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TiN buffer layer/Si substrate and (c) porous Si/Si substrate after being 

annealed with NH3 ambient, as measured by AFM. 
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Figure 6.9: (a) XRD data of GaN layers grown on Si substrate, TiN buffer 

layer and porous Si/Si substrate, after being annealed with NH3 ambient. (b) 

The estimated TDD for the annealed GaN samples. Also included is the data 

of the non-annealed samples for easier comparison. 
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Figure 6.10: PL spectra of RF sputtering grown GaN samples, after being 

annealed with NH3 ambient. Inset figure shows the magnified NBE emission. 
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Figure 6.11: (a) Raman spectra of RF sputtering grown GaN samples, after 

being annealed with NH3 ambient. (b) FWHM of E2 (high) peak of annealed 

GaN samples grown by RF sputtering.  
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Figure 6.12: Surface morphology of GaN samples grown on different surface 

of the Si substrate by e-beam evaporator after being annealed with NH3 

ambient at the magnification of 30,000 x.   
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Figure 6.13: Surface roughness of GaN samples grown on (a) Si substrate, 

(b) TiN buffer layer/Si substrate and (c) porous Si/Si substrate after being 

annealed with NH3 ambient, measured by AFM.  
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Figure 6.14: (a) XRD data of GaN layers grown on Si substrate, TiN buffer 

layer and porous Si/Si substrate, after being annealed with NH3 ambient. (b) 

The estimated TDD for the annealed GaN samples. Also included is the data 

of the non-annealed samples for easier comparison. 
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Figure 6.15: PL spectra of e-beam evaporator grown GaN samples, annealed 

in NH3 ambient at 950°C for 30 minutes. Inset figure shows the FWHM of 

NBE emission of each samples.  
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Figure 6.16: (a) Raman scattering spectrum of GaN layers grown on Si 

substrate, TiN buffer layer/Si substrate and porous Si/Si substrate, after 

annealed with NH3 ambient. (b) FWHM of the Raman peak at 568 cm-1 of 

the annealed GaN. 
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Figure 6.17: Comparison between the morphology of the annealed GaN on 

porous Si/Si substrate grown by (a) RF sputtering and (b) e-beam evaporator 

at magnification of 30, 000x. Inset figure shows the corresponding side-view 

image of overgrown GaN on porous Si/Si substrate. 
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Figure 6.18: XRD data of annealed GaN on porous Si/Si substrate grown by 

different techniques. 
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Figure 6.19: Comparison of (a) PL and (b) Raman spectra between GaN 

sample grown by (i) RF-sputtering and (ii) e-beam evaporator. 
147 
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 LIST OF SYMBOLS 

  

° Degree 

°C Temperature in degree celcius 

2θ Diffraction angle in XRD (2 Theta) 

a Lattice constant in a-plane 

Å Angstrom 

ba Burger vector in a-plane 

c Lattice constant in c-plane 

F- Flouride ion 

K Temperature in Kelvin 

k Scherrer Constant 

ɸ in-plane rocking curve 

β Integral width (FWHM) 

λ wavelength 

ω Diffraction angle in XRD (Omega) 
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 LIST OF ABBREVIATIONS 

  

AFM Atomic Force Microscopy 

Al Aluminium  

Al2O3 Sapphire 

AlN Aluminium Nitride 

Ar Argon 

C2H5OH Ethanol acid 

C3H7NO Dimethylformamide 

CL Cathodoluminescence 

CMOS Complementary Metal Oxide Semiconductor 

Cu Copper 

CVD Chemical Vapour Deposition 

DAP Donor-acceptor pair 

DC Direct Current 

DI Deionized 

DMF Dimethylformamide 

E-beam Electron beam 

EC Electrochemical 

ETD Everhart-Thornley Detector 

FEG Field emission Gun 

FESEM Field Emission Scanning Electron Microscopy 

FWHM Full Width of Half Maximum 

Ga Gallium atom 

GaAs Gallium Arsenide 

GaN Gallium Nitride 

H2 Hydrogen 

H2O Water 

H2O2 Hydrogen Peroxide 

HCL Hydrochloric Acid 

HeCd Helium Cadmium 

HEMTs High-Electron Mobility Transistors 

HF Hydroflouric acid 

HR-XRD High Resolution X-ray Diffraction 

LEDs Light Emitting Diodes 

LO Longitudinal Optics 

MBE Molecular Beam Epitaxy 

MFC Mass Flow Controller 

Min Minute 

MOCVD Metal Organic Chemical Vapour Deposition 

MOSFETs 

Metal-Oxide-Semiconductor Field-Effect 

Transistors 

N Nitrogen atom 
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N2 Nitrogen 

NBE Near Band Edge 

NH3 Ammonia 

NH4OH Ammonium Hydroxide 

OLEDs Organic Light Emitting Diodes 

PA Phase Analysis (XRD) 

PL Photoluminescence 

Pt Platinum 

PVD Physical Vapour Deposition 

RC Rocking curve (XRD) 

RCA Radio Corporation of America 

RF  Radio-Frequency  

RMS Root Mean Square 

RSM Reciprocal Space Mapping 

SCCM Standard Cubic Centimeters per Minute 

Si Silicon 

SiC Silicon Carbide 

SLM Standard Litres per Minute 

SLS Superlattices Structure 

SSL Solid State Lighting 

TDD Threading dislocations density 

TEM Transmission Electron Microscopy 

TiN Titanium Nitride 

TLD Through-the-Lens Detector 

XPS X-ray Photoelectron Spectroscopy 

SINx Silicon Nitride 
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PENUMBUHAN DAN PENCIRIAN LAPISAN GALLIUM 

NITRIDA KE ATAS SUBSTRAT SILIKON BERLIANG  

ABSTRAK 

 Kajian ini memfokuskan penumbuhan lapisan gallium nitrida (GaN) ke atas 

substrat silikon (Si) berliang melalui kaedah percikan frekuensi radio (RF sputtering) 

dan penyejat alur elektron (e-beam evaporator). Untuk perbandingan, lapisan 

penampan nitrida aluminium nitrida (AlN), lapisan penampan titanium nitrida (TiN) 

dan substrat Si telah digunakan untuk penumbuhan lapisan GaN. Substrat Si berliang 

telah disiapkan melalui kaedah punaran elektokimia dengan menggunakan parameter 

yang berbeza. Didapati bahawa keliangan Si ini boleh dipengaruhi oleh jenis elektolit 

(larutan), masa punaran dan ketumpatan arus. Hasil daripada pemerhatian, larutan 

dimethylformamide (DMF) dengan tempoh punaran 30 minit pada 10 mA/cm2 

ketumpatan arus dapat menghasilkan struktur keliangan Si yang paling optimum. 

Seterusnya, lapisan GaN telah ditumbuhkan pada Si berliang, lapisan penampan 

nitrida dan substrat Si melalui percikan frekuensi radio dan penyejat alur elektron. 

Seperti mana yang telah diukur daripada pengukuran mikroskop elektron pengimbas 

pancaran medan (FESEM) dan mikroskop daya atom (AFM), lapisan penampan 

nitrida menghasilkan permukaan GaN yang halus manakala Si berliang menghasilkan 

permukaan GaN yang kasar, terutamanya pada penumbuhan GaN melalui penyejat 

alur elektron. Pengukuran pembelauan sinar-X (XRD) menunjukkan bahawa semua 

sampel GaN yang tidak disepuh-lindap lebih sesuai ditumbuhi dalam GaN bukan 

terkutub (non-polar) berorientasi (101̅0). Imbasan-ω XRD menunjukkan bahawa lebar 

lengkap separa maksimum (FWHM) untuk puncak GaN pada lapisan GaN diatas 

substrat Si berliang adalah yang paling kecil berbanding dengan  sampel-sampel yang 

lain, dengan penghasilan ketumpatan perkehelan berulir sebanyak ~108 cm-2, 

terutamanya untuk penumbuhan lapisan GaN melalui kaedah percikan RF. Walau 
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bagaimanapun, semua lapisan GaN yang tidak disepuh-lindap menghasilkan kualiti 

optik yang tidak memberangsangkan oleh kerana tiada puncak yang berkaitan dengan 

bahan GaN dapat dikesan pada spektrum fotoluminesens dan Raman. Untuk 

mengurangkan masalah ini, rawatan pasca-penyepuhlindapan dalam persekitaran 

ammonia (NH3) pada suhu suhu 950°C selama 30 minit telah dicadangkan. 

Pengukuran FESEM menunjukkan bahawa semua lapisan GaN yang telah disepuh-

lindap mempamerkan permukaan kasar dan berfaset-heksagon. Selain itu, semua 

lapisan GaN yang disepuh-lindap juga didapati lebih sesuai ditumbuhi dalam struktur 

polihabluran dengan puncak-puncak yang signifikan pada satah (101̅0), 

(0002), and (101̅1), seperti yang disahkan melalui imbasan 2θ-ω XRD. Imbasan-ω 

XRD menunjukkan bahawa ketumpatan perkehelan berulir semakin berkurang 

berbanding dengan sampel-sampel yang tidak disepuh-lindap, terutamanya untuk 

lapisan GaN pada Si berliang melalui kaedah penyejat alur elektron. Walaupun 

permukaan lapisan sedikit kasar, namun sifat-sifat optikal untuk lapisan-lapisan GaN 

ini didapati lebih baik dengan pancaran pinggir jalur dekat (NBE) dan GaN E2 (high)   

yang signifikan berbanding dengan sampel-sampel yang tidak disepuh-lindap.  
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GROWTH AND CHARACTERIZATION OF GALLIUM 

NITRIDE FILMS ON POROUS SILICON SUBSTRATE  
 

ABSTRACT 

 

This work focuses on the growth of GaN films on porous Si/Si substrate by 

radio frequency (RF) sputtering and electron beam (e-beam) evaporator. As a 

comparison, aluminium nitride (AlN) buffer layer, titanium nitride (TiN) buffer layer 

and Si substrate were used to grow the GaN layer. Porous Si/Si substrate was initially 

prepared by electrochemical etching using different parameters. It was found that the 

porosity of Si could be influenced by the type of electrolyte (solution), etching time 

and current density. From the observations, the dimethylformamide (DMF) solution 

with 30 minutes etched, under 10 mA/cm2 of current density produced the optimum 

porous structure. Next, the GaN layers were grown on Si substrate, nitrides buffer 

layers/Si substrate and porous Si/Si substrate by RF sputtering and e-beam evaporator, 

respectively. As witnessed from field emission scanning electron microscopy 

(FESEM) and atomic force microscopy (AFM) measurements, the nitrides buffer 

layers gave smoother GaN surface while the porous Si resulted in rougher GaN 

surface, particularly for e-beam evaporator growth GaN layer. X-ray diffraction 

(XRD) measurements revealed that all non-annealed GaN samples were preferably 

grown in non-polar GaN of  (101̅0) orientation. The XRD ω-scan revealed that the 

FWHM of the GaN peak was found to be narrow in the GaN layer on porous Si/Si 

substrate among others, implying the lowest threading dislocations density in the 

sample at ~108 cm-2, especially for RF sputtering growth GaN layer. However, the 

optical quality for all non-annealed GaN layers appeared to be poor since no peak 

related to GaN material can be detected in photoluminescence (PL) and Raman 

spectra. To address this problem, post-annealing treatment in ammonia (NH3) ambient 
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at 950°C for 30 minutes was proposed. FESEM measurement revealed that all the 

annealed GaN layers turned into rough and distinguished hexagonal-facetted grains. 

In addition, the annealed GaN layers were found to be grown in polycrystalline 

structure with significant peaks at (101̅0), (0002), and (101̅1) planes, as confirmed by 

XRD 2θ-ω scan. The XRD ω-scan revealed that the threading dislocations density 

showed further reduction as compared to the non-annealed samples, especially for 

GaN on porous Si sample grown by e-beam evaporator. It is worth to note, despite of 

a rough surface, the optical properties of the annealed GaN layers greatly improved 

with significant near band edge (NBE) emission and GaN E2 (high) as compared to 

non-annealed samples.  
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CHAPTER 1 

INTRODUCTION TO GaN SEMICONDUCTOR 

Gallium nitride (GaN) material has received great attentions and attractions 

since few decades ago. This is due to its high breakdown voltage, large critical electric 

field and high thermal conductivity. Such properties are beneficial for electronic 

devices such as metal-oxide-semiconductor field-effect transistors (MOSFETs), high-

electron mobility transistors (HEMTs), and Schottky diodes to operate at higher 

voltage levels, help in reducing switching losses and offer better power efficiency than 

other semiconductor materials [1]. In the latest advancement of the GaN technology, 

most of the GaN based power devices application involved in radio-frequency (RF) 

devices, inverters/converters, motor drivers and power supply are being used 

extensively [1]. 

In the aspects of optoelectronics devices like light emitting diodes (LEDs) and 

laser diode, the GaN material has wide and direct band gap, which allows the devices 

base on it to emit at shorter wavelength (365 nm). At this wavelength, the optical 

properties of the GaN devices exhibit ultra-high brightness emission, which gives 

significant rewards to solid-state lighting (SSL1) application, especially in LEDs. 

According to annual report of Department of Energy, United State 2014, SSL 

technology is expected to promote light saving energy up to one-third of the electricity 

consumption, twelve times higher than solar cell by 2025 [2]. 

                                                           
1 SSL refers to the family of solid state lighting technologies with high potential to replace the 

conventional light, fluorescence and incandescent lamps. Examples of SSL devices are light emitting 

diodes (LEDs), laser diodes and organic light emitting diodes (OLEDs) that have been used in display 

board, traffic light and in camera flash. 

 



2 
 

Problem statement and motivation of study 

Notwithstanding all the advantages of GaN based devices and materials, there 

are persistence unsolved problem related to the quality of this material and the stability 

of the GaN devices. Homoepitaxial growth of GaN devices on GaN substrate is very 

limited due to the difficulty to produce a high quality of bulk GaN and expensive. The 

use of foreign substrate like sapphire (Al2O3), gallium arsenide (GaAs), silicon carbide 

(SiC) and silicon (Si) become an alternative substrates to grow GaN based devices. 

Among them, Si becomes the most potential substrate, especially in mass-production 

level due to its inexpensive price and availability in larger size. However, the issue in 

the growth of the GaN layer on Si substrate is mainly related to the lattice mismatch 

and thermal expansion between the epitaxial layer and the substrate. As a result, the 

GaN layer typically contains high defects density and cracks in the GaN layer [3].  

The introduction of a buffer layer between the GaN layer and the Si substrate 

is a common strategy to ameliorate such problems. Nonetheless, the threading 

dislocation2 remains high, which can limit the efficiency of the GaN based devices 

and reduce their phonon lifetime. In this work, the use of porous Si layer on the Si 

substrate could be a better solution to further reduce the impact from the lattice 

mismatch [4-5]. The void spaces of the porous Si surface could significantly ‘sink-

out’ the threading dislocation while release strain in the GaN layer. 

Recently, numerous techniques have been developed to grow GaN on Si 

substrate. The growth of GaN layers through physical vapour deposition (PVD), e.g 

molecular beam epitaxy (MBE) [6, 7], radio frequency (RF) sputtering [8, 9] and 

                                                           
2 Categorize as one type of line defect. It happens when there is a large difference in atomic arrangement 

between epitaxial layer and substrate. Threading dislocations defect in semiconductor can create 

electrical charge trapping and reduced the number of available carriers. 
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electron beam (e-beam) evaporator [10] can be considered as among the most 

convenient method for thin film growth. This is because the GaN layer can be grown 

at lower risk3 than chemical vapour deposition (CVD). However, RF sputtering and e-

beam evaporator are more preferable technique to grow GaN layer since both 

techniques are simple and inexpensive technique than MBE.  

It is well-known that the GaN films typically contains strong spontaneous and 

piezoelectric polarizations when it is grown along the [0001] direction. This 

subsequently leads to the degradation of overlapping of electron and hole wave 

function, which limits the performance of optoelectronic devices [11]. To eliminate 

such behaviour, the growth of GaN layers in non-polar orientation, e.g (101̅0) or 

(112̅0), is desirable. If a non-polar GaN layer can be grown using simple and 

inexpensive technique like RF sputtering and e-beam evaporator, it would open more 

explorations that would lead to significant development in GaN technology. 

Scope of study and objectives of the research 

This study focuses on the growth GaN on porous Si/Si substrate for good 

quality of GaN layer. The aim of this project is to study the effectiveness of using 

porous Si as a surface to grow GaN on it. Therefore, the main objectives of this thesis 

are;  

1) to fabricate porous Si using electrochemical etching with a good uniformity 

and porosity of the pores.  

                                                           
3 Physical vapour deposition (PVD) appeared to be safer than chemical vapour deposition (CVD) since 

it involved with the absent of dangerous gas such as trimethylGallium (TMGa), trimethylAluminium 

and silane, which can explode if exposed to air. Most of the PVD process used nitrogen (N2) plasma as 

a source for nitride material. 
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2) to grow GaN layer on porous Si substrate using radio-frequency (RF) 

sputtering and electron beam (e-beam) evaporator and investigating the 

surface morphology, structural and optical properties of the GaN samples.  

3) to improve the properties of the GaN on porous Si layer using post-annealing 

treatment under ammonia (NH3). 

In addition to that, GaN layer was also grown on Si substrate, aluminium nitride (AlN) 

and titanium nitride (TiN) buffer layers for comparison. 

The contents of this thesis have been organized as follows: 

Chapter 2 encompasses the structural properties and the basic properties of 

GaN materials. Progress works on GaN growth on Si substrate, fabrication of porous 

Si substrates, and annealing background are reviewed. 

Chapter 3, the readers will be exposed to the experimental procedures that 

describes the etching process, the growth process of GaN, annealing process and 

characterization measurement, which had been performed in this project. Problems 

and issues that have encountered during the experiments will be discussed and the 

solutions are suggested to improve the outputs and data collections. 

Chapter 4 will be focusing on the fabrication of the porous Si (100)-oriented 

substrates using electrochemical etching in different etching conditions. The results 

are presented, particularly on surface morphology, as measured by field emission 

scanning electron microscopy (FESEM). The optimum etching parameters that 

produce high porosity and uniformity of porous Si will be proposed as a surface for 

the subsequent GaN layer. 
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Chapter 5 presents the properties of the GaN layer grown directly on the porous 

Si substrate, including with the nitrides buffer layer (AlN and TiN) and Si substrate 

using RF sputtering and e-beam evaporator. The optimization of the GaN growth 

conditions will be discussed. The results of GaN samples grown on porous Si/Si 

substrate and the nitrides buffer layer/Si substrate will be presented based on the 

morphology, structural and optical properties of the samples. 

Chapter 6 reports the effect of post-annealing treatment on the grown GaN 

sample by RF sputtering and e-beam evaporator, with different conditions. The 

analysis will cover the surface morphology, crystalline quality and optical quality of 

the annealed GaN samples. The comparison between RF sputtering and e-beam 

evaporator will be provided in order to propose the best GaN growth. 

Chapter 7 is the final chapter that concludes the findings of the research works. 

This will be ended by several suggestions for the future works to improve the quality 

of this research project. 
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CHAPTER 2 

BASIC PROPERTIES AND LITERATURE REVIEW OF GaN 

This chapter begins with a discussion of the fundamental properties of GaN 

material so that the understanding on the material can be well-established. 

Subsequently, a detailed review on growing GaN on Si substrate, including the use of 

buffer layer will be given. It has been reported that the porous Si/Si substrate is a new 

technique to allow better growth of GaN directly onto Si substrate. With this regards, 

the introduction of porous Si and its fabrication will be presented here. This is followed 

by a review on the growth of GaN onto porous Si/Si substrate across literature. Apart 

from that, technique of growing GaN using inexpensive and simple manner will be 

discussed. This chapter ends with a survey on improving the crystalline quality of GaN 

material through annealing treatment. 

2.1 Introduction to GaN material. 

Gallium nitride (GaN) material is considered as one of the most important 

materials in advanced devices. This material possesses a wide and direct band gap of 

3.4 eV that allow devices based on them such as light emitting diodes (LEDs), laser 

and transistors (high-electron-mobility transistors, HEMTs) to operate at high 

temperature, frequency and power [12, 13]. Recently, Professor Shuji Nakamura has 

won the Nobel Prize in Physics in 2014 upon his significant contribution in developing 

blue LEDs based on GaN towards white light production.  

2.1.1 Basic crystal structure of GaN material. 

GaN can generally exist in two phases; 1) hexagonal (wurtzite) and 2) cubic 

(zinc-blende) [14]. Hexagonal GaN is a thermodynamically stable structure, whereas 
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cubic GaN is a metastable structure. Therefore, specific growth conditions are required 

to grow GaN with different phase material. Details of the illustration of the atomic 

arrangement in hexagonal GaN structure are shown as in Figure 2.1. In general, the 

hexagonal GaN structure consists of two lattice constants, which a refers to the 

distance between two atoms at the basal plane while c associates to the distance 

perpendicular to the basal plane. Each Ga atom is bonded to four neighbouring 

nitrogen atoms. Similarly, each nitrogen atom is bonded to four Ga atoms (see figure 

2.1). The stacking sequence of the GaN hexagonal-closed packed in the <0001> plane 

is ABABAB along the [0001] axis, where the capital letter A is denoted as a distinctive 

of Ga cation (Ga3+) whilst the capital letter B is denoted as nitrogen anion (N3-) 

position in the triangular lattice on the (0001).  

 

 

 

 

 

Figure 2.1: Atomic arrangement of hexagonal GaN structure in [0001] direction. The 

filled and empty circles represent the Ga and N atoms, respectively. The figures have 

been modified from [14]. 

 

Table 2.1 shows the basic properties of the hexagonal GaN structure, at 300 K 

and these values are commonly used in many works [14, 15]. However, these values 

are dependent and affected by the variation of built-in strain from different growth. 

Theoretically, the arrangement of lattice constants are strongly depending on the 
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strain-induced defects inside the materials. This will highly affect the crystalline and 

optical quality of the GaN layer.  

Table 2.1: Basic properties of GaN structure at 300 K. The values were taken from 

[14]. 

Structure Wurtzite 

Symmetry Hexagonal 

Stability Stable 

Energy Gap (eV) 3.400 

Lattice constant, a (Å) 3.189 

Lattice constant, b (Å) 

E2 (high) phonon mode (cm-1) 

A1 (LO) phonon mode (cm-1) 

5.185 

568  

734 

 

 Apart from polar direction, GaN also can be grown in (101̅0) orientation. This 

kind of plane orientation is non-polar, of which free from piezoelectric and 

spontaneous effects. So far, works on developing GaN in non-polar (101̅0) plane are 

increasingly conducted to realize super powerful devices in future. Figure 2.2 shows 

the illustrated structure of non-polar plane in comparison with polar plane. Unlike 

(101̅0) orientation, which occurs on m-plane, non-polar a-plane in (112̅0) is hardly to 

be achieved without proper growth preparations. 
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Figure 2.2:  Illustration of (a) polar and (b) non-polar GaN structure. (c) Top view of 

hexagonal GaN structure with non-polar direction. Images were taken and edited from 

[16]. 

 

2.2 Growing GaN on Si substrate and its general issues. 

 Homoepitaxial growth of GaN devices on GaN substrate is very limited due to 

the difficulty to produce a high quality bulk GaN. Alternatively, foreign substrates like 

sapphire (Al2O3), gallium arsenide (GaAs), silicon carbide (SiC) and silicon (Si) 

substrates have a potential to grow the heteroepitaxial GaN. The following section will 

clarify the progress in growing GaN for heteroepitaxy growth.  

2.2.1. Progress of GaN growth onto Si substrate. 

Recently, Al2O3, GaAs and SiC materials are the most popular substrates for 

heteroepitaxial GaN growth. Nonetheless, these substrates are rather costly, limited in 

size and impossible to be produced in large scale [17]. Therefore, silicon (Si) becomes 

the most preferable substrate for GaN epitaxy since it is available in a large size, good 
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in thermal conductivity, easy cleaving along the substrate facet, low cost, and also 

exhibits good uniformity of carrier injection which is beneficial for nitride based 

devices and structures [18-20]. Hence, this section will clarify the use of Si substrate 

for GaN growth and issues pertaining to the GaN growth onto the Si substrate. 

From the history point of view, Roessner and his team members [21] had 

showed the interest of growing a GaN on Si substrate in the year of 1995. They 

demonstrated the epitaxial growth of GaN on top of the Si substrate using electron 

cyclotron resonance plasma-assisted molecular beam epitaxy (MBE). Under different 

cleaning preparation of Si wafer via Shiraki method and Radio Corporation of 

America (RCA) method, this team managed to obtain polycrystalline structure of 

hexagonal GaN film on Si (001) substrate. However, the potential of their GaN is 

constrained due to high defect density. A few years later, Guha and Bojarczuk 

discovered the first MBE growth of GaN based LEDs on Si substrate [22] by initiating 

the use of the bottom contact for electron injection to the device structure through a 

thin AlN growth initiation layer. They also demonstrated the p-type doping that is 

achievable in GaN on Si substrate. This is a starting point to show the ability of 

growing GaN based devices using Si substrate.  

In 2002, Krost et.al. [23] demonstrated the growth of GaN-based 

optoelectronics on Si substrate with cost-effective LEDs via metal organic chemical 

vapour deposition (MOCVD). They succeeded to achieve a high optical output power 

of GaN based Si LEDs with 100 µW at forward voltage of 20 mA. This value is far 

greater than the output power of LEDs based GaN on Al2O3 (42 µW) and SiC (70 

µW), as demonstrated by Nakamura et.al [24] and Gosei et.al. [25], respectively. 

Through this comparison, the integration of optoelectronics devices based on GaN on 

Si substrate exhibits better performance than the GaN devices on Al2O3 and SiC. So 
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far, GaN layers were mainly grown in [0001] orientation using Si substrate. It is very 

hard to achieve (101̅0) GaN structure without significant adjustment required in the 

growth conditions. 

 

2.2.2 Si substrate orientation: Si (111) versus Si (100). 

In most reports, the hexagonal GaN layers were grown onto Si (111)-oriented 

substrates using MBE [6,7] and MOCVD [26,27]. The reason of using Si (111) 

orientation is mainly due to the three-folded symmetry4 of this plane, served as a 

template for hexagonal GaN crystal structure. Nonetheless, there are some problems 

related to the integration of the GaN on Si (111) based devices, for example the GaN-

on-Si (111) LEDs. A group from Taiwan, Shen et. al. [28] reported that it is hard to 

etch Si (111) substrate due to its large energy bonding, thus resulting in an extended 

time period of etching process that is subsequently damaging to the crystalline 

properties of the GaN-on-Si (111) LEDs. 

Unlike Si (111) substrate, the Si (100)-oriented substrate offers an easy 

substrates removal with 20 times faster than the etching rate in Si (111)-oriented 

substrate due to a small bonding energy of Si atoms [28]. This gives extra advantages 

to Si (100)-oriented substrate for integration of high performance of GaN-on-Si (100) 

based devices such as in LEDs, complementary metal oxide semiconductor (CMOS) 

and high electron mobility transistor (HEMT) [29-31]. Furthermore, the substrates 

cleaving of Si (100)-oriented is easier without damaging the wafer as compared to the 

Si (111)-oriented substrate. Besides, Si (100) is preferable as the substrate for GaN as 

it has much fewer interface defect than Si (111) due to much smaller lattice constant 

                                                           
4 Object that repeat itself upon rotation of 120°. The three fold symmetry will match at 120°, 240° and 

360°. 
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thus making GaN layer with less defect density is possible [32]. Figure 2.3 shows the 

illustration of lattice constant for GaN on Si (111) and Si (100), respectively 

Figure 2.3: Illustration of atomic arrangement between GaN on (a) Si (111) and (b) Si 

(100) substrate for lattice constant a in lattice structure. Images were taken and edited 

from [33].  

 

 

 

2.2.3 Issue on growing GaN on Si substrate. 

 Direct growth of GaN on Si (100) substrate is quite challenging as the layer 

commonly suffers from high threading dislocations density and cracks that lead to 

degradation of optical and electrical properties of devices. Theoretically, the atomic 

arrangement between both materials is far from ideal in term of lattice mismatch and 

thermal expansion coefficient. The lattice mismatch between GaN and Si is reported 

to be around 17%, due to a large difference between lattice constant of both materials 

[17]. Furthermore, the thermal expansion of GaN is two times lower than the Si 

substrate (~ 54%), which subsequently contributed to the formation of cracks on the 

GaN surface upon cooling phase [34]. As a result, the growth of a thick GaN layer 

(above critical thickness ~300 nm) on Si substrate is very unlikely without cracks.  
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 In general, direct growth of GaN on Si will exhibit tensile stress in order to 

comfort the lattice structure of the substrate. This is mainly due to the large lattice 

constant a of Si substrate (3.431Å) with respect to the lattice constant a of GaN (3.189 

Å). Figure 2.4 shows the common mechanism of tensile stress mechanism in epitaxy. 

Such condition will lead to the formation of cracks and induce propagation of defects; 

e.g. threading dislocations toward the GaN surface and limits the potential of GaN 

applications. In order to minimize these problems, some alternative efforts have been 

proposed as to reduce the impact from the large difference in atomic arrangement 

between GaN and Si. The following section describes the improvement of GaN 

overgrown layer using several techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Illustration of tensile stress mechanism between GaN and Si substrate. 

Image was taken and edited from [35]. 
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2.3 Role of buffer layer in GaN growth on Si substrate. 

 

 A buffer layer is typically grown directly on the substrate prior to the GaN 

growth. As a matter of fact, introduction of buffer layer into the growth of GaN 

heterostructure is a common way to compensate the tensile stress and preclude the 

crack formation. Figure 2.5 shows the lattice arrangement of GaN layer on Si 

substrate, with and without buffer layer. This illustration shows that with the presence 

of buffer layer, the GaN overgrown layer exhibits a better structure. 

Figure 2.5: Illustration of lattice arrangement in GaN layer with and without insertion 

of buffer layer. Figure source is modified from [36]. 

 

  Up to date, numerous buffer layers have been employed such as SiC [7, 37-

38], aluminium nitride (AlN) [39, 40] and titanium nitride (TiN) [41, 42]. Apart from 

that, AlN/GaN superlattices stack layer [43, 44] has been used to improve GaN 

growth. Review on the published research on the use of various buffer layers for GaN 

on Si growth are summarized in Table 2.2. In general, SiC buffer layer is one of the 

candidates for growing GaN layer onto the Si substrate. For example, As et.al [7] and 

Wang et.al [37] are among the pioneer in developing better quality GaN on Si growth 

using a flat SiC buffer layer through the MBE. They revealed that SiC is very useful 
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in suppressing the formation of amorphous silicon nitride (SiNx) and therefore can 

promote into better optical quality. However, the growth of SiC buffer layer onto the 

Si substrate naturally exhibits rough SiC/Si interface, which contains high impurities 

and gives poor single crystal quality that would affect the properties of the GaN 

overgrown layer [38]. 

Table 2.2: Summary of growth of GaN layer using different buffer layers on Si 

substrate. 

 

AlN material is a common buffer layer for GaN epitaxy due to its ability to 

enhance the GaN nucleation, which in turn produces a layer with a mirror-like surface. 

In term of the lattice arrangement of the AlN material, it has a small number of lattice 

mismatch (2.5%) and thermal expansion coefficient (34.6%) with respect to the GaN 

as compared to GaN on the Si materials [39]. However, the thickness of the buffer 

layer should be optimized in order to achieve the crack-free GaN layer. For example, 

Yang et.al [40] investigated the effect of different thickness of AlN buffer layer for 

Buffer layer Advantage Disadvantage Reference 

SiC -Promotes better optical 

properties 

-Good suppression for 

SiNx formation 

-Exhibit rough surface 

-High level background 

impurities 

[7,36-38] 

 

AlN -Small lattice mismatch 

(2.5%) 

-Good wettability to GaN 

-Insulative behaviour 

-Optimized thickness is 

extremely critical 

 [39, 40] 

TiN -Small lattice mismatch 

(6.2%) 

- Conductive behaviour 

- Never been applied on Si 

substrate 

 

[41, 42] 

AlN/GaN SLS -Effectively reduce crack 

formation 

-Very complex 

-Difficult to maintain 

uniformity of each layer 

[43, 44] 
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the GaN growth on the Si substrate by using MOCVD. They found that the grown thin 

layer (<20 nm) and thick layer (>100 nm) of AlN had low crystallinity, which affected 

the coalescence behaviour of the GaN grains. Nonetheless, the AlN buffer layer with 

the thickness of 50 nm improved the GaN layer. Despite of this, AlN buffer layer tends 

to promote high charging effect5 because it is naturally an insulator material. This is 

not preferable for vertical transport devices. 

On the other hand, titanium nitride (TiN) has the potential to be a good buffer 

layer to GaN since it exhibits smaller lattice mismatch of 6.2% [41]. The advantages 

of TiN lies on its better electrically conducting and its ability to promote the 

continuous growth, which results in a flat surface of GaN. This has been demonstrated 

by Watanabe et.al [41]. They successfully grew a good GaN layer with smooth and 

flat surface using TiN buffer layer. Like AlN buffer layer, the thickness of the TiN 

buffer layer plays a role in improving the GaN overgrown layer. The effect of using 

different thickness of the TiN buffer layer on GaN properties was reported by Ito et.al 

[42]. They revealed that GaN growth was better with the use of the TiN buffer layer 

at the thickness of 2 to 5 nm. Nonetheless, the above reports only focused on growing 

GaN layer using TiN buffer layer on sapphire substrate. To the best of our knowledge, 

TiN buffer layer has never been used in the growth of GaN on Si substrate.  

The growth of the GaN can be improved using superlattices structure (SLS). 

This has been demonstrated by Eric et.al. [43] with the use of AlN/GaN SLS to prevent 

propagation of threading dislocation into the GaN layer to minimize cracks. The 

crystalline quality of the GaN layer is significantly enhanced by optimizing the 

number of SLS layer. Similar finding was also observed in [44], using AlN/GaN SLS. 

                                                           
5  See page 42  
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Nevertheless, the growth of SLS is challenging due to its complexity to maintain 

uniformed layer of the structure, especially in a very thin layer about few nanometers. 

In this study, the introduction of the buffer layer is a classic way to grow GaN 

with minimum defects and strains. The structural and optical properties of the GaN 

layers with the presence of the buffer layer were reported to be improved. However 

the dislocations density remains high, around 109-1011 cm-2 [39,42]. In recent year, 

porous Si has received much attentions as the structure could ‘sink-out’ the strains and 

dislocations tremendously from propagating into the subsequent layer. This gives a 

new hope to growth scientists to grow GaN layer directly onto the Si substrate without 

concerning much on the problems resulted from the large lattice mismatch. Review of 

published works on the production of porous Si on Si substrate will be discussed as 

follow. 

2.4 Introduction of porous Si and its fabrication. 

 

Porous Si structure particularly offers high surface area to volume ratio that 

would lead to better external efficiency6 of devices like LEDs. The main ability of the 

porous Si lies on its void spaces feature that minimize defects and strains from 

propagating into the overgrown layer. There are several techniques used to develop 

porous Si e.g. laser-induced etching [45,46], electroless etching [47,48] and 

electrochemical etching [49-52]. Among these, the electrochemical (EC) etching is the 

most favourable technique due to its low surface damage, low cost and easy to operate. 

More interesting point about this method is that the uniformity of the porous Si is 

controllable by adjusting the related parameters. Currently, a number of works on EC 

etching has been demonstrated on porous Si [49-52]. The fabrication of porous is 

                                                           
6 Strong light extraction which reflected from porous sidewalls. 
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generally depending on parameters which are; 1) chemical solution based acid 

(hydrofluoric), 2) time of etching and 3) current density. Table 2.3 highlights the role 

of these parameters on controlling the porosity of Si.  

Table 2.3: Influence of the etching parameters on the porosity of Si, as reported in 

several works. 

Etching parameter Research finding Reference 

Chemical solution The pores structure depends on the type of the 

chemical used 

[49, 53-54] 

Etching time Shorter time leads to small pores while longer 

period of time gives larger pores 

[55-57] 

Current density Tend to destroy the pore structure if current is 

too high 

[58-59] 

  

Generally, numerous chemical solutions have been developed in order to 

prepare the porous structure using EC etching. For example, ethanol (C2H5OH) is 

widely used as a chemical solution to fabricate the porous Si layer due to its ability to 

initiate pores formation. Nevertheless, ethanol tends to promote high surface tension 

to the Si surface, which then leads to the formation of irregular pores, as reported in 

[49-52]. However, such problem can be eliminated by diversifying the type of the 

chemical solution. The use of hydrogen peroxide (H2O2) and dimethylformamide 

(DMF) can exterminate the wetting7 problem to the Si surface and consequently results 

in better Si porosity. For example, Splinter et.al. [53] introduced H2O2 in the mixture 

of HF and C2H5OH. Good uniformity and well-defined pores were formed at the ratio 

of 1:4:1 for HF: H2O2: C2H5OH, respectively. On the other hand, direct mixing of 

DMF in HF solution results in high pores distribution. As compared to H2O2, the Si 

                                                           
7 Ability of liquid to form interface with substrate surface. In such case, wetting defect can occur, e.g. 

poor adhesion of chemical solution. 
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porosity is further improved due to low surface tension and reductions of oxides 

formation [60-61].  

Note that, time of etching and applied current density, both play major roles to 

form porous Si. Investigation on various etching time for porous Si were reported by 

Jeyakumaran et.al [55] at various time from 10 to 40 minutes. They revealed that the 

pores size was bigger as the etching time increased. Similar behaviour also has been 

observed in Milani et.al [56] and Lu et.al [57]. Longer time of etching will cause 

several pores to coalescence with their neighbouring pores and this results in larger 

pores. From both reports, the optimum etching time was found to be around 20 to 30 

minutes. 

 On the contrary, the pores structure tends to diminish if the current density 

were set too high. Some reports had claimed that the optimum value of current density 

for n-type porous Si was 10 mA/cm2 [58, 59]. The applied current density in each 

experiment must be kept constant during etching process in order to accommodate 

uniform pores distributions. Zhang et.al [51] proposed that the porosity of Si is 

uniform with the use of a constant current density. Similar to the case of optimizing 

the etching time, the pore size was found to be larger with increased current density.  

In this work, a number of n-type Si (100) substrates were fabricated into a few 

micrometers of porous Si substrate using EC etching at different etching parameters. 

Detailed experiment will be provided in Chapter 4. Later, GaN layer will be deposited 

onto the porous Si/Si substrate. 

 

2.5 Growth of GaN on porous Si/Si substrate. 

 

 In few decades ago, extensive works had been done to investigate the potential 

of porous Si towards improving GaN growth. The high uniformity and density of 
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porous Si are highly desirable to achieve the purpose. The following sections will 

discussed the role of porous Si as an alternative method for reducing the impact of 

lattice mismatch and progress in the GaN on porous Si/Si substrate will be reviewed.  

2.5.1. Main role of porous Si/Si substrate for GaN growth. 

It has been reported that a high quality GaN layer can be grown on porous Si/Si 

substrate as the impact of large difference in lattice arrangement and thermal 

expansion coefficient between both materials can be accommodated by the porous 

structure [62]. Figure 2.6 shows the possible lattice arrangement in the GaN layer 

grown on porous Si/Si substrate. The created pores on Si substrate reduced the large 

difference in atomic arrangement between GaN and Si materials. As a result, the GaN 

layer tends to follow and match the atomic arrangement in porous Si template and 

good quality of GaN layer could be expected. To the best of our knowledge, the critical 

thickness for a uniformed GaN layer is not well established since it strongly depends 

on the size of the pores.  

 

 

 

 

 

 

Figure 2.6: Illustration of atomic arrangement in GaN layer on porous Si substrate as 

the defects propagation in the GaN layer was minimized by the pores structure.  
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2.5.2 Progress  in the growth of GaN on porous Si/Si substrate. 

Throughout literature, the effect of Si porosity on the GaN growth is less 

investigated. Therefore, it is hard to confirm that how different porosity could 

influence the GaN overgrown layer. This work will conduct the investigation and 

details will be given in Chapter 4 and Chapter 5. It is suggested that the properties of 

GaN is dependent on the type of the porosity of the Si/Si substrate.  

So far, most of the GaN layers were grown on the p-type porous Si/Si substrate 

using various techniques like metal organic chemical vapour deposition (MOCVD) 

and molecular beam epitaxy (MBE) [62-65]. This is because p-type porous Si is very 

easy to be fabricated. However, the etching process is hard to be controlled and 

therefore irregular pores and distribution are produced [66]. The irregularity in shape 

and distribution of the pores will result in poor GaN layer. Matoussi et. al. [63] and 

Cheng et.al [64] demonstrated the growth of GaN on p-type porous Si/Si substrate 

using MOVPE. Both of them revealed the formation of cracks on the GaN surface but 

the crystalline quality is comparable with the GaN growth on non-porous Si substrate. 

It implies that the potential of p-type porous Si is still limited.  

Unlike p-type Si substrate, the fabrication of porous Si on n-type substrate is 

more promising and controllable since it contains minority carrier of hole 

concentration. The accumulation of holes on the surface can be controlled by external 

illumination and therefore effective etching activity can be expected [67]. It seems that 

n-type Si may have better prospect to improve the porous Si in the field of GaN 

technology. However, the growth of GaN on n-type porous Si/Si substrate is less 

demonstrated and therefore will be performed here.  
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2.5.3 Growth of GaN on porous Si/Si substrate using cost-effective technique 

 

 

Molecular beam epitaxy (MBE) [7, 62] and metal organic chemical vapour 

deposition (MOCVD) [63-65] are well-known techniques in GaN epitaxy. These 

techniques promote excellent interface and surface morphology and being conducted 

in high purity system [68]. MBE is generally favourable for growing thin epitaxial 

layer because of its lowest growth rate and excellent thickness monitoring [68]. 

Meanwhile, MOCVD is more desirable for mass production growth due to easy 

configurability for scaling up wafer sizes and high uniformity across wafer-to-wafer 

[69]. 

Despite of the great advantages of both systems, they are identified as a 

complex system and require expensive running costs and high maintenance. 

Alternatively, radio-frequency (RF) sputtering is simpler and inexpensive technique 

to grow GaN as compared to MBE and MOCVD. The growth of GaN layer by RF 

sputtering is normally operated in a mixture of nitrogen (N2) and argon (Ar) gases. It 

involves the collisions of high energetic ion to the target, which leads to the ejection 

of atoms and subsequently sputtered to the substrates. Detailed explanation on the 

principle of operation of the system will be given in Chapter 3.  

In general, GaN grown by RF sputtering is always expected in the form of 

amorphous structure [8-9, 70-71]. At the growth pressure around 10-2 mbar, the 

formation of amorphous structure of GaN layer on Si (100) can easily happen [8]. To 

minimize the structure, Miyazaki and his team [9] proposed lower growth pressure to 

achieve better GaN layer. From their observations, it is suggested that the growth 

pressure of 10-4 mbar can reduce the amorphous structure and the GaN layer appears 

in a specific direction of growth. Similar evidence was also reported by Li et.al [72] 



23 
 

of which the GaN layer is preferably grown in a specific direction. These findings, 

consequently boost the interest of growing GaN using RF sputtering.  

 In contrast, electron beam (e-beam) evaporator is another simpler and low-

cost technique to grow thin film materials like GaN. Unlike RF sputtering, e-beam 

evaporator utilizes the bombardment of high energetic electron on GaN source that 

subsequently heated-up and produces vapour that drifted to the substrate surface. 

Detailed explanation will be provided in Chapter 3. The unique properties of this 

system lies on its highly controllable growth rate, which can achieve from 1 nm/min 

up to 100 000 nm/minutes [73]. Nevertheless, the growth of GaN using e-beam 

evaporator is not popular among the nitride growth scientists due to its poor 

morphological structure and the overgrown layer can easily peel-off from the 

substrate. 

 To the best of our knowledge, the growth of GaN on Si (100) using e-beam 

evaporator has only been demonstrated by Chaudhari et.al. [10]. Their work focused 

on the direct growth of GaN on Si (100) using different temperature. Nonetheless, the 

grown GaN is in polycrystalline structure. The growth of GaN on porous Si has never 

been demonstrated by e-beam evaporator and very least by RF sputtering. Despite of 

their limitation in producing GaN layer with good crystalline properties, post-

annealing treatment could be a way to ameliorate the GaN properties.  Review on 

annealing GaN is given below. 

 

2.6 Annealing treatment as a strategy to improve GaN properties.  

 

 

 Post-annealing treatment is one of the best way to improve the quality of the 

GaN layer. Generally, annealing treatment enables to make the surface morphology, 

crystalline quality and optical properties to be better. The applied heat allows the 
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atoms inside the GaN to re-crystallize and form into well-orderly structure, hence 

reduce defect densities. Several published works have been reviewed on the effect of 

annealing treatment as an effort to improve GaN properties [74-78]. Note that, the 

annealing temperature plays the key contribution in the process.  

Zhang et.al [74] revealed that the minimum temperature of 600°C is required 

to decompose the ammonia (NH3) gas into nitrogen active species (N), which could 

reduce the non-stoichiometric surface of the treated GaN sample. However, the 

crystalline quality of the GaN layer will degrade if the temperature is too high due to 

thermal decomposition, where the GaN re-evaporate out from the surface [76-77]. For 

example, Hong-Di et.al [76] and Cheng et.al [77] discovered that the crystalline 

quality of the GaN layer was degraded when the annealing temperature is above 

1000°C. This subsequently results in the formation of defects on the surface of the 

GaN. Throughout literature, the optimum temperature for the annealing treatment was 

found to be ~950°C, as reported by [77-78]. One should be aware that the optimum 

annealing temperature will differ in different experiments. Therefore, the optimum 

annealing temperature for our sample will be investigated using a conventional 3-zone 

furnace. 

2.7 Summary 

 Basic properties of the GaN material were briefly discussed and the potential 

substrates for GaN growth were reviewed. Since this thesis focuses on growing GaN 

layer on porous Si/Si substrate, therefore reports on the Si etching method, the GaN 

growth technique and thermal annealing as the way to improve the quality of the GaN 

layers were discussed. In this work, we aim at producing high quality GaN layer grown 

directly onto the porous Si/Si substrate through the techniques of RF sputtering and e-

beam evaporator. 


