. (Fukuzumi et al., 2009; 

Spence et al., 2010a,b; Kelley et al., 2010; Bhattacharya et al., 2012; Mathew et al., 

2012; Ferrer et al., 2012; Kolakovic et al., 2012a,b; Yousefi et al., 2013; Wang et al., 

2013).  

 

Unfortunately, there is no research focused on the development and properties of 

OPEFB-NFC epoxy based nanobiocomposites board as a component for the 

automobile, packaging and especially in the automotive and bio-medical industry etc 

(Abdollah et al., 2008; Joshua et al., 2012; Masoodi et al., 2012; Cross et al., 2013; 

Farhan et al., 2014; Lani et al., 2014; Lee et al., 2014). In this study of 

nanobiocomposites, NFC from OPEFB was used as reinforcement in epoxy matrix to 

produce nanobiocomposite board at low reinforcement loading, below or less than 1 

wt%. The experiment was done using very low reinforcement loading to study the 

properties and reinforcement effect of OPEFB-NFC epoxy based nanobiocomposites 

board. 
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1.3   Scope of the Present Work 

 

The scope of this present study is to produce nanofibrillated cellulose (NFC) fiber 

from oil palm empty fruit bunch (OPEFB) using sulfuric acid hydrolysis, high shear 

mechanical disintegration and high pressure homogenization as a chemo-mechanical 

process. Low concentration of sulfuric acid was used to hydrolyze the cellulose fiber 

prior to facilitate the high pressure homogenization process. Subsequently, 

microfibrillate cellulose fiber (MFC) can be homogenized using HPH to produce 

nanofibrillated cellulose. Several analytical characterization methods, including 

transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-

ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and 

thermogravimetry analyses (TGA) were employed to determine characteristic 

morphological, chemical and thermal properties of NFC fiber.  

 

The isolation of NFC from OPEFB fibers which is easily and abundantly available in 

Malaysia, can thus be utilized as a reinforcing material in the nanobiocomposites. 

The literature review on NFC epoxy based nanobiocomposite indicated that until 

now, no study/work has been done on the production of epoxy based 

nanobiocomposites board reinforced NFC fibers (Abdollah et al., 2008; Joshua et al., 

2012; Masoodi et al., 2012; Cross et al., 2013; Farhan et al., 2014; Lani et al., 2014; 

Lee et al., 2014). This new and novel approach of NFC epoxy based 

nanobiocomposite at low percentage loading are expected to gain remarkable and 

competitive improvements in the physical, mechanical and thermal properties as 

compared to high loading percentage nanobiocomposites. The components of NFC 
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epoxy based nanobiocomposite especially in automotive, aerospace and biomedical 

sectors have been well-known to develope future prospect industries.  

 

The research aim is to explore through example, the recent development state in the 

field of nanofibrillated cellulose and cellulose nanobiocomposite research and 

application. As clearly known, natural product, cellulose itself is also considered as 

polymers, had an impressive and promising future potential for the basic information 

together with great scale production in various applications.  

 

1.4   Objectives of the Study 

  

The objectives of this present research work are: 

 

1.     To optimize the chemical treatment and investigate the effect of acid 

pretreatment on the treated microfibrillated cellulose fiber through different 

acid concentration and hydrolysis time parameters 

2.      To develop and isolate the nanofibrillated cellulose fibers from oil palm 

empty fruit bunch by chemo-mechanical treatment process and study its 

characterizstics (viz. morphology, chemical, crystallinity and thermal 

properties) 

3.      To evaluate the morphology, mechanical, physical and thermal 

properties of oil palm empty fruit bunch-nanofibrillated cellulose epoxy 

based nanobiocomposite at different low percentage reinforcement loading 
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1.5   Organization of Thesis 

 

This thesis comprises of five respective chapters which are as follows: 

 

Chapter 1- Covers the introduction and research background, including problem 

statement of major challenges, aim and scope together with objectives of the study. 

 

Chapter 2- Focused on literature review of various aspects of the nanofibrillated 

cellulose from OPEFB as reinforcing material and the NFC epoxy based 

nanobiocomposites development and application. It also covered detail relevant 

scientific information related to the overall research study. 

 

Chapter 3- State the materials and explains overall methodology framework of the 

study from the NFC isolation process to the nanobiocomposites development and 

including the characterization properties of each stage. 

 

Chapter 4- Demonstrate the output results and discuss the research finding on 

morphology, crystallinity, mechanical, physical, chemical and thermal properties of 

the nanofibrillated cellulose and its nanobiocomposites. 

 

Chapter 5- Consist of overall conclusions and recommendation for further future 

research study.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1   Oil Palm  

 

Oil palm tree, species of Elaeis guineensis belongs to the Palmacea family, 

originated from West Africa tropical forests is one of the most valuable and 

important commercial crop for worldwide mostly in Malaysia, Thailand and 

Indonesia country. Generally, oil palm tree (Figure 2.1) has age of 25 years old 

average perennial life span which accumulates measurement around ≈ 45–65 cm in 

diameter and 7–13 m in height from the ground level. This agricultural crop is 

produced in 42 countries worldwide. Although the origin of oil palm tree is native to 

Africa, but Malaysia was acknowledged as the first country in terms of processing 

and large scale planting (Abdul Khalil et al., 2011).  

 

Malaysia accumulates approximately 50% of the world's oil production therefore 

known as the world's largest oil producer and exporter. Oil palm has been the 

world’s leading important fruit crop for almost 20 years where its production has 

nearly doubled in the last decade (Abdul Khalil et al., 2011, 2012a). In 2011, the 

plantations around the globe is not less than 16 million hectares where it covers 

overall around 5 million hectares in Malaysia. This counted amount of land area 

plantation generates a huge value number of dry weight biomass, including empty 

fruit bunches, trunks, fronds and other biomass fraction produced annually (Abdul 

Khalil et al., 2011).  

  



12 

 

 

 
 

Figure 2.1: Oil palm tree 

 

2.1.1    Oil Palm Biomass 

 

Biomass is a collective suitable standard name for all organic substance derived from 

plants and other living organisms that has not been preserve to form carbon 

materials. Whereas the oil palm biomass is a lignocellulosic residue referring to the 

agricultural waste mainly from oil palm which left in the plantation field. This oil 

palm biomass typically contains 50% cellulose, 25% hemicellulose and 25% lignin 

in their cell wall (Ronald, 2013).  

 

In Malaysia, other than around 23 million metric tons yield of processed fresh fruit 

bunches (including palm kernel cake, crude palm oil and palm kernel oil) produced 

in 2011, 6.7 million metric tons of empty fruit bunch (EFB) (Figure 2.2), 13.0 

million metric tons of oil palm trunk, 47.7 million metric tons oil palm frond, 7.1 

million metric tons of pressed fruit fiber, 3.0 million metric tons of palm oil mill 

a 
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effluent and 4.0 million metric tons of kernel shells were generated as biomass 

fractions from residue of oil palm. In the production flow, most of these biomass 

fractions had been collected with the crude palm oil during harvesting at the palm oil 

mill. As these resources are included in the production supply chain, therefore this 

situation allows saving the transportation cost. Apart from these, only oil palm 

biomass (OPF and OPT) will need to be processed on site and obtained from the oil 

palm plantation field (Ronald, 2013).  

 

  
 

Figure 2.2: Oil palm empty fruit bunch (OPEFB) 

 

Malaysia alone had produced about 70 million tons of oil palm biomass during 2006. 

Ratnasingam et al. (2011) had reported that the main oil palm biomass includes EFB, 

OPT and OPF accounts for 10%, 5% and 70% respectively from the total oil palm 

biomass produced where the total oil palm biomass produced annually around 89% 

were used as fertilizer, fuel and mulch. From these figures, large quantity of waste 

products especially in OPF and OPT during the replanting process occur due to the 

b 
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increase in oil palm agricultural estate. Therefore, the oil palm industries in Malaysia 

had generated massive quantities of agricultural waste and will eventually create 

significant environmental problems with its presence at the cultivated area (Ronald, 

2013). In spite of this huge production, oil from the palm oil comprises only a small 

fraction compared to the total biomass produced by the oil palm plantation. As such, 

the oil palm industry must take advantage/opportunity by utilizing it at the best 

possible manner and prepare to overcome the situation (Abdul Khalil et al., 2012a). 

 

Presently, oil palm by-products are not proficiently utilized, where the enormous 

growth of oil palm plantation has generated large amounts of waste, creating 

tribulations in replanting operations and remarkable environmental concern. 

Therefore, the biomass fibers consumption towards proper economic utilization will 

be beneficial in creating value added products and solving the disposal problem. The 

oil palm sector produces large amount of biomass which constitutes agricultural 

lignocellulosic waste product during the milling processes, replanting and pruning 

when left in the field. This large number of unutilized by-product from oil palm tree 

can cause severe environmental and real estate problems (Abdul Khalil et al., 2011).  

 

Intensive research and development (R&D) efforts in the Malaysian oil palm 

industry through large quantities of abundant oil palm biomass have currently come 

out with establish applications in several commercially possible bio-based products. 

These lignocellulosic materials from oil palm biomass can be utilized through 

biological, chemical and physical innovations for great value-added products. To 

remain competitive, constant latest innovation aspect which include products, 

services and processes are important in making the biomass supply chain as to 
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continue promoting the new market and economies especially in those far 

countryside areas. Consequenly, Malaysia will remain beyond and on top of its 

competitors (Abdul Khalil et al., 2011). 

 

Malaysia as nominated the world's foremost palm oil-producing country has initiated 

upon the industry as well as trade to flourish and grow rapidly. Hence, researches are 

working on extensive variety of by-products that led to the continuous R&D 

development efforts in making the downstream manufacturing turns to strong and 

establish industry (Abdul Khalil et al., 2011). Nevertheless, oil palm biomass fibers 

have potential and excellent specific properties as outstanding reinforcing agent used 

in the matrix as an alternative material for pulp and paper, hybrid composites and 

bio-composites industries (Abdul Khalil et al., 2012a). In conjunction, long-lasting 

and perrenial in nature of tremendously available oil palm biomass supply are strong 

commercial assets to tap these new markets avenue (Ronald, 2013).  

 

2.1.2    Oil Palm Empty Fruit Bunch Fibers (EFB) and Cell Wall Ultrastructure 

  

Oil palm empty fruit bunch (EFB) is an abundant agricultural biomass where the 

source comes from oil palm tree by-product. The EFB is the empty bunch that is left 

behind and obtained after the oil palm fruit had been removed in the oil extraction 

process during harvesting. Fresh EFB accumulates around 12.4 million tons per year 

are regularly discharged from palm oil refineries where some quantity of this is used 

as fuel, while the rest is left unexploited (Abdul Khalil et al., 2011, 2012a). 
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The EFB fibers also known as lignocellulosic fibers consist of high cellulose content 

and certain amount of organic compound such as hemicellulose and lignin. The 

schematic drawing of cell wall ultrastructure and cellulose organization hierarchical 

structure of oil palm tree are shown in Figure 2.3. The existence of amorphous and 

crystalline regions is shown in lateral fiber structure. This high in cellulose content 

properties of EFB represents quality as potential natural fiber resource.  

 

 

Figure 2.3: Schematic drawing of cell wall ultrastructure and cellulose organization 

hierarchical structure of oil palm tree (Kolakovic et al., 2012; Abdul Khalil et al., 

2011) 

 

Unfortunately, the applications using EFB fiber does not widely explore as compare 

to the total biomass productions. The main constituents in oil palm EFB fiber usually 

fluctuate depending on certain condition such as testing methods, environment, 

weather effect, plant age and soil condition. Furthermore, Abdul Khalil et al. (2011, 

2012a) revealed that hemicellulose content is highest in oil palm EFB fiber as 

compared to banana stem, wood, pineapple leaf and coir fibers. 



17 

 

Many research and studies have been conducted regarding oil palm EFB fibers as an 

effective reinforcement in thermoplastics and thermosetting materials (Abdul Khalil 

et al., 2012a,b). These reveal that potential EFB fibers are suitable for composite 

development such as in hybrid composite board, medium density fiberboard, 

particleboard, pulp and paper and even nanocomposites. Currently, great amount of 

oil palm biomass are disposed off or burned to produce oil palm ash at the oil palm 

plantation mills. Thus, exploring the beneficial and practical oil palm biomass 

utilization as reinforcement in natural fiber based composites and nanocomposites 

will help to reduce the environmental problems issue as associated with the oil palm 

wastes disposal in industry (Abdul Khalil et al., 2012a,b). 

 

2.2   Cellulose 

 

Cellulose is the largest abundant organic biopolymer substance in the world and 

existing as main structural component in plants, animals and other microorganism 

cells. In plant-based materials, main sources of cellulose isolation can be classified to 

wood / non-wood and natural cellulosic fibers. Cotton is categorized under natural 

cellulose because it consisted almost entirely of glucose residues. Depending on the 

cellulose source, the cell wall constituent in plants has a reinforcing role and its 

structure can vary considerably (Abdul Khalil et al., 2012a). The production of 

cellulose around the world is estimated to be over 7.5x10
10

 tons annually (Abdul 

Khalil et al., 2014). 

 

Cellulose consists of D-anhydroglucose (C6H11O5) linear chain units that linked by β-

(1-4)-glycosidic bonds is defined as semicrystalline polysaccharide macromolecule. 
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Cellulose is known as basic most important component structure in all plant cell wall 

corresponding to the high stability and strength properties. The cellulose amount in 

fibers usually can affect the fiber utilization, production and quality at different 

reasons. For instance, fiber that has high cellulose amount are more appropriate to be 

used in textile and paper field while fiber that has high hemicellulose amount can be 

used to produce ethanol and other fermentation product because hemicellulose are 

easy to be hydrolysed (Reddy and Yang, 2005). 

 

Based on the main properties of this biopolymer, cellulose and its derivatives are 

important to replace petroleum based materials and often used in pharmaceutical due 

to their availability, low toxicity, biodegradability and renewable chemical resource 

in nature. As known, cellulose fibers also have relatively low elasticity than synthetic 

fibers and a comparatively high density, as well as better electricity and heat 

conductor. In addition, cellulose fibers are vulnerable to be damage by acidic 

condition but on the other hand have good resistance to bases (Abdul Khalil et al., 

2010). Knowledge and understanding on cellulose properties is important and 

necessary for the successful of further production processes.  

 

2.2.1    Structure of Cellulose 

 

Chemically, cellulose structure is constructing from a linear polymer composed by 

cellulose monomers, D-anhydroglucose (C6H11O5) units that linked together through 

β-(1-4)-glycosidic bonds to form the repeating units of the cellulose chain named 

dimer cellobiose (Figure 2.4). These cellulose molecules form a long straight, almost 

fully extended chain, where cellobiose are rotated 180° relative to each other along 
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the main axis. Long cellulose chain is known as α-cellulose where the β-1, 4 glucan 

chains length depends on the cellulose source. The quality of celluloid substance has 

connection with the degree of polymerization cellulose molecules (Maya Jacob and 

Sabu, 2008). 

 
 

Figure 2.4: Molecular structure of cellobiose as repeating unit of cellulose polymer 

and formation of the intra-chain (red dashed line) and inter-chain (black and green 

dashed lines) hydrogen bonding (Nishiyama et al., 2008; Visakh and Thomas, 2010) 

 

Cellulose from glucose molecules (C6H12O6) is monosaccharide that produces 

through photosynthesis process from carbon dioxide. Intra- and intermolecular 

hydrogen bonds in glucose units are structured from the three free hydroxyl groups 

positioning at C6 for the primary hydroxyl groups while C2 and C3 for the secondary 

hydroxyl groups (Brinchi et al., 2013). These hydrogen bonds chained together to 

create highly ordered three-dimensional crystal structures that hold the network 

providing the strength, stiffness, and structural stability in a plant. 

 

Several glucan chains of cellulose assemble and merge to form into a single 

microfibril, that consist of two structure components which are the highly ordered 

region, crystalline domain and low order para-crystalline region, amorphous domain. 

Naturally occurring cellulose I, known as native cellulose has a thermodynamically 

meta-stable structure that can be transformed to either cellulose II, III or IV. In 

Cellobiose  
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nature, cellulose I occur in two crystalline sub-allomorphs, cellulose I-α (a triclinic 

unit cell structure), and cellulose I-β (a monoclinic unit cell structure) which 

predominantly in higher plants. Cellulose I crystalline structure is distinguishable 

from regenerated cellulose II structure by the hydrogen bond and chain patterns 

(Sehaqui et al., 2012).  

 

Cellulose II, rarely found in nature can be artificially regenerated or mercerized from 

cellulose I. The regeneration process involves dissolution of the cellulose in a 

specific solvent while in the mercerization process the cellulose is soak in aqueous 

sodium hydroxide. In both processes, a final re-crystallization step leads to the final 

cellulose II, which more thermodynamically stable than cellulose I allomorph. Apart 

from these structures, there are further allomorphs of cellulose known, namely 

cellulose III and cellulose IV (Abdul Khalil et al., 2012a). Meanwhile treating the 

cellulose I with liquid ammonia followed by washing with alcohol will produce 

cellulose III. As for cellulose IV, it is formed upon treatment of the other modified 

cellulose in a suitable liquid under pressure at high temperature (Klemm et al., 2009). 

 

Cellulose is relatively resistant to oxidizing agents and strong alkali; however it will 

easily form water-soluble sugars by acid hydrolysis reaction (John and Anandjiwala, 

2008). During hydrolysis in acidic environment, the glucan chains are preferably cut 

in the amorphous domains. The resulting microfibril fragments are called whiskers 

due to their typical slender, rod-like shape. The single microfibrils then pack to larger 

bundles (fibril bundles, fibril agglomerates), hold together by the matrix substances 

(hemicelluloses, lignin and pectin). In a cellular hierarchical structure, cellulose is 

organized as the skeletal component in all plants. 
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Individual cellulose chain originately assemblies to form fiber cell wall do not 

occured alone as individual molecule in nature. The cell wall was structured in 

dynamic and continuous network form throughout the whole plant body. Generally, 

the plant cell wall consists of cellulose microfibrils which are bounded by amorphous 

matrix of lignin and hemicelluloses. Plant cell wall microstructure includes middle 

lamella, primary and secondary walls. These layers differ from one another in terms 

of structure and chemical composition which later influences the fiber value, 

properties, production and utility in various applications (Sonia and Priya, 2013).  

 

Middle lamella acts as a matrix that separates individual cells and mainly consists of 

lignin. The primary wall is the very thin outer part of a cell wall (less than 1 µm) 

which mainly consists of amorphous hemicelluloses and lignin together with the 

present of some pectins, proteins and celluloses. The secondary wall consists of three 

layers; S1, S2 and S3, where most of the cellulose located in the thickest secondary 

wall, S2 layer. Furthermore secondary layer contributes to overall fiber properties 

where it composed of microfibrils. These microfibrils create an irregular pattern of 

crystalline and amorphous regions where the structure is not completely crystalline 

with the presence of less ordered amorphous domains. Cellulose diameter size, range 

in 5 to 30 nm is depends on the cellulose source (Akil et al., 2011). 

 

The orientation of cellulose microfibrils (microfibril angles) organized in the cell 

walls have certain characteristic and a strong effect on the mechanical properties, 

where it differ depending on the cell wall layer and upon various plant type. For 

instance, low microfibril angles such as in S2 (with microfibril orientation nearly 

parallel to fiber axis) will increase modulus of elasticity, while high elongation at 
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break related to the large microfibril angles (Klemm et al., 2009). As a consequence 

of its fibrillar structure and the large amounts of hydrogen bonds, cellulose has a high 

tensile strength. It is therefore the structural element of a plant that bears the load in 

tensile mode (Abdul Khalil et al., 2012a). 

 

The morphological structural hierarchy of plant starts from the linkages of cellulose 

molecule chain merges to form elementary fibrils, which plug into larger units called 

microfibrils, which are then in turn assembled into fibers (Abdul Khalil et al., 2014). 

Therefore microfibril is considered as the smallest entity that can be isolated from the 

cell wall structure. The diameter and length of these elementary fibrils are around 3-5 

nm and up to few micrometers, respectively. The elementary fibrils are then 

aggregated to form bundles with diameters in a range of 5-30 nm and further 

microscopic cellulose fibers in several micron diameters. The scheme of cellulose 

hierarchical organization is shown in Figure 2.5. This hierarchy provides the plant 

fiber with high mechanical performance with characteristics such as tensile strength, 

resilience and stability as well as structural plasticity (Sehaqui et al., 2012). 

 

 

Figure 2.5: Schematic drawing of cellulose organization hierarchical structure, from 

fibers to cellulose molecule chains (Paakko et al., 2008) 
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2.2.2    Nanocellulose 

 

Generally, ‘nanocellulose’ term is referring to cellulosic materials that at least one 

dimension is in the nanometer scale, nano-size cellulose. Nanocellulose can be 

extracted from various lignocelluloses material including plant, agricultural/forest 

crops or residues and some bacterial (Table 2.1). There are various methods for 

preparing nanocellulosic from cellulose plant fibers including chemical, mechanical 

and chemo-mechanical treatment process (Abdul Khalil et al., 2012a, 2014; Ireana 

Yusra et al., 2014). Acid hydrolysis as chemical treatment has been extensively 

studied to isolate nanocellulose from different cellulosic sources (Fahma et al., 2010; 

Qua et al., 2011; Brinchi et al., 2013). 

 

Table 2.1: Various sources of nanocellulosic fibers (Abdul Khalil et al., 2012a) 

Various sources ( Nanocellulosic fibers) References 

Wood  Abe et al., 2007; Chen et al., 2011 

Cotton De Morais Teixeira et al., 2010 

Potato tuber cells Dufresne et al., 2000 

Cladodes and spines from Opuntia ficus-

indica 

Malainine et al., 2003 

Prickly pear fruits of Opuntia ficus-indica Habibi et al., 2008 

Lemon and maize Rondeau-Mouro et al., 2003 

Soybean Wang and Sain, 2007a 

Wheat straw and soy hulls Alemdar and Sain, 2008 

Hemp Wang and Sain, 2007b 

Coconut husk  Rosa et al., 2010 

Branch-barks of mulberry Li et al., 2009 

Pineapple leaf  Cherian et al., 2010 

Banana rachis Zuluaga et al., 2009 

Sisal Morán et al., 2008 

Pea hull  Chen et al., 2009 

Sugar beet Dinand et al., 1999; Dufresne et al., 

1997 

Oil Palm Empty Fruit Bunch Fahma et al., 2010 
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Processes that often involve in the mechanical treatments were refining, grinding and 

cryo-crushing followed by a high pressure homogenization (HPH). Usually in most 

cases, the mechanically HPH process does not stand alone, when the pre-treatment 

was applied together with the HPH process, it is denoted as chemo-mechanical 

treatment process, a combination of chemical and mechanical treatment process (Pan 

et al., 2013; Ireana Yusra et al., 2014). 

 

Recently, nanocellulose has attracted much attention during the past few years. The 

qualified characteristic for nanocellulose such as specific surface area and high 

aspect ratio, high strengthening and flexibility effect, good optical and thermal 

properties will find many applications in high technology and quality grade paper, 

nanocomposites, coating additives, food packaging, gas barriers and etc. 

(Belbekhouche et al., 2011; Moon et al., 2011). For instance, nanocellulose with 

functional hydroxyl groups also allows chemical modifications for further 

applications (Kaushik, 2011). 

 

Incorporation of biodegradable, biocompatibility and non-toxicity nanocellulose as 

reinforcement material in the polymer matrix has proven to be an important strategy 

due to high mechanical performance and great properties in producing 

nanobiocomposites for biochemical and biomedical applications (Abdul Khalil et al., 

2012a). These biodegradable nano-reinforcements also promise a great potential for 

novel green nanocomposite materials development in consideration to the 

environment awareness. Moreover, it has also shows potential in various 

nanotechnology applications including automotive, automobile and electronic 

devices industries (Abdul Khalil et al., 2014). 
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