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PERTUMBUHAN RF-MBE STRUKTUR HETERO III-NITRIDA UNTUK 

APLIKASI PENGESANAN CAHAYA 

 

ABSTRAK 

 Dalam penyelidikan ini, GaN p-n struktur homo, AlN/GaN struktur hetero, 

dan AlxGa1-xN/GaN struktur hetero telah berjaya ditumbuhkan di atas substrat silikon 

(Si) (111) menerusi epitaksi alur molekul plasma terbantu (MBE) untuk aplikasi 

pengesan foto. Galium (7N) dan aluminium (6N5) dengan ketulenan yang tinggi 

telah digunakan dalam sel Knudsen dan nitrogen (7N) berketulenan tinggi telah 

dibekalkan kepada frekuensi radio (RF) 13.56 MHz untuk menjana sumber spesis 

nitrogen reaktif. Nilai tekanan nitrogen dan kuasa pelepasan masing-masing 

ditetapkan malar pada 1.5x10-5 Torr dan 300 W sepanjang projek ini. Morfologi 

permukaan, sifat-sifat struktur dan optik daripada semua sampel telah disiasat dengan 

menggunakan pantulan belauan elektron bertenaga tinggi (RHEED), mikroskop 

imbasan elektron (SEM), mikroskop imbasan electron pancaran medan (FESEM), 

mikroskop electron transmisi (TEM), mikroskop daya atom (AFM), belauan sinar-X 

beresolusi tinggi (XRD-HR), fotoluminesen (PL), dan spektroskopi Raman, masing-

masing. Untuk pertumbuhan GaN p-n struktur homo, Si dan magnesium (Mg) telah 

digunakan sebagai bahan dop n dan p, masing-masing. Imej-imej RHEED 

menunjukkan morfologi permukaan yang baik untuk lapisan GaN p-n struktur homo. 

Menurut imbasan ω / 2θ lengkung goyang simetri XRD satah (0002) pada suhu bilik, 

lebar sepenuhnya pada separuh maksimum (FWHM) untuk  sampel GaN p-n struktur 

homo dikira sebagai 0.34o, menunjukkan lapisan berkualiti baik bagi lapisan GaN. 

Kesan daripada fluk aluminium (Al) untuk kualiti kristal struktur hetero  AlN/GaN 

pada substrat Si (111) telah dikaji. Ketebalan 69.94 nm (lapisan atas AlN) diperolehi 
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untuk keadaan pertumbuhan yang baik, memberikan FWHM daripada lengkung 

goyang XRD 0.46o (27.6 arcmin) setanding dengan sampel yang lain dan kerja-kerja 

sebelum ini. Didapati struktur hetero AlN/ GaN yang ditumbuhkan di bawah fluk Al 

yang rendah telah menghasilkan kualiti struktur yang baik dan nilai terikan 

mampatan yang rendah berbanding dengan sampel yang tumbuh di bawah fluk Al 

yang tinggi. Dua sampel dengan kandungan Al rendah iaitu  struktur hetero 

Al0.11Ga0.89N dan Al0.29Ga0.71N/GaN telah ditumbuhkan di atas substrat Si dengan  

FWHM daripada lengkung goyang XRD adalah masing-masing 0.62o dan 0.52o. 

Dengan menggunakan kaedah konvensional, nilai terikan bagi sampel struktur hetero 

Al0.11Ga0.89N / GaN dan Al0.29Ga0.71N/GaN masing-masing dikira sebagai (+) 0.248% 

dan (-) 0.121%. Nilai-nilai ini adalah bersetuju dengan kajian oleh penyelidik lain. 

Penyiasatan sentuhan Pt yang disepuhlindap pada struktur hetero AlN/GaN pada 

pelbagai suhu penyepuhlindapan selama 10 minit dalam persekitaran nitrogen telah 

dilaksanakan dalam projek ini. Didapati bahawa ketinggian sawar Schottky (SBHs) 

dan permukaan sentuhan berubah dengan suhu penyepuhlindapan yang berbeza. 

Keputusan yang baik untuk SBH telah dicapai untuk sampel yang disepuh lindap 

pada 800oC. Sementara itu, ciri-ciri sentuhan Ni/Ag yang disepuhlindapkan pada 

struktur hetero Al0.11Ga0.89N/GaN pada pelbagai suhu penyepuhlindapan selama 10 

min dalam persekitaran oksigen juga dikaji dalam projek ini. Keputusan 

menunjukkan bahawa nilai SBH terbaik diperolehi untuk sampel Ni/Ag pada 700oC. 

Pengesan foto GaN p-n struktur homo dan pengesan foto ultraungu (UV) logam-

semikonduktor-logam (MSM) bagi sampel struktur hetero AlN/GaN dan AlxGa1-

xN/GaN telah dibentangkan. Struktur hetero AlN/GaN dan struktur hetero AlxGa1-

xN/GaN berasaskan MSM yang telah difabrikasikan untuk pengesan foto UV, 
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menandakan ciri-ciri konduktiviti foto yang baik, menunjukkan bahawa sampel 

mempunyai angkutan pembawa dan sifat kristal yang baik. 
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RF-MBE GROWTH OF III-NITRIDES HETEROSTRUCTURES FOR 

LIGHT DETECTING APPLICATIONS 

 
ABSTRACT 

 
 In this research work, GaN p-n homostructures, AlN/GaN heterostructures, 

and AlxGa1-xN/Ga heterostructures were successfully grown on silicon (Si) (111) 

substrates by plasma-assisted molecular beam epitaxy (MBE) for photodetector 

applications. High purity gallium (7N) and aluminum (6N5) were used in the 

Knudsen cells and high purity nitrogen (7N) was supplied to 13.56 MHz radio 

frequency (RF) source to generate reactive nitrogen species. The nitrogen pressure 

and discharge power values were kept constant at 1.5x10-5 Torr and 300 W during 

this project, respectively. The surface morphology, structural and optical properties 

of all the samples were investigated by using reflection high energy electron 

diffraction (RHEED), scanning electron microscopy (SEM), field emission scanning 

electron microscopy (FESEM), transmission electron microscopy, atomic force 

microscopy (AFM), high-resolution X-ray diffraction (HR-XRD), 

photoluminescence (PL), and Raman spectroscopy, respectively. For the growth of 

GaN p-n homostructures, Si and magnesium (Mg) were used as n- and p-dopants, 

respectively. The RHEED images indicated a good surface morphology of GaN p-n 

homostructure layers. According to XRD symmetric rocking curve ω/2ϴ scans of 

(0002) plane at room temperature, the full width at half-maximum (FWHM) of GaN 

p-n homostructures sample was calculated as 0.34o, indicating a good quality layer of 

GaN layer. The effect of the aluminum (Al) flux on the crystal quality of AlN/GaN 

heterostructures on Si (111) substrates was investigated. The thickness of 69.94 nm 

(AlN top layer) was obtained for good growth conditions giving the comparable 
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FWHM of the XRD rocking curve of 0.46o (27.6 arcmin) when compared with other 

samples and previous works. It was found that the AlN/GaN heterostructures grown 

under low Al-flux has produced a good structural quality and low compressive strain 

value compared to the samples grown under high Al-fluxes. Two samples of low Al-

content Al0.11Ga0.89N/GaN and Al0.29Ga0.71N/GaN heterostructures were grown on Si 

substrates with FWHM of the XRD rocking curve of 0.62o and 0.52o, respectively. 

Using the conventional method, the strain values for samplesAl0.11Ga0.89N/GaN and 

Al0.29Ga0.71N/GaN heterostructures were calculated as (+) 0.248 % and (-) 0.121 %, 

respectively. These values are in good agreement with the studies by other 

researchers. The investigation of annealed Pt contact on AlN/GaN heterostructures at 

various annealing temperature for 10 min in nitrogen ambient was conducted in this 

project. It was found that the Schottky barrier heights (SBHs) and surface of contact 

changed with different annealing temperatures. Good results for SBH have been 

achieved for sample annealed at 800oC. Meanwhile, the characteristics of annealed 

Ni/Ag contact on Al0.11Ga0.89N/GaN heterostructures at various annealing 

temperatures for 10 min in oxygen ambient were also studied in this project. The 

results revealed that the best SBH value was obtained for the 700oC annealed Ni/Ag 

contact on sample. GaN p-n homostructures photodetector and metal-semiconductor-

metal (MSM) UV photodetectors of AlN/GaN and AlxGa1-xN/GaN heterostructures 

samples have been presented. The fabricated AlN/GaN heterostructures and AlxGa1-

xN/GaN heterostructures based MSM for the UV photodetectors show good 

photoconductivity characteristics, suggesting that the samples have good carrier 

transport and crystalline properties. 

   

. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview of III-Nitrides  

III-Nitrides family (AlN, GaN, AlxGa1-xN, InxGa1-xN, etc.) are wide direct band 

gap semiconductor materials for optoelectronics, photonics applications, high power 

devices and high temperature electronics (Morkoc, 2003). These semiconductor 

materials have wide band gap energy starting from 3.33 eV to 6.2 eV, which covers 

from infra red wavelength to ultraviolet (UV) wavelength. In specific, III-nitride 

materials are great semiconductor materials for any optical or electrical device 

technologies such as surface acoustic wave (SAW) devices, UV photodetectors, light 

emitting diodes (LEDs) and laser diodes (LDs) for optical read and write applications 

(Morkoc, 2003). Nowadays, the applications of these III-nitride based LEDs can be 

found in electronic displays such as indicator lights, advertisement board, traffic 

signals and many more. High performance of digital read-write devices can be 

achieved by using III-nitride based short wavelength laser diodes. Moreover, the fuel 

efficiency in jet engines and automobiles can be improved by using III-nitride based 

UV photodetectors. The UV photodetector can also be used to control produced 

waste matters for a healthier environment (Morkoc, 2003).  

Due to excellent properties such as high mobility, high breakdown voltage, high 

electron saturation velocity, high thermal conductivity, chemical inertness and 

mechanical stability, III-nitride semiconductor materials have become a popular 

choice in the fabrication of electronic devices capable of operating at high 

temperature, high frequency and high power densities (DeCuir et al., 2008; Pearton 

et al., 1999; Sze, 1990). III-nitrides with wurtzite structures are wide direct band gap 
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energy semiconductor. As shown in Figure 1.1, by tuning the composition of column 

III elements (lattice-mismatch issue needs to be considered in the material growth), 

the band gap energy of III-nitride semiconductor materials can cover the region from 

0.7 eV (InN) to 6.2 eV (AlN). The direct and tunable band gap property makes III-

nitride materials an excellent choice for optoelectronic devices including visible and 

UV light emitting diodes (LEDs).  

 

 
Figure 1.1: Bandgap energy versus lattice constant of III-nitride semiconductors at 

room temperature (adapted from Zhang, 2009). 
 

GaN is normally observed as wurtzite 2H polytype (Figure 1.2 (a) and Figure 1.2 

(b)) but it can also crystallize into a metastable zinc-blende 3C structure (Figure 1.3 

(a) and Figure 1.3 (b)) (Mizuta et al., 1986; Davis et al., 1989; Petrov et al., 1992; 

Strite et al., 1993).  However, another structure, which is rocksalt, or NaCl structure 

can also be induced in the GaN under very high pressures (Morkoc, 1999). There are 

two phases of crystalline for GaN, namely hexagonal symmetry and zinc-blende 

which are for wurtzite and cubic, respectively. The bandgap of hexagonal wurtzite 
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GaN is 3.4 eV and is one of most studied materials among all group III-nitrides. 

Maruska et al., (1969) and Detcprohm et al., (1992) reported that the lattice 

parameters of the wurtzite hexagonal GaN are: a = 3.1892  0.0009 Ǻ, and c = 

5.1850  0.0005 Ǻ, respectively.  

 

 

 

(a)  (b) 

Figure 1.2: (a)-(b) Wurtzite crystal structure of GaN (adapted from Morkoc et al., 
1994; Popovici & Morkoc, 2000). 

(a) (b) 

Figure 1.3: (a)-(b) Zinc blende crystal structure of GaN (adapted from Morkoc et al., 
1994; Popovici & Morkoc, 2000) 
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1.2 Motivation for MBE Growth of III-Nitrides on Silicon Substrates 

There are various methods to fabricate III-nitrides on Si substrates. Molecular 

beam epitaxy (MBE) is one of the most popular techniques used to grow high quality 

structures of the III-nitride alloy films. MBE can provide good uniformity and 

atomically sharp interfaces of heterostructure thin films. In this study, Mod Gen II 

plasma-assisted MBE is used to grow III-nitride materials on Si substrate. The Si 

substrates used in this research are of low cost, available in large diameters and have 

well characterized electrical and thermal properties. Si substrate reveals the great 

advantages of the well-known Si technology, low-cost production and potential 

hybrid integration with other device technologies (Pau et al., 2002). The growth of a 

buffer layer by the plasma-assisted MBE in this work is one promising technique that 

can significantly reduce the structural defects and stress values at the Si/III-nitride 

alloy interface and it can also be used to electrically shield the thin films from the 

silicon substrate.  

In previous studies, experimental researchers have successfully fabricated the III-

nitride based photodetector, which can be utilized for flame detection, ultraviolet 

(UV) imaging or environmental monitoring (Muñoz et al., 2001; Hirano et al., 2001). 

The UV wavelength range has shown significant influence in optoelectronics 

research since the emergence of small and compact devices and high efficient light 

sources; eventually, new technologies are rising thanks to the integration of UV and 

visible detectors as well as light emitters and detectors. III-nitride based metal-

semiconductor-metal (MSM) photodetector was also fabricated in this research and 

the electrical characteristics were analyzed using current-voltage (I-V) and 

photoconductivity measurements. 
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1.3 Problem Statements 

III-nitride semiconductors are well-known in the fabrication of a number of 

optoelectronics and photonics technologies applications, but the problem regarding 

the growth processes still exists. The aims of this research work are to further the 

understanding of the basic growth process and the fabrication of a photodetector. The 

following problems are addressed:  

1. One of the major challenges of fabricating high quality III-nitride thin films 

is the lack of a suitable substrate that is lattice-matched and thermally 

compatible with III-nitride heterostructure films. Si substrate is a popular 

substrate for growing III-nitride films due to its low cost and stability at high 

temperatures (Jain et. al, 2000). However, more cracks and dislocation 

densities are formed between III-nitride films and Si substrate because Si 

substrate has a large lattice-mismatch (about 17%) and a high thermal 

expansion coefficient mismatch. Therefore, an improved buffer layer (such as 

AlN) is needed to overcome the lattice-mismatch problem. 

2. The nitrogen ratio and the growth temperature are the two parameters which 

are very important to achieve high crystalline III-nitride thin films (Jain et 

al., 2000). Therefore, the nitrogen ratio and the growth temperature have to 

be optimized many times until the best growth condition for III-nitride thin 

films is achieved. Recently, the study on the effect of different nitrogen ratios 

and growth temperatures of III-nitride films on Si substrate is still 

progressing, pertaining to surface morphology, structural quality, strain 

properties and optical quality on the III-nitride thin films. 
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1.4 Research Objectives 

1. The main objective of this work is to grow high quality III-nitride thin films 

on silicon substrate which include GaN p-n homostructures, AlN/GaN 

heterostructures and AlGaN/GaN heterostructures with various growth 

recipes, respectively.  

2. The second objective is to study the effect of low and high temperatures AlN 

buffer layer on AlN/GaN heterostructures and AlGaN/GaN heterostructures, 

respectively. 

3.  The third objective is to investigate the effect of different nitrogen ratios and 

growth temperatures of AlN/GaN heterostructures and AlGaN/GaN 

heterostructures. 

4. The fourth objective is to study the structural, optical and surface 

morphological qualities of GaN p-n homostructures, AlN/GaN 

heterostructures and AlGaN/GaN heterostructures on Si (111) substrates by 

using various measurement tools. 

5. The fifth objective is to study the effect of thermal annealing on different 

metal-contact schemes (Ni and Ni/Ag contact schemes) on GaN p-n 

homostructures at various temperature conditions in nitrogen and oxygen 

ambient, respectively. Moreover, the effects of thermal annealing on Pt and 

Ni/Ag contacts on AlN and AlxGa1-xN at various temperatures in nitrogen 

ambient are also carried out in this project, respectively.  

6. Lastly, the development of GaN p-n homostructures, AlN and AlxGa1-xN 

heterostructures for UV photodetectors also forms an objective of this thesis. 

The studies include both the effect of the material quality and metal-contact 

schemes on the UV detector performance. 



 7

1.5 Outline of the Thesis 

In brief, the contents in this thesis are arranged as follows: The next Chapter 2 

will cover GaN-related matters and theories that are relevant to the work in this 

research. Chapter 3 is devoted to the instrumentation employed in this research 

work. An explanation on the procedures and methods used, and some principles 

underlying the operation of the instruments are also covered. Chapter 4 presents the 

studies of GaN p-n homostructure films from this research. The results of the 

fabricated photodetector with different metal contacts are also included in this 

chapter. In Chapter 5, the studies of AlN heterostructure films from this research are 

presented, analyzed and discussed. The results of AlN based photodetector are 

included in this chapter. Moreover, in Chapter 6, the investigation of AlxGa1-xN 

heterostructure films from this research are presented, analyzed and discussed. The 

results of AlxGa1-xN based photodetector are also included in this chapter. The final 

chapter, Chapter 7, concludes the thesis with a summary of the research work. 

Conclusion of the results obtained and some future work are also proposed in this 

thesis.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Fabrication of III-nitride semiconductors on Si substrates is useful from an 

industrial perspective as high crystalline quality and large size of Si substrate can be 

grown using low cost and effective methods (Matsuo et al., 2007). Moreover, it is 

highly possible to integrate well-known Si technologies with III-nitride-based 

electronic and photonic devices on the same chip (Matsuo et al., 2007). Until now, 

there have been more scientific research works on the growth of III-nitride 

semiconductor materials on Si substrate by researchers around the world. In this 

chapter, various growth methods of III-nitride semiconductors will be presented and 

described. The basic theories of metal-semiconductor contact are also discussed. 

Lastly, the general principle operation of photoconductor, p-n junction photodetector, 

and metal-semiconductor metal (MSM) photodetector will be described in the 

following subtopics.  

 

2.2 Growth Technique of III-Nitrides Materials 

III-nitride (GaN, AlN, InN, AlxGa1-xN, InxGa1-xN, etc.) semiconductor materials 

are normally deposited by chemical or physical vapor phase epitaxy (VPE) technique 

including hydride VPE (HVPE), metal-organic chemical vapor deposition 

(MOCVD), pulsed laser deposition (PLD), molecular beam epitaxy (MBE) and many 

more. HVPE, MOCVD and MBE are the more famous methods compared to the 

other methods.  
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2.2.1 Hydride Vapor Phase Epitaxy (HVPE) 

The HVPE method can fabricate III-nitride semiconductors of good crystal 

structure, optical and electronic quality. The HVPE offers high growth rate and large 

diameter wafer can be transferred into HVPE system (Kirilyuk et al., 2001). 

Furthermore, it is a low-cost method compared to other method. Due to these 

advantages, the HVPE method is a popular choice for industry to fabricate large GaN 

substrates (Hagemen et al, 2003). In the HVPE process, group III-nitrides are grown 

on substrate by reacting hot gaseous metal chlorides (e.g., GaCl or AlCl) with 

ammonia gas (NH3). The metal chlorides are produced by flowing hot HCl gas over 

the hot group III metals. All reactions are done in a temperature controlled quartz 

furnace.  

HCl (g) + Ga(l)               GaCl (g) + 
ଵ

ଶ
H2(g) 

GaCl(g)+NH3(g)              GaN(s) + HCl (g) + H2 (g) 

 
2.2.2 Metal-Organic Chemical Vapor Deposition (MOCVD) 

MOCVD is a chemical vapor deposition method used to grow high quality, single 

or polycrystalline thin layers of semiconductors. This method is a popular choice for 

industrial companies to fabricate a number of high performance optoelectronics and 

high speed electronic devices. Trimethylgallium (TMG) and triethylgallium (TEG) 

are normally used for Ga element, while GaCl has sometimes been used to provide 

Ga (Morkoc, 1999). Trimethylindium (TMI) and trimethylaluminium (TMA) are 

generally used for In and Al elements, respectively (Morkoc, 1999). Ammonia 

(NH3), the source used for chemical vapor deposition is considered a popular source 

of nitrogen as it is a pure and stable gas in nature (Morkoc, 1999).   
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Hydrogen carrier gas is used to transfer precursors into the growth chamber and 

then precursors are introduced into reaction chamber. The gas manifold allows the 

separate injection of ammonia (Morkoc, 1999). Figure 2.1 is a schematic diagram of 

MOCVD system. Sapphire substrate with C-plane (0001) orientation is popularly 

used as a foreign substrate for III-nitride growth (Morkoc, 1999). In the MOCVD 

reactor, TMG, TMA, or TMI reacts with ammonia on the substrate, which is heated 

to about 1000oC where the common feature here is that all the reaction processes 

between  group III elements, dopants and precursors must occurred on the substrate 

surface only (Morkoc, 1999).  

 
Figure 2.1: Diagram of a horizontal MOCVD reactor (adapted from Akasaki, I, 

Meijo University). 
 

2.2.3 Molecular Beam Epitaxy (MBE) 

Molecular Beam Epitaxy (MBE) was developed during the 1970s for the growth 

of III-V semiconducting compounds and rapidly became established as a tremendous 

technique for producing thin films of high purity and well defined thickness for a 

wide variety of device structures. It came particularly into its own in the 1980s with 

the development of low dimensional structures, which required atomic layer 

precision in the deposition of multi-layers; the classic examples being those of 

AlGaAs/GaAs quantum well, superlattice and two-dimensional electron gas 
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structures. MBE is characterized by growth under ultra-high vacuum conditions and 

a readily available in situ monitoring method in the form of reflection high energy 

diffraction (RHEED). 

 
 
2.3 Influential Parameters on III-Nitride Group 

The quality of III-nitride materials grown on the substrates by plasma-assisted 

MBE is determined by several factors. Among the important factors are the types of 

substrate and buffer layers.  

 

2.3.1 Substrates 

Generally, III-nitride semiconductor based devices are fabricated on sapphire 

(Al2O3) or silicon carbide (SiC) substrates. However, these substrates are very 

expensive and sapphire is an insulator in nature. Moreover, these substrates are also 

large diameter substrates.  Moreover, Monemar et al., (1997) reported that the biaxial 

strains and compressive are occurred when GaN deposited on sapphire or 6H-SiC 

substrate. However, the strain in the GaN film can be released with the assist of 

threading dislocations formation. The direct growth of GaN on 6H-SiC has a 

hexagonal crystal structure without any buffer layer. The growth of GaN on 6H-SiC 

offer high thermal and electrical conductivity, respectively, however, this substrate is 

very expensive (Honda et al., 2000).   

Si substrate is the suitable candidate for the III-nitride growth, due to low cost 

and is a conducting substrate compared with the others. III-nitride based electronics 

and optoelectronics can be integrated with well-known Si based electronics. 

Moreover, optical, structural, thermal and electronic properties Si are well 

investigated. However, the presence of cracking on the III-nitride layers due to stress 
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makes the Si substrate not a famous selection for high quality growth of III-nitride 

layers. Moreover, the presence of stress values is not very high for III-nitrides on 

sapphire or III-nitrides on SiC substrates.  In 1998, the first GaN LED on Si substrate 

was reported by Guha and Bojarzuk (1998a) and (1998b). They had successfully 

grown p-type GaN on Si substrate. There is nearly 16% of lattice mismatch between 

silicon substrate and GaN layer, which produces high dislocation density in the GaN 

layers. Moreover, thermal mismatch is almost 54% that causes a major problem for 

the device operation. Therefore, it is very hard to produce thick GaN layers without 

cracks and defects. Another advantage of using Si substrate is the resistivity of Si can 

reach up to 104 ohm-cm which is lower than the resistivity value of sapphire, SiC or 

GaN. According to Chuah et al. (2009a), X-ray diffraction (XRD) pattern showed 

that the full width at half maximum (FWHM) of AlN (0002) peak grown on Si (111) 

substrates was smaller than that grown on Si (100) substrates. The AlN films grown 

on Si (111) substrate has a good preferred orientation and it is easy to control 

compared to AlN on Si (100). Moreover, Si (111) substrate offers only 19 % lattice 

mismatch for AlN thin films. The structure of AlN and Si (111) are both hexagonal 

structures. However, an AlN film grown on Si (100) substrate has a larger lattice 

mismatch (42.7%) and larger strain value. This is because Si (100) substrate has a 

square lattice, therefore unmatched with hexagonal AlN film. Meanwhile, for GaN 

film grown on AlN buffer layer, the crystal structure quality of GaN is improved due 

to lower lattice mismatch percentage (2.5%) between GaN and AlN buffer layer.  

 

2.3.2 Buffer Layer 

It is known that III-nitrides materials on silicon substrate normally have lower 

quality compared to materials grown on other substrates like sapphire or SiC 
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(Schremer et al., 2000). In fact, the III-nitrides and Si substrate are not in the same 

crystal system and have major differences in their thermal expansion coefficients. 

Using conventional two-step method, the fabrication of gallium nitride on silicon 

substrate has resulted in a very poor surface morphology and crystal quality of the 

grown layers. For conventional two-step method, the GaN epilayers are grown on top 

of a thin AlN buffer/nucleation layer (Lu et al., 2002). Therefore, it is challenging to 

produce good uniformity and crystalline quality of GaN layer on silicon substrate. 

Previously, there are many types of buffer layers such as 3C-SiC (Takeuchi et al., 

1991), AlN (Kung et al., 1995; Lu et al., 2002), GaAs (Yang et al., 1996), AlAs 

(Strittmatter et al., 2000), Si3N4 (Nakada et al.,1998) and γ-Al2O3 (Wang et al., 

1998) that have been employed as the buffer layer between the GaN layer and the Si 

substrate.  

The quality of GaN epitaxial layer has been found to be very sensitive to the 

initial surface coating on Si substrates and is being improved by exploring the AlN 

buffer layer between GaN and Si substrate (Davis et al., 2001; Hiroyama and 

Tamura, 1998; Chen et al., 2001). AlN (0001) (a=3.112Å) is the most popular and 

successful buffer material because of its superior thermal stability, 5:4 magic lattice 

matching with Si (111). A 5:4 magic lattice is referring to the coincidence lattice 

between AlN and the silicon substrate (Schenk et al., 1999c). This is because the 

lattice and thermal mismatch between AlN and GaN are much smaller than those 

between Si and GaN, and AlN has good wetting properties on Si (Chen et al., 2001). 

The latter changes the tensile strain (~mismatch: +17%) to compressive (~mismatch: 

-2.47%) for later GaN growth. AlN buffer is often used together with other methods, 

such as the intentional nitridation or epitaxial lateral overgrowth (ELO) methods. Of 

all the revised strategies, two kinds of aluminum-assisted AlN buffer should be 
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specially noted. Sánchez et al., (2002) reported the effect of AlN buffer layer 

thickness on the crystal quality of GaN/AlN/Si(111) heterostructures grown by 

plasma-assisted molecular beam epitaxy (PA-MBE). They found that smaller buffer 

layer thickness leads to higher inversion domains density reaching the GaN surface 

(Sánchez et al., 2002). As can be seen in Figure 2.2, by using AlN buffer layer, better 

uniformity and high quality for thin films layers have been successfully fabricated on 

the silicon substrate (Hussien et al., 2009). In this case, AlN buffer layer is 

commonly used to grow high crystalline quality of AlGaN/GaN heterostructures and 

it also used to electrically shield the AlGaN/GaN heterostructures from the 

conducting silicon substrate (Pau et al., 2002). Moreover, the AlN buffer layer 

reduces the defects, lattice mismatch and biaxial strain in the AlGaN/GaN 

heterostructures (Tansley et al., 1997).  

 

 
Figure 2.2: Cross-sectional TEM image of AlxGa1-xN/GaN/AlN film grown on 

the Si(111) substrate (adapted from Hussien et al., 2009). 
 

2.4 Growth of GaN P-N Homostructures 

The p-n junctions are of great importance both in modern electronics applications 

and in understanding other semiconductor devices. The p-n junction theory serves as 

the foundation for the physics and semiconductor characteristics of p-n junction; it 
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was established by Shockley (1949). This theory was then extended by Sah et al. 

(1957) and Moll (1958). Devices such as p-i-n photodiodes have demonstrated the 

potential to respond to the requirements for the future since the progress made in the 

improvement of quality of GaN epilayers has been remarkable. The first information 

about p-n GaN photodiodes had been reported by Khan et al., (1995) and Chen et al., 

(1995).  Alias et al., (2015) presented the properties of GaN p-n junction grown on A 

Si substrate by molecular beam epitaxy (MBE) at different annealing temperature. 

They revealed that thermal treatment via a resistance furnace has improved the 

properties of the GaN p-n junction grown on a Si substrate up to 1,000oC. However, 

the electrical characteristics of the sample were degraded due to the diffusion of Si 

atom toward the p-GaN layer. One of the key technologies used in the fabrication of 

those devices is the developed low defect density intrinsic layer, high quality p-type 

material and thus improves the insulating layer as had been reported by Pernot et al., 

(1998). The leakage current in a GaN p-n homostructures is theoretically very low; 

however a previous publication reported a relatively large leakage current, which 

reduced the possibility of low UV light detection, especially under temperature fields 

(Osinsky et al., 1997). Different groups proposed that one of the causes of the 

leakage current is the reactive ion etching (RIE)-induced damages at the mesa 

sidewalls (Van Hove et al., 1997). Tunneling effects appear to be the main reason for 

junction breakdown, and the main reason for the difference between the theoretical 

and measured dark current value under low reverse bias voltage is suggested to be 

the surface leakage along sidewalls (Pernot et al., 1998). Kozodoy et al., (1998) used 

lateral epitaxial overgrowth (LEO) to remove threading dislocations in GaN p-n 

junction. They found that the leakage current magnitude without threading 

dislocation is reduced more than 3 orders compared to the sample with threading 
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dislocation. Cao et al., (1999) presented the growth of n+-p junction in GaN by the 

implantation of 29Si+. They found that the ideality factor n and the breakdown voltage 

were calculated as ~2 and 13 V, respectively.  

   

2.4.1 The Performance of GaN P-N Photodetectors 

Recently, Vikas et al., (2016) showed the fabrication of n-ZnO/p-GaN 

heterojunction over Mg:GaN substrate by hydrothermal method. The heterojunction 

device revealed excellent rectification behavior with a rectification ratio of 5.4 at 3V. 

Moreover, the device also showed selective UV response and good response to UV 

light pulses. Nakagomi et al., (2015) prepared β-Ga2O3 thin film on p-type GaN 

template substrates. The β-Ga2O3/p-GaN photodiode showed good rectifying 

properties. The responsivity of the device was highest under deep-UV light below a 

wavelength of 240 nm. Meanwhile, Yakuphanoglu et al., (2015) presented a new 

type of photodiode, p-Si/GaN pn junction in series with GaN/Ag Schottky diode. 

They used facile sol gel method to synthesize nanostructures GaN nanorods. The  

diode current of Al/p-Si/GaN/Ag diode (dark current= 4.80x10-6 A) increases to 

4.12x10-5, 6.81x10-5, 1.03x10-4 and 1.42x10-4 A after illuminating the device with 

light intensity of 30, 60, 80, and 100 mW/cm2, respectively. Tuan et al., (2015) 

reported the fabrication of p-n GaN diodes by using the magnetron sputtering. The 

leakage current, turn-on voltage, ideality factor, and breakdown voltage of the GaN 

p-n photodetector device were found to be 2.2 x10-7 A, 2.2 V, 5.0, and -6 V, 

respectively, at room temperature. Bao et al., (2013) fabricated a planar GaN based 

p-i-n photodetector by Si implantation into GaN based p-i-n structure grown by 

metal-organic chemical vapor deposition (MOCVD). The dark current density and 
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responsivity of the device are measured as 1.03 nA/cm2 and 0.122 A/W at 360 nm, 

respectively. 

 

2.5 Growth of AlN/GaN Heterostructures 

In principle, AlN is the most interesting candidate for future high-power devices, 

high-temperature microelectronics and deep-UV optoelectronics applications since it 

possesses a band gap of 6.2 eV at room temperature, a melting temperature greater 

than 2700oC and a thermal conductivity of 3.2 W cm-1 K-1 (Rivera‐Julio et al., 2013; 

Strite and Morkoc, 1992). However, to realize the full potential of AlN, device-

quality materials must be developed with controllable n-type and p-type doping. AlN 

has also been reported to have negative electron affinity (Benjamin et al., 1994) and 

is therefore a promising candidate for low-voltage field emission devices. It is also of 

interest as a substrate for GaN-based devices because of its similar lattice constant 

(~1% mismatch) and thermal expansion coefficients. 

 In recent years, many groups have focused on GaN growth on Si substrate. This 

is mainly due to the advantage of being low cost and having large sized Si wafer as 

substrate and also the potential to integrate GaN high power electronics and light 

emitting diodes (LEDs) with the highly matured Si technology. However, the large 

lattice mismatch and strong Si-N bond make it difficult to achieve high quality GaN 

epilayer on Si directly. Due to the good wetting characteristic between Al and Si 

surface, it is easier for the AlN growth on Si than that of GaN.  

Good quality of III-nitrides can be achieved using AlN buffer layer 

(Adikimenakis et al., 2009) and (Ajagunna et al., 2009). Unfortunately, the 

fabrication and characterization of aluminum nitride itself are still ongoing process 

(Le Louarn et al., 2009; Yamabe et al., 2009). Hu et al., (2011) reported that the 
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lower FWHM of AlN on silicon substrate was achieved when the sample was 

fabricated at high temperature. The transmission electron microscopy (TEM) study 

by Kaiser et al., (1999) is concerned with the microstructure of AlN grown via MBE 

on Si (111). They studied the defect types as a function of substrate temperature 

during growth between 700oC and 800oC and Al/N-flux ratios of about 1 up to large 

Al excesses. The AlN layers were grown on Si (111) with high (optimum) quality 

according to the X-ray diffraction. Chuah et al., (2009) reported the growth of AlN 

cap layer on GaN grown on Si (111) substrate via PA-MBE. They presented the 

FWHM of AlN peak as 26 arcmin, which is comparable with the reported values by 

Dadgar et al., (2006). 

 

2.5.1 The Performance of AlN Photodetectors 

Tsai et al., (2013) presented the AlN based metal-semiconductor-metal (MSM) 

photodetector grown on p-type Si by using a reactive sputtering method. The MSM 

device revealed a dark current as low as ~ 1 nA at a bias up to 200 V. Moreover, the 

response times and recovery times of the device were recorded as fast as ~ 110 ms 

and 80 ms, respectively. Meanwhile, Barkad et al., (2010) reported the fabrication 

and characterization of solar-AlN based blind deep ultraviolet (DUV) MSM 

photodetectors. For the device contact, the TiN was used as a Schottky contact. The 

DUV MSM device presented a very low dark current of 100 fA at േ 100V DC. 

Moreover, their device also showed a high sensitivity to DUV light and a sharp cut-

off wavelength around 203 nm, close to the band gap of bulk AlN.  

Chuah et al., (2009a) reported the fabrication of AlN/GaN heterostructures on 

silicon substrate for Schottky photodetector applications. The best Schottky contact 

is obtained for the 700oC annealed sample. The contrast ratio for the 700oC annealed 
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sample and control Schottky diode was found to be 25 and 2, respectively. 

BenMoussa et al., (2008) demonstrated the suitability of the AlN MSM photodiode 

for vacuum ultraviolet (VUV) applications. The MSM device showed a negligibly 

small dark current of 13 fA at -30V. The measured responsivity curves at േ30V 

show the AlN band edge to be around 203 nm and show a rejection ratio 200/300 nm 

of more than four orders of magnitude. Yu et al., (2006) showed the novel 

characteristics of the AlN/GaN heterostuctures based UV Schottky barrier 

photodetectors. The leakage current for the device was shown to be about four orders 

of magnitude smaller than for the conventional Schottky barrier photodetectors. The 

responsivity and UV to visible rejection ratio are recorded as 0.16 A/W and 7.74 

x102 under -5 V applied bias, respectively.       

 

2.6 Growth of AlxGa1-xN/GaN Heterostructures 

AlxGa1-xN alloys are very important materials with extensive applications for 

electronics and optoelectronic semiconductor devices because these materials have a 

direct wide band gap, which ranges from 3.4 to 6.2 eV. These materials are very 

famous materials for applications in ultraviolet (UV) laser diodes (LDs), light 

emitting diodes (LEDs) and photodetectors. By far the most published interest in 

AlxGa1-xN-based devices has been for HEMTs, with the first published observation 

of an AlxGa1-xN HEMT was done by Khan et al., (1994). The mole fraction is 

controlled by the: 1) Al flux, 2) Ga flux, 3) both Ga and Al fluxes with a fixed Al/Ga 

ratio and 4) Al/Ga ratio with a fixed total flux (Yun, 2006). As for GaN, Ga-rich 

growth conditions are preferred to obtain high quality films. However, the growth of 

AlxGa1-xN under Ga-rich conditions via plasma-assisted MBE received little attention 

since the precise control of the Al mole fraction, x is difficult. 
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2.6.1 The Methods Use to Determine The Al composition in The AlxGa1-xN  
Layer 

 

There are many methods exist for the measurement of Al mole fraction in AlxGa1-

xN layers including x-ray diffraction (XRD), photoluminescence (PL), X-ray 

photoemission spectroscopy (XPS) and Raman spectroscopy. Table 2.1 shows 

summary of the methods used to determine the Al composition in the AlxGa1-xN 

layer. The following subtopic is a brief discussion of the different methods use to 

calculate Al mole fraction in AlxGa1-xN layers.  

 

Table 2.1: Summary of the common methods used to determine the Al 
composition in the AlxGa1-xN layer. 

Growth 
Methods of 
AlxGa1-xN 

Al Determination 
Methods 

Al 
composition 
in AlxGa1-

xN 

References 

Plasma assisted 
MBE 

XRD ~0.1 Novikov et al., 2015 

MOCVD XRD 
Optical Transmission 

0.28 Wang et al., 2015 

Hollow cathode 
plasma-assisted 

atomic layer 
deposition 

XRD, XPS 0.68, 0.95, 
0.96 

Goldenberg et al., 
2014 

MOCVD Raman 0.48 Gao et al., 2013 
LPMOCVD XRD, PL x<0.14 Dang-Hui et al., 2013 

HVPE XRD 0.45 Hagedorn et al., 2012 
HVPE UV-Vis, 

spectrophotometry 
XRD, XPS 

0.23, 0.26, 
0.27 

Lee et al., 2012 

Pulsed Atomic 
Layer Epitaxy 

XRD 0.91 Pan et al., 2011 

RF-MBE XRD 0.07-0.1 Kakuda et al., 2011 
RF-MBE XRD 0.24, 0.25 Hussien et al., 2011a 
RF-MBE XRD 0.11, 0.24, 

0.30, 0.43 
Hussien et al., 2011b 

- XRD, PL 0.29 Young et al., 2011 
MOCVD XRD, PL, XPS x<0.25 Bahn et al., 2003 
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2.6.1(a) HR-XRD 

High resolution XRD is a powerful tool to precisely determine the lattice 

constants of thin crystal films. Moreover, this tool is also widely used to determine 

the Al composition in the AlxGa1-xN films. Using the Bragg equation, the lattice 

constant cepi of AlGaN can be accurately calculated. Figure 2.3 shows the skew 

symmetric 2θ/ω scan of (1015) diffraction of AlGaN/GaN heterostructures.  

 

 
Figure 2.3: X-ray 2θ/ω scan of the (1015) diffraction from AlGaN/GaN 

heterostructures with different Al compositons (adapted from Sheng-Qiang et al., 
2005). 

 

For the full relaxed alloy, the chemical composition can be calculated 

simultaneously from the lattice constants according to Vegard’s law that is assumed 

to be linear for semiconductor alloy system. Using Vegard’s law, the Al composition 

is calculated  from lattice constant a and c, respectively, by the following equations: 

 

                                       ܽሺݔሻ ൌ ܽ௢ீ௔ேሺ1 െ ሻݔ ൅ ܽ௢஺௟ே(2.1)                                    ݔ 

                                        ܿሺݔሻ ൌ ܿ௢ீ௔ேሺ1 െ ሻݔ ൅ ܿ௢஺௟ே(2.2)                                    ݔ 
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where ܽ௢ீ௔ே ൌ 0.3189	݊݉ , ܿ௢ீ௔ே ൌ 0.5185	݊݉ , ܽ௢஺௟ே ൌ 0.311	݊݉ , and ܿ௢ீ௔ே ൌ

0.498	݊݉ were the relaxed lattice constant for GaN and AlN, respectively. 

 Meanwhile, the Al compositions of the AlxGa1-xN samples can also be evaluated 

through the XRD measurements where  XRD symmetric rocking curve (RC) ω scans 

of (0002) AlxGa1-xN epilayer is recorded (Hussien et al., 2011a, 2011b). The full 

width at half-maximum (FWHM) of the rocking curve for the AlxGa1-xN peaks are 

firstly calculated. From the XRD symmetric RC ω scans and application of Vegard’s 

law, the Al composition in the AlxGa1-xN films can be determined. Figure 2.4 shows 

the XRD rocking curve of (0002) plane of AlxGa1-xN/GaN/AlN grown on Si(111) 

substrate (Hussien et al., 2011a). 

 

 
Figure 2.4: XRD rocking curve (RC) of (0002) plane of AlxGa1-xN/GaN/AlN 

grown on Si(111) substrate for samples I and II (adapted from Hussien et al., 2011a). 
 

2.6.1(b) Photoluminescence  

Photoluminescence is a suitable tool to determine the AlxGa1-xN band gap and Al 

composition in AlxGa1-xN layer. The photon energy of excitation light source is much 
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larger than band gap of the AlxGa1-xN layer. A He-Cd laser, with a photon energy of 

3.81 eV, can be used as an excitation light source for the measurement of Al content 

in AlxGa1-xN alloys with Al mole fraction x up to ~15 percent. However, for AlxGa1-

xN layers with x > 0.15, the photon energy from this laser is too low and a different 

source is required. For example, a He-Cd laser (325 nm) and Xe lamp with band-pass 

filter (400 nm) were used as excitation sources in photoluminescence 

characterization of  Eu and Mg codoped Al0.11Ga0.89N on GaN template (Kanemoto 

et al., 2015). Figure 2.5 presents PL spectra of AlGaN/GaN epilayers with Al 

compositions measured at room temperature. The excitation wavelength used in this 

work is 244 nm. The high intensity at 3.4 eV peak is found to represent near band-

edge emission of GaN. As expected, AlxGa1-xN peak related to the band-edge 

transitions is found to show a blue shift with increasing Al solid reaction (Jayaskathi 

et al., 2014). 

 

 
Figure 2.5: Room temperature PL spectra of AlGaN/GaN for different 

composition of Al (adapted from Jayaskathi et al., 2014). 
 

The mole fraction of Al has been determined by compositional dependence of the 

optical band gap of ternary alloys using the following equation (Dang-Hui et al., 

2013).  
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ሻݔ௚,஺௟ீ௔ேሺܧ                      ൌ ௚,஺௟ேܧݔ ൅ ሺ1 െ ௚,ீ௔ேܧሻݔ െ ሺ1ݔܾ െ  ሻ                 (2.3)ݔ

 

Where Eg, x and b are the optical band gap, AlN mole fraction and bowing 

parameter, respectively. EgGaN, EgAlN and b are 3.43 eV, 6.05 eV and 0.9 eV, 

respectively (Vurgaftman and Meyer, 2007). The bowing parameter values reported 

in the literature are in the range of 0.8-2.6 eV (Lee et al, 1999). The AlGaN emission 

and Al composition determined from PL spectra are reported in Table 2.2 below. 

 

Table 2.2: PL emission of AlGaN layers (adapted from Jayaskathi et al., 2014). 
Sample no PL emission 

wavelength (nm) 
Al composition x 

I 335 0.15 
II 325 0.20 
III 316 0.25 
IV 300 0.35 
V 277 0.49 

 

2.6.1(c) XPS 

X-ray photoemission spectroscopy (XPS) is normally used to analyze the surface 

chemistry of a material. It also can be used to determine the elemental composition, 

empirical formula, chemical state and electronic state of a material. For the ternary 

compound sample, XPS is used to determine the Al composition in the AlxGa1-xN 

film. Figure 2.6 is the fine spectra for the Al2p and Ga2P3/2 states taken in the 

narrow-scan mode. The Al mole fraction is determined from the relative ratio of the 

integrated peak intensity of Al2p to that of Ga2P3/2 for each spectrum. Here, the 

values of 0.193 and 3.34 were used as the reference sensitivity factors (RSFs) for the 

Al2p and Ga2P3/2 states, respectively (Bahn et al. (2003).  
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