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SIFAT FIZIKOKIMIA DAN POTENSI PREBIOTIK KANJI ASLI, RINTANG 
DAN HCL-RINTANG DARIPADA SAGU (METROXYLON SAGU) 

 
ABSTRAK 

 
Kanji rintang jenis III (RS3) telah dihasilkan daripada sagu (Metroxylon sagu) 

dan dinilai sifat fizikokimia and potensinya sebagai prebiotik. Sampel mengandungi 
35.7% kanji rintang (dikenal sebagai sagu RS) telah dihasilkan apabila kanji sagu asli 
diautoklaf dalam air suling pada suhu 121 °C selama 1 jam, dinyahcabang dengan 20 
U pullulanase per g kanji pada 60 °C selama 24 jam dan seterusnya diautoklaf sekali 
lagi pada 121 °C selama 1 jam sebelum disimpan pada 4 °C selama 24 jam. 
Seterusnya, kandungan kanji rintang meningkat sehingga 63.8% (sampel dikenal 
sebagai HCl-sagu RS) selepas sagu RS dihidrolisiskan dengan 0.5 M HCl pada suhu 
60 °C. Granul sagu RS dan HCl-sagu RS menunjukkan corak pembelauan sinar X 
jenis B, suhu puncak yang tinggi (143.7 °C and 146.5 ºC, masing-masing) dan 
struktur permukaan yang tidak sekata dan kasar. Granul kanji sagu asli menunjukkan 
corak pembelauan sina X jenis C, suhu puncak 74.6 °C dan permukaan yang sekata. 
Keterlarutan dan kuasa pembengkakan sampel HCl-sagu RS ialah 14.9% dan 1.94 
g/g, masing-masing, iaitu lebih rendah berbanding sagu RS (27.4% and 2.82 g/g, 
masing-masing). Sampel sagu RS and HCl-sagu RS rintang terhadap hidrolisis 
keasidan gastrik pada pH 1-4 selama 180 min dengan kurang daripada 0.85% 
dihidrolisiskan. Kedua-dua sampel juga rintang terhadap hidrolisis oleh enzim 
saluran gastrousus dan penyerapan usus dengan masing masing 96.8% dan 98.7% 
RS3 telah dipulihkan selepas penghadaman selama 3.5 jam dan dialisis selama satu 
malam pada suhu 37 °C. Sagu RS dan HCl-sagu RS bertindak secara terpilih 



 

xix 
 

terhadap pertumbuhan bakteria, yang mana pertumbuhan bakteria dari usus tikus 
(lactobacilli dan bifidobakteria) telah ditingkatkan manakala pertumbuhan bakteria 
perosot (bacteroides, clostridia dan enterobakteria) telah dikurangkan. Indeks 
prebiotik sagu RS, HCl-sagu RS, oligofruktosa dan inulin ialah +12.19, +4.75, +9.45 
dan +6.82, masing-masing. Penghasilan asid butirik oleh bakteria dari usus tikus 
dalam media dengan sagu RS dan HCl-sagu RS adalah lebih tinggi berbanding dalam 
media dengan oligofruktosa dan inulin. Kedua-dua kanji rintang juga menurunkan 
aktiviti β-glucuronidase. Sebaliknya, kanji sagu asli menyokong pertumbuhan kedua-
dua bakteria baik dan bakteria perosot. Sagu RS dan HCl-sagu RS merupakan 
substrat pertumbuhan yang lebih baik untuk Lactobacillus plantarum FTCC0350 
berbanding dengan FOS dan inulin. Penghasilan asid laktik dan asetik oleh 
Lactobacillus plantarum FTCC0350 adalah lebih tinggi dalam media dengan sagu 
RS dan HCl-sagu RS. Kesimpulannya, sagu RS sagu dan HCl-sagu RS 
menunjukakan sifat prebiotik dan kedua-dua sampel ialah potensi prebiotik.  
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PHYSICOCHEMICAL PROPERTIES AND PREBIOTIC POTENTIAL OF 
NATIVE, RESISTANT AND HCL-RESISTANT STARCHES FROM SAGO 

(METROXYLON SAGU) 
 

ABSTRACT 
 

Resistant starch type III (RS3) was produced from sago (Metroxylon sagu) 
and evaluated for its physicochemical properties and potential as a prebiotic. A 
sample with 35.7% RS3 content (designated as sago RS) was produced when the 
native sago starch was suspended in distilled water, gelatinized by autoclaving at 
121 °C for 1 h, followed by debranching with 20 U pullulanase per g starch at 60 °C 
for 24 h, autoclaved again at 121 °C for 1 h before storage at 4 °C for 24 h. RS3 
content was further increased with the treatment of sago RS with 0.5 M HCl at 60 °C 
(sample designated HCl-sago RS) to 63.8%. Granules of sago RS and HCl-sago RS 
had B-type X-ray diffraction pattern, high peak temperatures (143.7 °C and 146.5 ºC, 
respectively) and showed irregular and rough surface structure. While granules of 
native sago starch had C-type diffraction pattern, peak temperature of 74.6 °C and 
smooth granular surface. The solubility and the swelling power of HCl-sago RS 
samples were 14.9% and 1.94 g/g, respectively, which were lower than that of sago 
RS (27.4% and 2.82 g/g, respectively). Sago RS and HCl-sago RS samples were 
resistant to 180 min hydrolysis by gastric acidity at pH 1 to 4 with less than 0.85% 
hydrolyzed. Both samples were also resistant toward hydrolysis by gastrointestinal 
tract enzymes and intestinal absorption with 96.8% and 98.7% of RS3 were recovered 
respectively after 3.5 h digestion and overnight dialysis at 37 °C. Sago RS and HCl-
sago RS acted selectively, by increasing the growth of rat intestinal bacteria 
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(lactobacilli and bifidobacteria) while decreasing the growth of detrimental 
bacteroides, clostridia and enterobacteria. The prebiotic indexes of sago RS, HCl-
sago RS, oligofructose and inulin were +12.19, +4.75, +9.45 and +6.82, respectively. 
Butyric acid production by rat faecal culture was higher in media with Sago RS and 
HCl-sago RS than with oligofructose and inulin. The activity of β-glucuronidase 
were reduced by sago RS and HCl-sago RS. Contrary, native sago starch supported 
the growth of both beneficial and detrimental bacteria. Sago RS and HCl-sago RS 
were the better growth substrate for Lactobacillus plantarum FTCC0350 as 
compared with FOS and inulin. Lactic and acetic acid production by Lactobacillus 
plantarum FTCC0350 was higher in media with sago RS and HCl-sago RS. In 
conclusion, sago RS and HCl-sago RS exhibited prebiotic characteristic and they are 
potential prebiotic.  
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CHAPTER 1  
INTRODUCTION 

 
1.1 Research Background 

The human large intestine is heavily populated by numerous and diverse 
species of microorganism, forming a complex microflora community. Colonic 
microflora plays a crucial role in maintaining the proper intestinal function and this 
influences the host health. Colonic microflora impacts the development of immune 
system, inhibit the growth of pathogen and regulate metabolic pathway in the host 
(Sekirov et al., 2010). Hence, colonic microflora must be maintained in a balanced 
state with predominantly constitute of health promoting bacteria, for instance, 
lactobacilli and bifidobacteria. Imbalance in the composition of colonic microflora 
may be linked to numerous diseases such as colorectal cancer and inflammatory 
bowel disease (Zhu et al., 2014).  

A promising strategy, whereby involving the usage of prebiotic, was 
introduced by Gibson and Roberfroid (1995).  The authors described prebiotic as a 
nondigestible carbohydrate which could improve a balanced intestinal microflora 
once administered orally as food supplement. A prebiotic ingredient should resist 
towards the digestions in the upper gastrointestinal tract and be selectively fermented 
by intestinal microflora associated with beneficial effects (Gibson et al., 2004).  The 
addition of prebiotic carbohydrates into food products, especially in dairy products, 
is emerging (Huebner et al., 2007). 

Although the concept of prebiotic was established two decades ago, there are 
currently only three food ingredients that fulfil the prebiotic characteristic: inulin-
type fructans, trans-galactooligosaccharides and lactulose (Gibson et al., 2010). The 
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demand for prebiotic food is growing rapidly and is expected to reach $5,545.74 
million by the year of 2020 (Newswire, 2015). Hence, many researches are in the 
progress of studying various sources of carbohydrate to claim as prebiotic, such 
oligosaccharides from dragon fruit flesh (Wichienchot et al., 2010), pectic 
oligosaccharides from orange peel wastes (Gómez et al., 2014) and refined 
arabinoxylooligosaccharides from wheat bran (Gullón et al., 2014)  

Resistant starch is a non-digestible carbohydrate that can withstand digestion 
and absorption along the upper intestinal tract and can be partially or completely 
fermented by gut microflora (Cummings and Englyst, 1991). The primary beneficial 
effects of resistant starch in reducing faecal transit time, decreasing postprandial 
blood glucose and inducing lipid metabolism, as well as its secondary beneficial 
effects as a potential prebiotic have been reviewed (Sajilata et al., 2006; Fuentes-
Zaragoza et al., 2011). However, most staple food products contain less resistant 
starch than the recommended daily consumption, which is approximately 20 g 
(Baghurst et al., 2001). It was reported that per 100 g, breakfast cereals only contain 
less than 3.6 g of resistant starch (Alsaffar, 2011); white bread, 0.9 g (Brown, 2004); 
cooked white rice, 7.1 g (Vatanasuchart et al., 2009); and starchy foods, 0.2-10 g 
(Liljeberg, 2002). Thus, the consumption of foods added with processed resistant 
starch as food ingredient is suggested. Previous researches have focused on the 
production of resistant starch type III (RS3) from readily accessible starch sources 
such as maize (Zhao and Lin, 2009), wheat, rice, and potato (Garcia-Alonso et al., 
1998). Less research has been reported on the production of RS3 from sago 
(Metroxylon sagu) except our three previous researches (Leong et al., 2007; Siew-
Wai et al., 2012; Purwani et al., 2012). However, none of the resistant starch listed 
have been scientifically proven as prebiotic. 
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Sago is widely planted in Sarawak, Malaysia, covering 54,087 hectares of 
land (Department of Agriculture Sarawak 2015a). Sago starch is one of the major 
export commodities for Malaysia, with an increased output from 47,687.26 metric 
tons in year 2012 to 47,946.37 metric tons in 2013 (Department of Agriculture 
Sarawak, 2015b). Due to the fact that sago starch is abundant in Malaysia, RS3 was 
produced from sago in this research. Produced sago resistant starches were evaluated 
for its potential as a prebiotic. Indirectly, this can beneficially accelerate the 
development of sago industry in Malaysia, with positive effects on agricultural 
economy as well as health of the Malaysian population upon consumption of RS3 
containing food. 
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1.2 Objectives of Research 
The overall aim of this study is to evaluate resistant starch type III samples 

produced from sago (Metroxylon sagu) for its potential as a prebiotic. Therefore, this 
study embarks on the following specific objectives: 
1. To investigate the influence of different sequential processing conditions on the 

resistant starch content and the functional properties of resistant starches type III 
produced from sago. 

2. To characterize and compare the physicochemical properties of produced sago 
resistant starches type III with native sago starch. 

3. To elucidate the resistance of native sago starch and sago resistant starches type III 
to gastric acidity digestion, enzymatic digestion and intestinal absorption. 

4. To evaluate and compare the ability of native sago starch and sago resistant 
starches type III  to stimulate the in vitro growth and activity of rat intestinal 
microflora with commerical prebiotics. 

5. To assess the in vitro fermentability of native sago starch and sago resistant 
starches type III by selected pure cultures of lactobacilli, bifidobacteria and 
pathogens. 
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CHAPTER 2  
LITERATURE REVIEW 

 
2.1 Sago  

Sago palm (Metroxylon spp.), which is also locally known as ‘rumbia’, is 
distributed throughout the Asia-Pacific region, mainly in Malaysia, Indonesia, 
Thailand and Papua New Guinea. Sago starch is normally produced from the species 
of Metroxylon sagu, Metroxylon longispinum, Metroxylon sylvestre, Metroxylon 
microcanthum, Metroxylon rumphii (Ahmad et al., 1999).  

Starch as a source of dietary carbohydrate, is typically extracted from tuber 
(sweet potato), root (cassava), cereals (corn, rice) and legumes (bean) (Karim et al., 
2008). However, sago starch is unique as it is the only commercial starch which 
derived from the stem of sago palm (Karim et al., 2008). For every unit of plantation 
area, sago palm can produce 3 to 4 times more starch than rice corn and wheat while 
17 times more starch than cassava (Karim et al., 2008). Since sago palm can produce 
a relatively higher yield than other starchy crops and its ability to grow well in 
swampy area without much care, sago starch has a higher commercial value. 

In Malaysia, sago palm is mainly planted in the state of Sarawak, with 
occupying over three quarters of the peat land of Sarawak and being the only plant 
that is able to grow well and vigorously in the swampy area (Bujang and Yusop, 
2006). With the establishment of sago palm estate plantations by the Land Custody 
and Development Authority (or Lembaga Pembangunan dan Lindungan Tanah, 
PELITA) of Sarawak, the total sago palm plantation was recorded to be 54,087 ha in 
2013 (Department of Agriculture Sarawak, 2015a). The sago industry in the State of 
Sarawak is well-established and has made sago flour one of the most important 
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export commodities, with a current output of 45,000 metric tons/year, with revenue 
expected to increase from RM36 million/year to RM2.5 billion/year in 2015 (Jackson, 
2007).   

Sago starch is used in composites with other starches such as cassava, potato, 
and corn starch in local food manufacturing (Karim et al., 2008). Several researches 
are also in progress to use sago starch in the production of lactic acid and bioethanol 
through the fermentation process (Karim et al., 2008). In this study, sago starch in 
the form of a resistant starch type III was used to investigate its potential as prebiotic. 
Once this application is recognized, additional usage of sago starch will be increased.  
 
2.2 Starch 

Through photosynthesis process, plants utilize energy from sunlight and 
carbon dioxide from atmosphere to produce their own food, glucose. Excessive 
productions of these substrates will mostly being stored in the form of 
polysaccharides, namely, starch.  Starches are basically polysaccharides of the six-
carbon sugar, D-glucose, which linked together by the α-linkages regardless of the 
botanical source. Essentially, starches are structurally composed of amylose and 
amylopectin (Figure 2.1). Amylose is a linear polysaccharide chain and all the 
glucose residues are linked together by α-D-(1-4) linkages (Tester et al., 2004). 
Amylopectin, not only contains α-D-(1-4) linkages, also contains α-D-(1-6) linkages 
which making it a highly branched molecules (Tester et al., 2004). 

Starches are occurred as granular form which consist of amorphous region 
and crystalline region (Zhang et al., 2014). Usually, amylose chains are loosely 
packed in the amorphous region while amylopectin chains are arranged in precise 
double helices in the crystalline region (Zhang et al., 2014).  
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Figure 2.1: α-(1-4) and α-(1-6) glycosidic bonds of starch: (A) amylose structure; (B) 
amylopectin structure. (Adapted from Tester et al., 2014)  
 

2.2.1 Starch Digestion in Human  
 Starch is the main energy intake of human daily. The digestion of starch 
initiates in the mouth once human ingests the starchy food. An enzyme in the saliva, 
called salivary α-amylase, is responsible in hydrolyzing starch into disaccharides 
(Lunn and Buttriss, 2007). This enzyme tends to digest starch efficiently but a lesser 
extent of hydrolysis occurs as starch remains in the mouth for a short period of time 
only (Singh et al., 2010). Moreover, salivary α-amylase is inactivated by the acidic 
condition in the stomach when starch passes down the oesophagus and reaches the 
stomach (Singh et al., 2010). Gastric juice that is released into it has a pH range of 2-
4 making an extreme acidic condition for hydrolysis in the human stomach 
(Wichienchot et al., 2010). Enzyme pepsin is activated by this acidic condition to 
digest protein (Perara et al., 2010). Although starch cannot be hydrolyzed by this 

A 

α-(1-6) linkage 

α-(1-4) linkage 

B 
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enzyme, strong acid (hydrochloric acid) from gastric juice can hydrolyze starch 
(Dona et al., 2010).  

While entering the small intestine, pancreatic fluid produced by the pancreas 
is released into the duodenum and mixes with the starchy food (Dona et al., 2010). 
Pancreatic fluid consists of sodium bicarbonate and digestive enzymes. Sodium 
bicarbonate neutralizes the acidic starchy food so that pancreatic α-amylase can 
further hydrolyze the polysaccharides. (Dona et al., 2010). Pancreatic fluid also 
consists of others digestive enzymes, such as trypsin, chymotrypsin, lipase and 
ribonucleases (DeSesso and Jacobson, 2001). Majority of the ingested starchy food is 
hydrolyzed in the small intestine of human by pancreatic α-amylase (Singh et al., 
2010). This enzyme hydrolyzes the α-1,4 linkages of starch polymers specifically, 
producing mainly maltose, maltotriose and maltotetraose for amylose chains while 
dextrins or branched oligosaccharides for amylopectin chains (Singh et al., 2010). 
These products are further hydrolyzed to glucose by brush border enzymes as only 
glucose could absorb through the small intestine into the human body.  

Starch that has escaped from digestion by human enzymes in the small 
intestine will passage into the colon. In this region, bacterial enzymes favour the 
degradation of nondigestible carbohydrate through a process, called fermentation 
(Perara et al., 2010). Human body does not produce digestive enzymes in the colon 
(Boisen and Eggum, 1991). The bacterial fermentation is further discussed in Section 
2.4. Based on the nutritional properties, starches can be classified as either digestible 
or resistant (Sajilata et al., 2006) as summarized in Table 2.1. Digestible starches can 
be further categorized as either rapidly digestible starch (RDS) or slowly digestible 
starch (SDS) and these starches are completely digested in the small intestine 
(Sajilata et al., 2006). RDS is quickly hydrolyzed to glucose units within 20 minutes 
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of digestion in the small intestine (Sajilate et al., 2006). SDS is digested more slowly 
than RDS, but it is completely converted to glucose within 20-120 minutes of 
digestion in the small intestine (Sajilata et al., 2006). Resistant starch (RS) is the 
fraction of starch which cannot be hydrolyzed to glucose within 120 minutes of 
digestion in the small intestine but is fermented in the large intestine (Raigond et al., 
2014).  
 Table 2.1: Nutritional classification of starches. 

Item Starch Fractions 
RDS SDS RS (types I-V) 

Digestion timeline  
(in vitro)/place 

Within 20 min/mouth 
and small intestine 

20-120 min/small 
intestine 

>120 min/not in small 
intestine, main action in 
colon 

Examples Freshly cooked food Native waxy maize 
starch, millet, legumes 

Raw potato, staled 
bread 

Amount (g per 
100g dry matter) 

Boiled hot potato: 65 Boiled millet: 28 Raw potato starch: 75 
Main 
physiological 
property 

Rapid source of energy Slow and sustained 
source of energy and 
sustained blood glucose 

Effects on gut health 
(e.g. prebiotic, 
fermentation to butyrate 
with hypothesized 
anticarcinogenic 
effects) 

Structure Mainly amorphous Amorphous/crystalline Dependent on type, 
mainly crystalline 

(Adapted from Raigond et al., 2014) 
 
2.2.2 Resistant Starch 
2.2.2(a) Definition 

EURESTA (European FLAIR Concerted Action no. 11 Physiological 
Implications of the Consumption of Resistant Starch in Man) had defined RS as "the 
total amount of starch, and the products of starch degradation that resists digestion in 
the small intestine of healthy people" (Asp, 1992). The definition of RS was later 
proposed to be "the sum of starch and starch-degradation products that, on average, 
reach the human large intestine" (Englyst et al., 1996). 
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2.2.2(b) Types of Resistant Starch 
Resistant starch is classified into five different categories: RS1, RS2, RS3, RS4 

and RS5, as shown in Table 2.2, according to the mechanism which restricts its 
digestion by enzyme. 

 
Table 2.2: Types of resistant starch and their food sources.    
RS types Description Food sources 
RS1 Physically inaccessible 

starches 
Whole or partly milled grains and 
seeds, legumes 

RS2 Ungelatinized granular starches Raw potatoes, green bananas, some 
legumes, high-amylose corn 

RS3 Retrograded starches Cooked and cooled potatoes, bread, 
cornflakes, food products with 
repeated moist heat treatment 

RS4 Chemically modified starches 
due to cross-linking with 
chemical reagents 

Foods in which modified starches 
have been used (e.g. breads, cakes) 

RS5 Amylose-lipid complexes Foods with high amylose content 
(Adapter from Raigond et al., 2014) 
 

RS1 is enclosed in a non-digestible matrix, and thus it is physically 
inaccessible and resistant to enzymatic digestion (Haralampu, 2000). Milling and 
chewing enable it to be more accessible to digestion (Fuentes-Zaragoza et al., 2011). 
RS2 is native starch which is not gelatinized and occurs in granular form. It is 
relatively dehydrate and is densely packed in a radial pattern which limits its 
accessibility to digestive enzyme (Sajilata et al., 2006). RS3 is retrograded 
nongranular starch which formed during the cooling of cooked starch (Fuentes-
Zaragoza et al., 2011). Formation of starch crystals during cooling prevents RS3 to be 
digested by enzyme (Fuentes-Zaragoza et al., 2011). Detailed information on the 
formation of RS3 is described in next section (Section 2.2.2(c)).  RS4 includes starch 
that has been cross-linked, esterified, or etherized with chemicals reagent to 
decreases their digestion by enzyme (Raigond et al., 2014).  RS5 is an amylose-lipid 
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complex starches that require a high gelatinization temperature (Jiang et al., 2010). It 
composed of linear water-insoluble polyalpha-1,4-D-glucan which is not degraded 
by α-amylases (Frohberg and Quanz, 2008).  

Among all the resistant starches, RS3 is preferred as a functional food due to 
its thermal stability high melting temperature at the range of 140 °C to 160 °C 
(Shamai et al., 2003). On the other hand, RS1 and RS2 are thermally instable, causing 
them to lose their functional benefits after food processing (Zhao and Lin, 2009), 
while the legality of RS4 being used in food production is a major concern (Lunn and 
Buttriss, 2007). RS4 needs approval for its application as food ingredient due to the 
fact that it is produced using chemical reagents. To date, RS4 is a novel food which 
not yet approved by European Union but it is permitted in Japan (Lunn and Buttriss, 
2007). The thermal stability characteristic allows food with added RS3 to retain its 
functional benefits even after cooking. Research had also shown that RS3 can be 
incorporated into battered food without compromising consumer acceptability (Sanz 
et al., 2008).  
 
2.2.2(c) Formation of Resistant Starch Type III 

Gelatinization of starch followed by rearrangement of amylose polymers, 
which is retrogradation, are the two general stages involve in the formation of RS3. 
During gelatinization process, heating of starch suspension in excessive water raises 
its temperature progressively, allowing starch molecules to absorb heat energy and 
increasing the vibration causing the breakage of hydrogen bonds among the starch 
molecules (Bryksa and Yada, 2009). Meanwhile, hydrogen bonds are formed 
between water molecules and starch molecules, allowing water to penetrate into the 
starch granules to such an extent that the irreversible swelling of starch granules 
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occurs (Vaclavik and Christian, 2014). Swelling causes starch granules to lose their 
birefringence and the ordered crystalline structure. Eventually, they are disrupted, 
allowing polymer chains to leach out from starch granule (Vaclavik and Christian, 
2014). 

The starch suspension forms gel after gelatinization. While the gel is cooled, 
heat energy is being released out from the gel. This facilitates the formation of 
hydrogen bonds among the starch polymers and subsequently starch polymers re-
associate from a disordered structure into a more ordered structure (Bryksa and Yada, 
2009). Between the two types of starch polymers (amylose and amylopectin), 
amylose chains are more preferred in the process of retrogradation for the formation 
of RS3 due to their linearity, which allow stronger hydrogen bond to form and 
causing the formation of tightly packed crystalline structure (Bryksa and Yada, 2009). 
This contributes to the thermally stable characteristic of RS3, making the concept of 
using RS3 as functional ingredient in processing food rational. The crystalline 
structure which forms from amylopectin chains during retrogradation is not tightly 
packed and less stable, having a melting temperature of 55 ºC to 70 ºC (Eerlingen 
and Delcour, 1995).  This is due to the branching chains of amylopectin which 
restrict the formation of strong hydrogen bonds among the polymers (Eerlingen and 
Delcour, 1995). 

Every stage of RS3 production has its own influencing factors in addition to 
the starch botanical sources, ratio of amylose and amylopectin content, and the 
presence of other components in the starch (Sajilata et al., 2006). According to 
Thompson (2000), subjecting the retrograded starch to acid or enzyme hydrolysis 
could increase the level of RS3.  
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Previous research had demonstrated that different methods used in the 
gelatinization of starch (autoclaving at 120 °C and boiling at 100 °C) as well as the 
botanical sources of starches influenced the amount of RS3 produced (Garcia-Alonso 
et al., 1998). In this study, RS3 contents produced from wheat (13.4%) and corn 
starches (10.6%) gelatinized by autoclaving method were significantly higher (10.4% 
and 9.55%, respectively) than that of which gelatinized by boiling (Garcia-Alonso et 
al., 1998). However, the boiling method had resulted a higher RS3 content production 
(4.52%) in rice starch than that produced by autoclaving (3.22%) while the content of 
RS3 produced from potato starch had no significant difference for both gelatinization 
methods (Garcia-Alonso et al., 1998). 

One previous research showed that the concentration of amylose was 
positively correlated with the yield of RS3, whereby amylomaize VII with the highest 
amylose content (70%) produced the highest RS3 (21.3%) while waxy maize with the 
lowest amylose content (< 1%) yielded the lowest RS3 content of 2.5% (Sievert and 
Pomeranz, 1989). However, amylomaize VII starch was produced from the breeding 
of maize crops to obtain high amylose content. Natural starches contain low amylose 
content of 15% to 20% (Sajilata et al., 2006), making retrogradation of amylose 
chains restricted as the amount of amylopectin chains are readily high. Nevertheless, 
debranching enzyme can be used to cleave the α-D-(1-6) linkages in amylopectin so 
that a mixture of long and short unit of amylose can be released (Leong et al., 2007). 
The increased amount of amylose can facilitates recrystallization to be occur easily 
(Zhao and Lin, 2009). None of the previous researches could produce resistant starch 
samples with 100% RS3 content. Even for the commercial available resistant starch 
(Table 2.3), none of them contain 100% of RS3. 
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Differences in processing methods such as cooking, tempering, extrusion, 
puffing, roasting, and flaking influence the RS3 content of the cooked foods. Puffing 
of rice snack by frying and roasting, produced products with higher RS3 content; 2.6% 
and 2.9%, respectively, compared with the raw product itself (Vatanasuchart et al., 
2009). Extrusion cooking of high amylose starch (Hylon VII) significantly reduced 
the RS3 content from 60% to 13.8% (Htoon et al., 2009).  
 Table 2.3: Commercially manufactured resistant starches. 
Brand name of 
commercial RS 

Type RSa/TDFb content Manufacturer 
Hi-maize  RS2 30-60% TDF National Starch and Chemicals 

Co., USA 
Crystalean RS3 19.2-41% RS Opta Food Ingredients Inc., 

USA 
Novelose 240 RS2 47% RS National Starch and Chemicals 

Co., USA 
Novelose 260 RS2 60% RS National Starch and Chemicals 

Co., USA 
Novelose 300 RS3 <30% TDF National Starch and Chemicals 

Co., USA 
ACT* -RS3 RS3 53% RS Cerestar (a Cargill company) 
Fibersym HA RS4 >70% TDF MGP Ingredients, Inc.  

(Atchison,KS) and Cargill 
Fibersym 80ST RS4 80% TDF MGP Ingredients, Inc. 

(Atchison,KS) and Cargill 
Hylon VII RS2 23% TDF National Starch and Chemicals 

Co., USA 
Neo-amylose RS3 87 or 95% RS Protos-Biotech. (Celanese 

Ventures GmbH) aRS: resistant starch; bTDF: total dietary fibre. (Adapted from Raigond et al., 2014) 
 

2.3 Human Gastrointestinal Microflora 
 Different sections of the human gastrointestinal tract (Figure 2.2) vary 
widely in the numbers of bacteria, harbouring approximately 103 CFU/g, 106-7 CFU/g, 
1011 CFU/g, in the stomach, small intestine and large intestine (colon), respectively 
(Sanders et al., 2007). There are more than 400 species of bacteria constitute the 
intestinal microflora but only 40 species be in the majority (O'Grady and Gibson, 
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2005). Lesser bacteria inhabit in the stomach and the first part of small intestine, 
duodenum. This is because the strong acidic condition in the stomach and the 
presence of pancreatic fluid and bile salt in duodenum create an unfavorable 
environment for the bacterial colonization (Sanders et al., 2007). Due to the desirable 
conditions of the colon, including a longer transit time, the near neutral pH and 
adequate of nutrient supply, majority of bacteria reside in this region (O'Grady and 
Gibson, 2005). Hence, most of the bacterial metabolic activities, which could exert 
significant influences on host health occur in the colon compared with that of in the 
small intestine. 

 Figure 2.2: The occurrence of bacteria throughout the human gastrointestinal tract.  
(Adapted from Sanders et al., 2007) 
 
 

Most of the colonic microflora is strict anaerobes which predominantly 
include bacteroides, bifidobacteria, eubacteria, clostridia, peptostreptococci, 
peptococci and ruminocci (Salminen et al., 1998). Of these, bacteroides and 
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bifidobacteria are numerically preeminent as these two groups can constitute to 30% 
and 25% of the total anaerobic counts, respectively (Salminen et al., 1998). Strict 
anaerobes outnumber facultative anaerobes by a factor of ~1000 (Rastall, 2004). The 
most common facultative anaerobes are lactobacilli, enterococci, streptococci and 
Enterobacteriaceae (Rastall, 2004).  
 Colonic microflora derives energy for growth from the fermentation of 
dietary components and endogenous mucins (Hughes et al., 2000). Components of 
dietary origin include nondigestible carbohydrates, such as resistant starch, non-
starch polysaccharides, oligosaccharides and sugar alcohols as well as undigested 
proteins which passage into the colon (Cummings and Macfarlane, 1991).  

The fermentation of carbohydrates (saccharolytic fermentation) produces 
acetic, propionic and butyric acid as main short chain fatty acid and gases such as 
CO2, CH4 and H2 (Bernalier-Donadille, 2010). These short chain fatty acids could 
exert several beneficial influences on host health. Contrary to carbohydrate 
fermentation, protein fermentation (proteolytic fermentation) produces metabolites 
which are potentially harmful to the host, such as ammonia, amines and phenolic 
compounds (Bernalier-Donadille, 2010). Some of the bowel diseases, for instance, 
colorectal cancer and ulcerative colitis are probably linked to the excessive protein 
fermentation in the colon (Roberfroid et al., 2010; Windey et al., 2012). Short chain 
fatty acids and branched chain fatty acids are also the end products of proteolytic 
fermentation (Bernalier-Donadille, 2010).  

The main saccharolytic bacterial groups are bacteroides, bifidobacteria, 
eubacteria, lactobacilli and clostridia while the main proteolytic bacterial groups are 
bacteroides and clostridia (Roberfroid et al., 2010). Some of the bacteria, for instance,  
bacteroides and clostridia could perform both saccharolytic and proteolytic
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fermentation.  
 Colonic microflora can be divided into bacteria that having either beneficial 
or detrimental influences on host health owing to their metabolic activities and 
fermentation end products (Gibson et al., 2010). Bacteria with a saccharolytic 
fermentation are beneficial whereas those having a proteolytic or both types of 
fermentation are either less beneficial or detrimental (Gibson et al., 2010). Health 
promoting effects include impede the growth of detrimental bacteria, improve the 
digestion and absorption of essential nutrients, synthesize vitamins and stimulate the 
immune functions whereas detrimental effects include diarrhoea/constipation, liver 
damage, infections, carcinogenesis and intestinal putrefaction (Gibson and 
Roberfroid, 1995).  
 Due to the fact that colonic microflora plays a significant role in host health, 
their composition should be modulated. Gibson and Roberfroid (1995) had proposed 
that maintaining the colonic microflora in a balanced state could ideally support the 
health and well-being of the host. According to the authors, this "balanced 
microflora" concept implies that the colonic microflora must comprise high numbers 
of bacteria associated with health promoting effects and concomitantly low numbers 
of bacteria associated with harmful effects. Roberfroid (2005) mentioned that the 
latter groups of bacteria should keep in low numbers and do not necessarily have to 
be removed completely, especially for those that could exert both pathogenic and 
health promoting effects on host health. It is obviously shown in Figure 2.3 that 
some of the bacteria such as bacteroides and E. coli could attribute not only 
pathogenic influences but also beneficial influences on host health. The most obvious 
health promoting bacteria are lactobacilli and bifidobacteria (Figure 2.3).  
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The colonic microflora can be modulated towards a balanced composition 
through the dietary approaches, which are by: 1.) ingestion of live microorganism, 
probiotic (Section 2.5); and 2.) ingestion of non-digestible food ingredient, prebiotic 
(Section 2.6) (Gibson and Roberfroid, 1995; Windey et al., 2012).  
 

 Figure 2.3: Composition and health effects of human faecal microflora.  
(Adapted from Gibson and Roberfroid, 1995) 
 
 
2.4 Fermentation of Starch in the Colon  
 As mentioned earlier in Section 2.2.1, starch which cannot be digested by 
host enzymes in the small intestine is referred as resistant starch. Once it travels into 
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the colon, bacteria residing in this region could ferment this nondigestible 
carbohydrate to derive energy for growth. Depending on the dietary intake, other 
nondigestible carbohydrates, such as non-starch polysaccharides, oligosaccharides, 
and sugar alcohol could also serve as a growth substrate (Cummings and Macfarlane, 
1991). Due to the fact that most of nondigestible carbohydrates have complex 
structure, they must be degraded to their monomer units prior to fermentation 
(Bernalier-Donadille, 2010). The fermentation of carbohydrates to short chain fatty 
acids can be described as a two-step phenomenon (Figure 2.4) as follows: 
1) Degradation of polysaccharides to monosaccharides 
2) Fermentation of monosaccharides to short chain fatty acids  
 The fermentation of complex carbohydrates in the gut is a complicated 
process (Figure 2.5) which involves cross-feeding, whereby the end products from 
the metabolic activity of one/more bacterial species can act as a substrate to support 
the growth of other bacterial groups (Sarbini and Rastall, 2011). Cross-feeding 
occurs as bacterial species in the colon are varied in their metabolic capabilities and 
not all of them could initiate the carbohydrate fermentation (Gibson and Roberfroid, 
1995). These metabolic interactions are indeed essential for maintaining diverse 
species of bacteria in the colon.  

 Degradation of starch to glucose in the colon is initiated by primary starch 
degrading bacteria that are capable of producing starch degrading enzyme. In a past 
research performed by Macfarlane and Englyst (1986), culture-dependent approach 
had been utilized to identify amylolytic bacteria by inoculating human faecal bacteria 
from six participants on peptone yeast agar plates supplemented with soluble starch 
as sole carbon. Colonies with clearing zone around (confirmed by the iodine test) 
were starch-degrading colonies and 120 of these amylolytic colonies were selected at  
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Figure 2.4: Main metabolic pathways involved in the fermentation of carbohydrate 
to short chain fatty acids by human intestinal microflora. 1, succinate pathway; 2, 
acrylate pathway; 3, butyrate kinase pathway; 4, butyryl-CoA CoA-transferase 
pathway. (Adapted from Bernalier-Donadille, 2010 and Louis et al., 2007 with 
modification) 
 
  

 Figure 2.5: Metabolic interactions in the human colon. (Adapted from Sarbini and 
Rastall, 2011) 
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random for further characterization to the genus level. The authors reported that most 
of the amylolytic bacteria were from the genera of Bifidobacterium, Bacteroides and 
Fusobacterium/Butyrivibrio, which accounted for 58%, 18% and 10% of the total 
isolated amylolytic bacteria, respectively.  

Recent works had applied the molecular technique based on 16S ribosomal 
RNA (rRNA) genes to study the colonic microbial ecology of human (Leitch et al., 
2007; Abell et al., 2008; Kovatcheva-Datchary et al., 2009; Walker et al., 2011; Ze et 
al., 2012) . In vitro fermentation conducted by Leitch et al. (2007) using human 
faeces from four adults reported that Ruminococcus bromii, Eubacterium rectale and 
Bifidobacterium spp. accounted for 81.3% of 16S rRNA sequences recovered from 
high amylose corn starch (Hylon VII). Similar groups of resistant starch-fermentating 
bacteria were found to be involved in 13C-labelled potato starch fermentation under 
in vitro conditions inoculated with human faeces from seven adults (Kovatcheva-
Datchary et al., 2009). In this study, the authors suggested that Ruminococcus bromii 
was the primary starch degrader and could produce acetic acid while Eubacterium 
rectale might convert this acetic acid to butyric acid.  

Data from human dietary intervention studies had also revealed that 
Ruminococcus bromii could degrade resistant starch (Abell et al., 2008; Walker et al., 
2011). A study done by Abell et al. (2008), where the influence of diets 
(supplemented daily for 4 weeks) rich in nonstarch polysaccharides or rich in 
nonstarch polysaccharides and resistant starch on the composition of faecal 
microflora in forty-six healthy adults (16 men and 30 women with age ranged from 
25 to 66 years) was examined, reported a significant increase in the level of 
Ruminococcus bromii when individuals on the diet rich in nonstarch polysaccharides 
and resistant starch, but not the diet rich in nonstarch polysaccharides only. Other 
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species of bacteria, Faecalibacterium prausnitzii, Eubacterium rectale and 
Bacteroides thetaiotaomicron also showed an increase in a number of volunteers on 
the diets rich in nonstarch polysaccharides and resistant starch.  

In another in vivo study, fourteen overweight male volunteers aged between 
27 to 73 years consumed diet either high in RS3 or high in wheat bran every day for 3 
weeks (Walker et al., 2011). Result from the study demonstrated that twelve 
volunteers showed a significant increase of approximately 4.5-fold in the level of 
faecal Ruminococcaceae in response to diet high in RS3, whereby this group of 
bacteria accounted for 17% and 3.8% of the total bacteria in volunteers consuming 
diet supplemented with RS3 and wheat bran, respectively. Low numbers of 
Ruminococcaceae was reported in faecal samples of the other two volunteers on RS3 
diet with more than 60% of ingested resistant starch recovered in the stool, compared 
with that of less than 4% recovered in the twelve volunteers. The authors mentioned 
that this variation in fermentation was attributed to the initial composition of gut 
microflora which diversed among individuals.  

In vitro fermentation of resistant starches performed by Ze et al. (2012) using 
four strains of amylolytic bacteria (Eubacterium rectale A1-86T, Ruminococcus 
bromii L2-63, Bifidobacterium adolescentis L2-32 and Bacteroides thetaiotaomicron 
5482) isolated from human faeces had further demonstrated Ruminococcus bromii as 
a primary degrader of resistant starch in the human colon. In this study, co-cultural 
fermentation involving pairwise combination of these four amylolytic bacteria 
showed that Ruminococcus bromii could stimulate the utilization of boiled resistant 
starches (RS2 and RS3) by the other three amylolytic bacteria, even in the medium 
that did not promote its growth. Combinations without Ruminococcus bromii showed 
a limited ability to utilize boiled resistant starches. Besides that, for the fermentation 
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using human faeces provided by one of the volunteer which had shown low RS3 
fermentation and low number of Ruminococcaceae in the study of Walker et al. 
(2012), the addition of Ruminococcus bromii enhanced the degradation of RS3 
substantially. This incidence was not seen in the faecal fermentation of RS3 with 
addition of the other three amylolytic bacteria. The authors concluded that 
Ruminococcus bromii possessed the greatest ability to initiate degradation of 
resistant starch among the four amylolytic bacteria tested.  

Oligosaccharides released from starch are further degraded by the other gut 
bacteria and thus making glucose available for fermentation. Most of the colonic 
microflora applies the Embden-Meyerhof-Parnas pathway to form pyruvic acid from 
glucose (Bernalier-Donadille, 2010). Pyruvic acid, which is the key fermentation 
intermediate, is further converted to acetic, propionic and butyric acid as the main 
metabolites of carbohydrate fermentation through different pathways (Figure 2.4). 
Other intermediate metabolites are formed too, such as lactic acid, succinic acid, and, 
ethanol (Bernalier-Donadille, 2010).  
 
2.5 Lactic Acid Bacteria and Bifidobacteria 

Lactic acid bacteria are a group of Gram-positive, acid tolerant and non-spore 
forming bacteria which produce lactic acid as major end product during the 
carbohydrate fermentation (Reddy et al., 2008). Based on the end product from 
carbohydrate fermentation, lactic acid bacteria are mainly divided into two groups 
(Figure 2.6): homofermentative and heterofermentative. Homofermentative lactic 
acid bacteria use the Embden-Meyerhof-Parnas pathway to convert 1 mol of glucose 
to 2 mol of lactic acid whereas heterofermentative lactic acid bacteria utilize 
phosphoketolase pathway to yield 1 mol each of lactic acid, ethanol/acetic acid, and 
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Figure 2.6: The major fermentation route of lactic acid bacteria. (Adapted from 
Reddy et al., 2008) 

 
 

carbon dioxide (Axelsson, 2004). Commonly, lactic acid bacteria include the genera 
of Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Streptococcus 
(Rattanachaikunsopon and Phumkhachorn, 2010). Of these, lactobacilli are 
considered to be safe because they had have a long history of use in food industry. 
They are commonly used as starter culture in the production of fermented food.  

Bifidobacteria are gram-positive, anaerobic, non-motile and branched rod-
shaped bacteria (Ballongue, 2004). The metabolism of bifidobacteria differs from 


