

ZOT-BINARY: A NEW NUMBER SYSTEM AND ITS
APPLICATION ON NUMBER THEORY BASED PUBLIC-

KEY CRYPTOGRAPHY

by

SHAHRAM JAHANI

Thesis submitted in fulfillment of the
requirements for the degree of

Doctor of Philosophy

January 2016

ii

ACKNOWLEDGEMENTS

First of all, there is no word to show my deeply grateful to the Almighty God for his mercy

toward me and his blessing for me to complete this thesis. It is my great pleasure to express my

sincere gratitude to my supervisor Professor Dr. Azman Samsudin who generously dispenses his

precious time to guide me in my thesis despite his busy schedule in the School of Computer

Sciences. I’m very grateful being able to work under his intellectual, brilliant and strong

supervision. I am thankful for his aspiring guidance, invaluably constructive criticism and friendly

advice during my research work. I’d like to thank him for his trust on me and support my research

through his grant. I would like to place on record, my sincere acknowledgement to the Dean and

all staff members from the School of Computer Sciences, USM, for making all these possible. I

would also like to express my deep sentiment to my family members especially to my dear wife

and my son for their patience and encouragement. Thanks also go to all my friends in the research

lab, who have made a sincere and helpful atmosphere of friendship in these years specially Amir

Akhavan and Arash Eghdamian, who helped me when I needed in spite of being busy with their

own work.

iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF TABLE ix

LIST OF FIGURES xiii

LIST OF ABBREVIATION xiv

ABSTRAK xvi

ABSTRACT

xviii

 INTRODUCTION 1

1.1 General Overview 1

1.2 Research Motivation 8

1.3 Problem Statement 9

1.4 Research Scope 10

1.5 Research Objectives 11

1.6 Research Methodology 11

iv

1.7 Research Contributions 14

1.8 Thesis Outline 14

 LITERATURE REVIEW 16

2.1 Definitions 17

2.1.1 Hamming Weight 17

2.1.2 Computational Complexity 17

2.2 Number Systems 18

2.2.1 Positional Number Systems 18

2.2.2 Double Base Number System (DBNS) 26

2.2.3 Multibase Number System (MBNS) 28

2.2.4 Window Sliding Method 28

2.3 Arithmetic Operations in Number Theory Based Cryptosystem 30

2.3.1 Multiplication Algorithms 30

2.3.2 Exponentiation 46

2.4 Public Key Cryptography 51

2.4.1 RSA 51

2.4.2 Diffie-Hellman Key Exchange 53

2.4.3 ElGamal Encryption Algorithm 55

2.5 Summary 56

v

 PROPOSED NUMBER SYSTEMS,
MULTIPLICATION AND EXPONENTIATION ALGORITHMS 58

3.1 ZOT Recoding 59

3.2 The Proposed Positional Number Systems 64

3.2.1 Big-Digits in Positional Number Systems 64

3.2.2 Redundant Number Systems 66

3.2.3 Non-Redundant Number Systems 67

3.3 The Enhanced Multiplication Algorithms 74

3.3.1 The Classical Multiplication Algorithm Based on the ZOT-Binary
Number System 75

3.3.2 ZOTB-KA: the Karatsuba Multiplication Algorithms Based on the
ZOT-Binary 80

3.3.3 Hybrid of Karatsuba and ZOTB-CLM 81

3.4 The Enhanced Squaring Algorithm 81

3.5 The Enhanced Exponentiation Algorithms 83

3.5.1 ZOTB- L2REXP-E 84

3.5.2 ZOTB- L2REXP-M 85

3.5.3 ZOTB- L2REXP-EM 85

3.6 RSA Algorithm Based on the ZOT-Binary 87

3.7 Summary 88

 IMPLEMENTATION 90

4.1 Proving Correctness of the Proposed Algorithms 91

vi

4.1.1 Correctness of the Completely New Algorithms 91

4.1.2 The Correctness of the Enhanced Algorithms 93

4.2 Analyzing an Algorithm 94

4.2.1 Efficiency of an Algorithm 94

4.2.2 Generality of an Algorithm 95

4.3 Coding an Algorithm 95

4.4 Evaluation Metrics 96

4.4.1 Hamming Weight 96

4.4.2 Recoding Direction 96

4.4.3 Number of Operations 97

4.4.4 Time Complexity 97

4.4.5 Space Complexity 97

4.5 Hardware 98

4.6 Software 98

4.6.1 Big Integer Arithmetic 99

4.6.2 Requirements and Specification of Implementing 99

4.6.3 C++ Interface for Large Integers 101

4.6.4 Software Description 103

4.7 Default Sampling Conditions of the Experiment 104

4.8 Summary 105

vii

 RESULTS AND ANALYSIS 106

5.1 Analysis of the Proposed Number systems 107

5.1.1 Big-One Analysis 107

5.1.2 Big-Two Analysis 111

5.1.3 Big-Digit Analysis 114

5.1.4 Summary on the Results of the Proposed Number Systems 117

5.2 Analyzing the Conversion Algorithms 117

5.3 Discussion on the Proposed Number Systems 120

5.4 Analyzing the Proposed Multiplication Algorithm (ZOTB-CLM) 121

5.4.1 Analyzing the Number of Operations 122

5.4.2 Analyzing the Running Time 124

5.4.3 Analyzing the Proposed Multiplications Based on the Required
LUT 129

5.5 Analyzing the Proposed Squaring 130

5.5.1 Analyzing the Number of Operations 130

5.5.2 Analyzing the Running Time 133

5.5.3 Analyzing the Proposed Squaring Algorithms Based on the
Required LUT 139

5.6 Discussion on Classical Multiplication and Squaring Based on the ZOT-

Binary 139

5.7 Analyzing the Proposed Exponentiations 140

5.7.1 Analyzing the Number of Operations 141

5.7.2 Analyzing the Running Time 145

viii

5.8 Discussion on Exponentiation Based on the ZOT-Binary: LZOTB-

L2REXP-EM 147

5.9 Evaluation of RSA Algorithm Based on the LZOT-Binary Number System

(LZOTB-RSA) 147

5.9.1 Analyzing the Number of Operations 148

5.9.2 Analyzing the Running Time 150

5.10 Discussion on RSA Based on the ZOT-Binary: LZOTB-RSA 151

5.11 Summary 153

 CONCLUSION 155

6.1.1 Summary of Contributions 156

6.1.2 Limitations of Research 157

6.1.3 Recommendations for Future Research 158

REFERENCES 160

LIST OF PUBLICATIONS

ix

LIST OF TABLES

Page

Table 2.1: The number of DBNS representation of integers [21] 26

Table 2.2: {2,3}-Integers terms of numbers in CDBNS representation 27

Table 2.3: Number of multibase representation of small numbers using
various bases 28

Table 2.4: The common techniques used in multiplication algorithms 31

Table 2.5: Representation of a linear function 32

Table 2.6: Complexity of Karatsuba algorithm after splitting up to 2-to-10
parts [81] 39

Table 2.7: Comparison the threshold of multiplication algorithms [21] 45

Table 2.8: Comparison of multiplication and squaring algorithms 46

Table 3.1: Summary of contradictions for two different ZOT-Binary
representations 70

Table 3.2: Big-Digits multiplication algorithms 78

Table 3.3: Big-One Big-One multiplication look-up table 79

Table 3.4: Big-Two Big-Two multiplication look-up table 79

Table 3.5: Big-One Big-Two multiplication look-up table 79

Table 3.6: The Proposed exponentiation algorithms 83

Table 4.1: Systems information 98

Table 4.2: Sample size for large population according to Slovin’s formula 104

Table 5.1: The weight of Big-Ones in a binary random number
(mathematically) 108

Table 5.2: The error of calculating of HW for binary numbers in CBONS for
numbers shorter than 10 bits (Percentage) 109

Table 5.3: The weight of Big-Ones in an 8-kbit binary number in CBONS
(experimentally) 109

Table 5.4: BOs distribution in an 8-kbit binary number in CLBONS versus
the maximum size of BOs 110

x

Table 5.5: The number of BTs’ in an 8-kbit binary number in CBTNS 113

Table 5.6: Distribution of Big-Digits in ZOT-Binary number system for an 8-
Kbit binary number 116

Table 5.7: Theoretical value of the HW of the proposed number systems 117

Table 5.8: The running time (milliseconds) of the converting algorithm from
binary to the proposed number systems 118

Table 5.9: The ratio of the running time for converting binary numbers to the
proposed number systems vs. length of numbers 119

Table 5.10: The theoretical number of partial product for classical
multiplication based on the proposed number systems 122

Table 5.11: The number of partial products for the classical multiplication
based on the proposed number systems versus the original
classical and Knuth multiplication algorithms 122

Table 5.12: The ratio of the number of partial products for classical
multiplication based on the proposed number systems versus the
classical multiplication algorithms over the range of cryptography 123

Table 5.13: The ratio of number of partial products for classical multiplication
based on proposed number systems versus to the classical
multiplication algorithms (CL) within the range of public-key
cryptography 123

Table 5.14: The number of partial products ZOTB-CLM and KA-CL over the
range of 128 bits to 8 Kbits 124

Table 5.15: The execution time (milliseconds) for classical multiplication
based on proposed number systems versus the classical, KA and
KA-CL multiplication algorithms 124

Table 5.16: The percentage of overhead of converting binary to the proposed
number systems in the proposed classical multiplication algorithm
(for 2-Kbit numbers) 126

Table 5.17: The ratio of execution time of multiplication algorithms to ZOTB-
CLM multiplication algorithm 127

Table 5.18: Theoretical Number of partial products for classical squaring
based on the proposed number systems 131

Table 5.19: The number of partial products for different classical squaring
algorithms 132

Table 5.20: The ratio of number of partial products for squaring to
multiplication based on the proposed number systems and the
original classical and Knuth algorithms 132

xi

Table 5.21: The number of operations used in different classical squaring; the
proposed and currently used 133

Table 5.22: The execution time (milliseconds) for different squaring
algorithms within the range of 128 bits to 8 Kbits 134

Table 5.23: The percentage of overhead of converting binary to the proposed
number systems in the proposed classical squaring algorithms
based on this number systems (for 2-Kbit numbers) 136

Table 5.24: The ratio of execution time: Knuth and Karatsuba squaring
algorithms to the proposed squaring algorithm over the range of
numbers between 128 bits to 8 Kbits 138

Table 5.25: The number of sub-operations used in the proposed exponentiation
algorithms; mathematically 142

Table 5.26: The total number of operations in different proposed
exponentiation algorithms 143

Table 5.27: The total number of partial products (in squaring and
multiplication) for the (proposed algorithm) LZOTB-L2REXP-EM
and L2REXP (KA-CL); experimental results 145

Table 5.28: The execution time (milliseconds) of the proposed exponentiation
algorithm LZOTB-L2REXP-EM and L2REXP (KA-CL) over the
range of 128 bits to 8 Kbits; experimental results 146

Table 5.29: Comparison of the number of partial products in RSA and
LZOTB-RSA 149

Table 5.30: Comparison of the execution time (milliseconds) of the proposed
RSA algorithm (LZOTB-RSA) and RSA 151

xii

LIST OF FIGURES

Page

Figure 1.1: A taxonomy of cryptographic primitives [1] 2

Figure 1.2: Scope of research 10

Figure 2.1: How do multiplication algorithms work? 31

Figure 2.2: Representation of a polynomial by two methods 33

Figure 2.3: Toom-Cook multiplication algorithm scheme 40

Figure 2.4: Converting the representation of a polynomial used in Toom-Cook
multiplication algorithm 40

Figure 2.5: Evaluation of a function at roots of unity in DFT based
multiplication 42

Figure 2.6: DFT-based against classical multiplication algorithm 44

Figure 2.7: Diffie-Hellman Key exchange algorithm [100] 54

Figure 2.8: ElGamal cryptosystem [100] 56

Figure 3.1: RSA key generation, encryption and decryption 87

Figure 3.2: The modified RSA by the proposed multiplication and
exponentiation 88

Figure 4.1: Checking the Correctness of modified algorithms 93

Figure 4.2: Structure of the developed software for high-precision arithmetic 102

Figure 5.1: Big-Two distribution in an 8-Kbit binary number 114

Figure 5.2: The running time of conversion of the numbers from binary
number system to the proposed number systems 118

Figure 5.3: Comparison of the proposed multiplication algorithms with each
other for numbers ranging from 128 bits to 8 Kbits. 125

Figure 5.4: Comparison of the proposed multiplication algorithms and their
overhead (for 2-Kbit numbers) 126

Figure 5.5: Comparison of the proposed and currently used multiplication
algorithms for 128-bit to 1-Kbit numbers 127

Figure 5.6: Comparison of the proposed and currently used multiplication
algorithms for 2-Kbit to 1-Kbit numbers 128

xiii

Figure 5.7: The execution time (milliseconds) of the proposed squaring
algorithms for numbers ranging from 128 bits to 8 Kbits 135

Figure 5.8: Comparison of the proposed squaring algorithms with their
overhead (for 2-Kbit numbers) 135

Figure 5.9: Comparison of the proposed and currently used squaring
algorithms for 128-bit to 1-Kbit numbers. 136

Figure 5.10: Comparison of the proposed and currently used squaring
algorithms for 128-bit to 1-Kbit numbers. 137

Figure 5.11: Comparison of the proposed and currently used multiplication
algorithms for 2-Kbit to 1-Kbit numbers 138

Figure 5.12: The proposed number systems and algorithms 152

xiv

LIST OF ABBREVIATIONS

BD Big-Digit

Bd Big-digit

BO Big-One

BONS Big-One Number System

Bo Big-one

BT Big-Two

Bt Big-two

BDNS Big-Digit Number System

BIN Binary

CBONS Canonical Big-One Number System

CBTNS Canonical Big-Two Number System

CLBONS Canonical Limited Big-One Number System

CLBTNS Canonical Limited Big-Two Number System

DA Double-and-Add

DBNS Double-Base Number System

DES Data Encryption Standard

DH Diffie-Hellman

DLP Discrete Logarithm Problem

DS Digital Signature

DSA Digital Signature Algorithm

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

xv

ECDSA Elliptic Curve Digital Signature Algorithm

Ind Discrete Logarithm

KTNS Koyama and Tsuruoka Non-Sparse

L2R Left-to-Right

LBONS Limited Big-One Number System

LBTNS Limited Big-Two Number System

LUT Look up-Table

LZOTB Limited ZOT-Binary

MOF Mutual Opposite Form

NAF Non-Adjacent Form

PNR Position Number System

R2L Right-to-Left

RSA Rivest-Shamir-Aldeman

ZOT Zero-One-Two

ZOTB ZOT-Binary

ZOTB-CLM ZOT-Binary Classical Multiplication

xvi

ZOT-BINARY: SISTEM NOMBOR BAHARU DAN APLIKASINYA
PADA SISTEM KRIPTOGRAFI KUNCI AWAM YANG

BERASASKAN TEORI NOMBOR

ABSTRAK

Kriptosistem Kunci Awam telah digunakan secara meluas dalam protokol seperti

pengurusan kekunci, pengesahan, penyulitan kekunci, dan lain-lain. Teori Nombor yang

berasaskan Kriptosistem Kunci Awam adalah salah satu cabang utama dalam sistem Kriptografi

Kunci Awam. Dua operasi utama dalam Teori Nombor berasaskan Kriptografi Kunci Awam

adalah pendaraban dan nombor besar. Antara contoh kriptosistem yang terkenal yang mendapat

manfaat daripada operasi ini ialah enkripsi dan dekripsi RSA, tandatangan digital EIGamal, dan

pertukaran kunci Diffie-Hellman. Prestasi kriptografi primitif ini sangat bergantung pada

kecekapan kedua-dua operasi tersebut. Adalah menjadi sesuatu kebiasaan untuk melakukan

penambahbaikan terhadap kecekapan pendaraban dan pengeksponen melalui penggunaan kaedah

pengekodan semula atau penggunaan sistem nombor bagi mengurangkan ukuran berat Hamming.

ZOT adalah kaedah pengekodan semula yang terkini bagi mengurangkan ukuran berat Hamming.

Tetapi, oleh kerana ZOT bukan berasaskan sistem kedudukan nombor, maka kos perlaksanaannya

adalah tinggi. Fokus kajian ini adalah untuk membangunkan/mencipta ZOT yang cekap,

berasaskan satu sistem kedudukan nombor yang mampu mempertingkatkan prestasi asas

algoritma bagi pendarapan dan pengeksponen. Satu daripada sistem kedudukan nombor yang

dicadangkan dalam kajian ini adalah ZOT-Binary yang dapat mengurangkan berat Hamming

secara siginifikan. Seterusnya, cadangan sistem kedudukan nombor lain adalah LZOT-Binary

iaitu satu sistem yang dapat mengurangkan saiz look-up table berbanding dengan ZOT-Binary.

Untuk menilai keberkesanan sistem nombor yang dicadangkan, suatu persekitaran yang dapat

xvii

mengendali nombor yang besar telah dibangunkan terhadap perningkatan operasi pendaraban,

algorithma kuasa dua dan pengeksponenan masing-masing, Operasi yang dipertingkatkan telah

dibandingkan dengan operasi asal. Berdasarkan dapatan kajian ini, ukuran pemberat Hamming

ZOT-Binary dan LZOT-Binary adalah masing-masing 22 dan 23 peratus. Hasil kajian

menunjukkan bahawa algoritma pendarapan klasik berasaskan ZOT-Binary iaitu ZOTB-CLM bagi

nombor dalam julat 128 bit hingga 8 Kbit adalah hampir 20 kali lebih cepat daripada yang asal.

Pada nombor dalam julat yang sama iaitu 128-bit kepada 8-Kbit, algoritma pendarapan yang

dicadangkan, ZOTB-CLM menunjukkan kecepatan 5 hingga 25 kali lebih daripada algoritma

pendarapan Karatsuba-klasik. Dapatan kajian terhadap peningkatan kuasa dua ZOTB-SQ

menunjukkan bahawa algoritma ZOTB-SQ juga signifikan iaitu 41 hingga 53 kali lebih cepat bagi

pengeksponenan nombor dalam julat 128-bit hingga 8-Kbit, berbanding dengan algoritma

pengeksponenan klasik. Dapatan juga menunjukkan bahawa algoritma pengeksponenan

berdasarkan LZOT-Binary adalah lebih kurang 36 kali lebih cepat daripada algoritma

pengeksponenan yang terkenal bagi nombor 128-bit dan berkurangan kepada 9.6 kali bagi nombor

8-Kbit. RSA telah dipilih sebagai kajian kes bagi menunjukkan keberkesanan sistem nombor yang

dicadangkan oleh kajian ini dan operasi peningkatan terhadap kecekapan Teori Nombor

berasaskan Sistem Kriptografi Kunci Awam. Jumlah masa pelaksanaan bagi algoritma RSA yang

beroperasi dengan menggunakan sistem nombor LZOT-Binary adalah lebih kurang 10 hingga 36

kali lebih cepat berbanding algoritma yang asal untuk julat nombor antara 128 bit hingga 8 Kbit.

Sebagai rumusan, dapatan kajian tesis ini menunjukkan bahawa sistem nombor yang dicadangkan

dan algoritma yang dipertingkatkan adalah sangat sesuai untuk digunakan pada Sistem Kriptografi

Kunci Awam yang berasaskan Teori Nombor.

xviii

ZOT-BINARY: A NEW NUMBER SYSTEM AND ITS
APPLICATION ON NUMBER THEORY BASED PUBLIC-KEY

CRYPTOGRAPHY

ABSTRACT

Public-key cryptosystems are widely used in protocols such as key agreement,

authentication, encryption; etc. Number theory based Public-key cryptosystems are one of the

main branches in public-key cryptosystems. The two main operations in number theory based

public-key cryptography are large number multiplication and exponentiation. For RSA encryption

and decryption, ElGamal digital signature and Diffie-Hellman key exchange are some of the well-

known example of these cryptosystems which benefit from these operations. The performance of

these cryptographic primitives is highly dependent on the efficiency of these operations.

Improving the efficiency of multiplication and exponentiation through the use of a recoding

method or utilizing a number system which can decrease the Hamming weight of numbers is very

common. ZOT recoding method is one of the latest recoding methods used to decrease the

Hamming weight of numbers. However, since it is not positional number systems its cost is high.

The focus of this study is to devise an efficient ZOT-base positional number system capable of

improving the performance of multiplication and exponentiation-based algorithms. One of the

proposed positional number systems in this study is ZOT-Binary with the result of a significant

reduction in the Hamming weight. LZOT-Binary is another proposed positional number system

with a reduced size look-up table compared to ZOT-Binary. To evaluate the efficiency of the

proposed number systems and their respective enhanced multiplication, squaring and

xix

exponentiation algorithms, an environment that can handle large numbers was designed. The

enhanced operations were compared to the original ones. Based on the results of this study, the

Hamming weights of ZOT-Binary and LZOT-Binary are 22 and 23 percent respectively. The

results show that classical multiplication algorithm based on ZOT-Binary, ZOTB-CLM, is

approximately 20 times faster than the original, for numbers within the range of 128 bits to 8 Kbits.

For the same 128-bit to 8-Kbit numbers, the proposed multiplication, ZOTB-CLM, is 25 to 5 times

faster than the Karatsuba-classical multiplication algorithm. The results on the enhanced squaring,

ZOTB-SQ, indicate that ZOTB-SQ is also significantly faster, that is 53 to 41 times faster for the

128-bit to 8-Kbit numbers, than the classical squaring algorithm. The findings also show that the

exponentiation algorithm based on LZOT-Binary is about 36 times faster than the popular

exponentiation algorithm for 128-bits numbers and decreases to 9.6 times faster for 8-Kbits

numbers. To show the impact of the proposed number systems and the enhanced operations on the

efficiency of number theory based public-key cryptosystems, RSA was chosen as a case study.

The total execution time for RSA algorithm that runs on LZOT-Binary number system is about is

about 36 to 10 times faster than the original algorithm for numbers ranging from 128 bits to 8

Kbits. In summary, the findings from this research indicate that the proposed number system and

the enhanced algorithms are highly suitable for existing number theory based public-key

cryptosystems.

1

CHAPTER ONE: INTRODUCTION

1.1 General Overview

The steady acceleration of advances in computer science, over the past few decades have

resulted an insatiable human appetite for greater data efficiency and convenience. Thus,

cryptography has become a part of daily life as a branch of computer science that provides security

over data. Secure communications, financial transactions, education, healthcare are just few

examples of the many elements of modern society that are closely in interaction with

cryptography. This tremendous development of information technology has brought up

importance of information security more than ever [1, 2]. According to [1, 2], the main

responsibilities of cryptography in the information security are about achieving the following

goals: Confidentiality, Data integrity, Authentication and Non-repudiation. In order to achieve the

above-mentioned goals, some cryptographic primitives have been designed which can be listed as

follows and detailed out in Figure 1.1.

Unkeyed primitives: These primitives are not based on any keys. Hash functions and

random sequence generators are two main primitives in this class.

Symmetric-key primitives: In this class, a single key called secret key is shared between

two parties. These primitives are used to encrypt a message, authenticate sender and data integrity.

Some of the most well-known symmetric ciphers are: DES [2], AES [3] and RC5 [4].

2

Figure 1.1: A taxonomy of cryptographic primitives [1]

 Asymmetric-key (Public-key) primitives: This primitive is also known as public key,

uses two mathematically related keys: public key and private key. Practically, it is infeasible to

extract one key with just knowing the other key. This specification of public key primitives enables

the users to transmit information over unsecure channels, while the key in the symmetric key

schemes must be transmitted through a secure channel.

3

All four cryptographic goals mentioned before could be obtained using public key

cryptosystems, while the symmetric key schemes do not include the non-repudiation

characteristics. The reason is the existence of the exclusive private key for each user that is not

shared with other users.

Generally, public key cryptosystems are slower than symmetric key cryptosystems [5]. The

operations used in the current defector public key cryptosystems are algebraic operations, while

in symmetric key the operations are logical operations, which perform faster on computer [5].

Consequently, it is preferred that public key cryptosystems be used for applications which deal

with small messages. Digital signature and key exchange schemes are also instances of these

applications. In fact, symmetric and asymmetric cryptosystems are two complement

cryptosystems and hybrids of them can meet all of the cryptographic goals [3].

During the recent decades, number theory and public key cryptosystem have become

intertwined more and more. Diffie and Hellman, introduced the first key exchange scheme in 1967

based on modular exponentiation [6]. Few years later, in 1978 one the most used public key

cryptosystem, called RSA [7], was introduced by Rivest, Shamir and Adleman. The main

operation in RSA cryptosystem is also based on the modular exponentiation. ElGamal key

exchange [8] is another example of public key cryptosystems, which has been developed based on

the modular exponentiation. Consequently, more efforts in public key cryptography have been

dedicated to find algebraic operations or one-way functions that meet the specifications of public

key cryptography [1].

The performance of a public key cryptosystem is strongly related to the operations used in

the cryptosystem. This research focuses on the modular exponentiation and multiplication, which

are the two fundamental operations in the current public key cryptography.

4

Modular exponentiation: This operation is a one-way function used in public key

cryptosystems such as RSA encryption, Diffie-Hellman key exchange and ElGamal digital

signature. Modular exponentiation expression is normally written as follows:

 𝑥 = 𝑎𝑏mod 𝑛, (1-1)

However, finding the inverse of modular exponentiation requires solving the discrete

logarithm equation,

 𝑏 = 𝐼𝑛𝑑𝑎
𝑥 (1-2)

which is a known hard problem [9]. It would take far too long and practically impossible when

the case is, computing an RSA signature with a 1024-bit key that is equivalent of computing

(𝑎1024) modulo of a large number.

The naive approach to calculate the modular exponentiation is just a consecutive

multiplications and divisions [1, 11, 12], which is not an efficient way for large exponent.

𝑎𝑏mod 𝑛 = (𝑎 × 𝑎 × …× 𝑎⏞

𝑏

)mod 𝑛, (1-3)

Binary exponentiation is a more efficient method with fewer operations. This method is

based on the binary representation of the exponent. If:

 𝑏 = ∑ (𝑏𝑖2
𝑖)

𝑘−1

𝑖=0
, (1-4)

where 𝑏𝑖 ∈ {0,1}, then

 𝑎𝑏 = ∏ (a2
𝑖𝑏𝑖)𝑘−1

𝑖=0 . (1-5)

The term 𝑎2
𝑖
can be obtained by squaring the 𝑖th term: 𝑎2

𝑖−1
. The number of operations for

calculating 𝑎𝑏 in naïve method is (𝑏 − 1) multiplications while in binary method, result can be

computed by k times of squaring and
𝑘

2
 times of multiplications (on average). From Equation 1.4,

5

it can be concluded that 𝑘 = 𝑙𝑜𝑔2 𝑏, in other words, the number of operations in binary method is

considerably lower than the naïve method. Since the algorithm of the binary method starts from

the least significant bit upwards to the most significant bit, it is also called Right-to-Left (R2L)

binary method. Further improvement in usage memory could be achieved by starting binary

algorithm from the most significant bit towards to the least significant bit, called Left-to-Right

(L2R) binary method [10].

Multiplication is one of the main operations in exponentiation calculation and it is slower

than squaring by a small factor [22]. Multiplication can be time consuming when used frequently

to multiply large numbers. Another approach to improve the time efficiency of binary

exponentiation algorithms is decreasing the number of multiplication operations. The m-ary

exponentiation [11, 12] works based on this idea. The exponent is segmented into m-bit groups.

All of the values of 𝑎𝑔 for 0 < 𝑔 < 2𝑚 are computed earlier and saved in a table called look-up

table (LUT). Suppose the length of number and the number of segments are k and t, then the

number of multiplication and squaring would be 𝑡 =
𝑘

𝑚
 and k respectively. It should be considered

that there is an optimum value for m based on the value of k, the length of number [13].

Sliding window exponentiation is a modification of m-ary method. In this improved

modification, only the upper half of the look-up table in the range of 2𝑚−1 < 𝑔 < 2𝑚 should be

created. The optimum value of m (window size) against of k (length of number) has been reported

in [13]. Each segment in sliding window starts by 1. Following example shows the difference.

 m-ary method : 𝐴 = 11⏟ 100⏟ 101⏟ 000⏟ 101⏟ 111⏟ 000⏟ 000⏟ 011⏟

 Sliding Window: 𝐴 = 111⏟ 00101⏟ 000101⏟ 111⏟ 0000000 11⏟

There are also some studies on improving exponentiation algorithm for special cases of

exponentiation. For example, a survey on fixed base exponentiation algorithms has been reported

6

in [14, 15]. Exponentiation with known exponent has been also studied by some other scholars

[16].

The above mentioned methods to improve exponentiation computation are mostly focused

on reducing the number of sub-operations of multiplication used in the exponentiation algorithm.

There is another approach that concerns on using fast multiplication and squaring as main sub-

operations in exponentiation. Following, the most important studies related to this approach are

briefly reviewed.

Modular Multiplication: There are two ways to calculate modular multiplication:

multiplying and then reducing, or combining the multiplication and the reduction steps together

as an operation. Therefore, any algorithm, which improves the performance of one or more of

these operations, can be used to enhance the performance of modular multiplication.

The most popular multiplications algorithms for large numbers are classical [11], Karatsuba

[17], Toom-Cook [18, 19] and Shonang-Strassen [20] algorithms; in which the first two

algorithms are more common than the others and the most used algorithms in the range of the

currently used public-key cryptosystems [21].

 Although the complexity of the classical multiplication algorithm,O(n2), is higher than the

complexity of the other algorithms, Xianjin and Longshu [22] have shown that the classical

multiplication algorithm is theoretically efficient for multiplying numbers that are shorter than 255

digits. In addition, it has also been shown that the classical multiplication algorithm is efficient in

terms of memory utilization. The Karatsuba multiplication algorithm has less

complexity, O(n1.58), compared to the classical multiplication algorithm. However, the overhead

of the Karatsuba multiplication algorithm for lower-range numbers (i.e., fewer than 255 digits)

7

has caused researchers [22] to combine both the classical and Karatsuba algorithms to achieve

better overall algorithm efficiency.

Another approach to improve the multiplication algorithms is creating or using alternative

positional number systems [23-25]which are computationally more efficient than non-positional

number systems [26]. For example, by proposing signed-binary numbers [23] instead of the usual

standard binary numbers, some researchers have managed to decrease the number of partial

products in the classical multiplication algorithm and have therefore increased the overall

algorithm efficiency. In positional number systems, an integer of radix-r can be written as follows,

 (𝑎𝑛…𝑎2𝑎1𝑎0)𝑟 = 𝑎𝑛𝑟
𝑛 +⋯+𝑎2𝑟

2+𝑎1𝑟
1 + 𝑎0 (1-6)

If 0 ≤ 𝑎𝑖 < 𝑟 ; then this representation is unique. We call ai as a digit, and its related set,

such as 𝑆 = {0,1, … , 𝑟 − 1} as the digit set. Decimal numbers with 𝑟 = 10 and 𝑎𝑖𝜖 𝑆 =

 {0,1, … ,9}, as well as the binary numbers [11] with 𝑟 = 2 and 𝑎𝑖𝜖 𝑆 = {0,1}, are the two most

well-known positional numbering systems. In this work, we focus on the binary positional number

systems.

 There is another type of binary numbers known as Signed Binary (SB) representation with

𝑆 = {0, ±1}. The Booth [23], higher-radix Booth [27, 28], Non Adjacent-Form NAF [29] and

Mutual Opposite Form MOF [24] are examples of SB number systems that have been invented to

reduce the number of sub-operations in arithmetic calculations such as multiplication [23, 30],

exponentiation [11, 12] and scalar multiplication [24, 29] computations. Multi-Based Number

System (MBNS) is another group of number systems [31], which uses more than one base. The

Double-Base Number System (DBNS) [25] is an example of a number system from this group.

The numbers in DBNS are represented as follows,

 ∑𝑐𝑖2
𝑎𝑖 3𝑏𝑖 (1-7)

8

where 𝑐𝑖𝜖 {0,1} and a𝑖 , 𝑏𝑖 𝜖 𝑍
+.

Improving the efficiency of multiplication algorithms by using LUT (Look-up tables) is

another method that researchers try to benefit from. For example, a group of work based on the

binary numbers is the sliding window method, namely, wNAF [32, 33], wMOF [24] and wmbNAF

[34-36]. In summary, by using efficient numbers recoding, both number of calculations and

efficiency of each single calculation will be improved. The study of number systems and exploring

this area to enhance or create new concepts could be remarkable for researchers.

1.2 Research Motivation

In the recent years, a number representation called ZOT [37, 38] which derived from the

binary number system has been proposed and researchers showed that the performance of

Karatsuba multiplication algorithm can be enhanced by using this recoding. This improvement is

gained from the low Hamming weight property of the ZOT representation.

 As mentioned earlier reducing the Hamming weight of the exponent, reduces the number of

sub-operations in an exponentiation calculation. In addition, the lower Hamming weight of

numbers in a multiplication, the less number of sub-operations in multiplication calculation. Thus,

a number representation with lower Hamming weight can benefit exponentiation calculation from

these two mentioned aspects.

Since ZOT representation is not a positional number system therefore, the overhead for

applying it in a multiplication is relatively high. Considering this point leads to this work, that is

to create a new number system based on ZOT representation. This number system should keep the

advantages of ZOT recoding plus advantages of positional number systems in calculations.

9

1.3 Problem Statement

Modular exponentiation is one of the main operations used in number theory based

cryptosystems which is a time consuming calculation by nature. Manipulating and recoding the

exponent is a common method used by researchers to improve the efficiency of modular

exponentiation. Using faster multiplication and squaring algorithms is also another approach to

improve the efficiency of this operation. Recoding numbers or changing the representation of

numbers is the most common method used to make multiplication and squaring more efficient. A

recording method of binary numbers called ZOT is one of the latest efforts to improve the

multiplication for public-key cryptosystems via decreasing the Hamming weight of the numbers.

Since ZOT representation is not a positional number system, it cannot be easily generalized and

used for the other multiplication algorithms or squaring and exponentiation calculations, the cost

of such calculations would be relatively high anyway. Therefore, the aims of this research are first,

to create positional number systems based on ZOT representation to apply in multiplication and

squaring algorithms; and second, to use the new number systems to recode an exponent of an

exponentiation operation to achieve a lower Hamming weight exponent and consequently less

calculation, therewith, improving the efficiency of number theory based public-key cryptosystems

such as RSA.

Research Questions: The following research questions are retrieved from problem

statement:

1. Can the number recoding method called ZOT which efficiently decrease the HW of

numbers be generalized to an efficient positional number system for calculations such as

multiplication, squaring and exponentiation?

10

2. How efficient would be the modular operations such as multiplication, squaring and

exponentiation after being enhanced by the proposed positional number systems in range

of number theory based public-key cryptosystems?

3. How efficient would be the number theory based public-key cryptosystems after

applying the new positional number systems and the new enhanced operations?

1.4 Research Scope

Authentication, Key agreement and key transport are some of the popular protocols in

information security that have been developed base on the public key primitives. Many operations

in modular arithmetic have been used in public key cryptosystems such as RSA, Diffie-Hellman

(D-H) key exchange and ElGamal digital signature.

Figure 1.2: Scope of research

This study focuses on some of these operations such as multiplication, squaring and

exponentiation. Since the concentration of this research is on the number theory based

cryptosystems, the performance of these operations in range of public-key cryptosystems has been

11

investigated. The scope of this study will be limited to methods of improving the running time of

these operations (see Figure 1.2). Since the classical division does not depend on the Hamming

weight or other special shape of numbers [39], then it is not in the scope of this research.

1.5 Research Objectives

The overall goal of this research is to promote ZOT recoding method for calculations such

as multiplication, squaring and exponentiation in range of number theory based public-key

cryptosystem. The main objectives of this thesis are listed as below:

 To define number systems based on ZOT recoding and explore the potential of the

proposed number systems on improving the time efficiency of the number theory based

public-key cryptosystems.

 To enhance multiplication, squaring and exponentiation algorithms, the highly used

operations in number theory based public-key cryptosystems, based on the proposed

number systems.

 To apply the proposed number systems and the enhanced computational algorithms on

RSA (as a case study) to improve its time efficiency as a representative of number theory

based public-key cryptosystems which use multiplication, squaring and exponentiation.

1.6 Research Methodology

To meet the three research objectives mentioned in Section 1.5, the following method,

experiments and tools have been set up.

The review of modular arithmetic, which has a crucial role in public key cryptosystems

showed us that designing an efficient number system is the most common way to improve the

12

efficiency of the multiplication, squaring and exponentiation algorithms. Hence, in the first step,

few positional number systems based on ZOT recoding were defined. The literature review

indicates this recoding method has a good potential to be a number system and improve the

efficiency of multiplication. To enhance the currently used multiplication, squaring and

exponentiation algorithms in number theory based public-key cryptosystems the proposed number

systems were used and the enhanced operations were applied on RSA cryptosystem. This system

is one of the well-known cryptosystems in number theory based cryptosystems, which is used as

standard in many applications. In addition, since the operations used in RSA are as same as

operations used in other cryptosystems such as ElGamal and Diffie-Hellman, it can demonstrate

the impact of the proposed number systems and enhanced operations on efficiency of number

theory based cryptosystems. To evaluate and analyze the proposed number systems and operations

the following experiments have been set up. The tools and conditions of experiments are also

explained herewith.

1. Analyzing the efficiency of the proposed number system to improve the efficiency of

the proposed enhanced operations: The first metric used for measuring the efficiency of the

proposed number systems is Hamming weight. The Hamming weight of the proposed number

systems is calculated in two ways; mathematically and experimentally. The lower Hamming

weight is, the more potential there is for efficiency. The second metric is the running time of

converting numbers from binary to the proposed number systems. It would be contributory to

measure and compare the cost of conversion of the proposed number systems to binary and the

running time of the proposed operations to determine which one of the number systems is the more

efficient in enhancing the operations of multiplication, squaring and exponentiation.

2. Analyzing the efficiency of the enhanced operations: Three metrics have been

considered to evaluate the efficiency of these operations. The first one is to determine the number

of non-zero partial products of the algorithms that is directly related to the HW of the original

13

numbers and is a more reliable metric when the main sub-operations are partial products. The

second metric is the running time of the proposed operations. To investigate the more efficient

number system among the proposed number systems for improving the efficiency of the enhanced

operations, the running time of the enhanced operations after applying the proposed number

systems is measured. Since the multiplication and squaring operations are two main operations in

exponentiation, then identifying the more efficient multiplication and squaring helps to define the

more efficient exponentiation as well. Finding the more efficient exponentiation guides to know

how to maximize the improvement of the efficiency of RSA by choosing the more efficient sub-

operations. The last metric is measuring the memory for the LUTs required for multiplication,

squaring and exponentiation. Depending on the application, this metric helps us choose the

appropriate number system for enhancing the operations.

3. Analyzing the efficiency of RSA after applying the enhanced operations: This

cryptosystem is one of the well-known cryptosystems in number theory based

cryptosystems, and is used as standard in many applications. In addition, since the operations used

in RSA are the same operations as used in other cryptosystems such as ElGamal and Diffie-

Hellman, it can readily demonstrate the impact of the proposed number systems and its enhanced

operations on efficiency of number theory based cryptosystems. The main metric to measure the

efficiency of RSA after applying the enhanced operations is counting the number of operations,

especially the number of partial products. The second metric is running time which helps us

evaluate the overall efficiency of RSA, experimentally. The last metric used to analyze is the

amount of memory for saving the required LUTs.

Tools and Conditions:

Software: In order to collect data and analyze the proposed number systems and operations,

a computer software supporting large number calculations has been developed. This software

14

includes all the proposed algorithms and operations plus the original ones. It also consists of the

required functions to measure the different metrics that have been considered for evaluation of the

proposed algorithms.

Hardware: In order to be more confident with the experimental results, all experiments have

been conducted using two PCs. The results are then averaged.

Data sampling: The number of samples has been calculated and the data have been

generated randomly within the range of public-key cryptography.

1.7 Research Contributions

The significant contributions of this research are as follows:

 New positional number systems based on ZOT recoding:

o CBONS, LCBONS, ZOT-Binary, LZOT-Binary.

 Enhancing classical multiplication, squaring and Left-to-right exponentiation algorithms

for large numbers in range of number theory based public-key cryptosystems:

o ZOTB-CLM, LZOTB-CLM, LZOTB-SQ, LZOTB-L2REXP-E, LZOTB-

L2REXP-M, LZOTB-L2REXP-EM,

 Applying the new number systems and enhanced operations on RSA:

o LZOTB-RSA

1.8 Thesis Outline

This thesis has been organized into six chapters. The first chapter provides an

overview of the research content. Chapter 2 continues with the related works on the large

number multiplication and exponentiation as the most frequently used operations in number theory

based cryptosystems. Chapter 3 proposes few new number systems based on ZOT recoding

method, such as ZOT-Binary, LZOT-Binary, and enhances multiplication and exponentiation

15

algorithms in range of number theory based public-key cryptosystems by using the proposed

number systems. Details on the implementation of the conversion algorithms, such as converting

binary numbers to ZOT-Binary numbers, and all the enhanced algorithms are presented in Chapter

4. Meanwhile, the results of this research are presented in the Chapter 5. Chapter 5 provides the

results and discussion; and finally Chapter 6 concludes.

16

CHAPTER TWO: LITERATURE REVIEW

The history of human civilization shows that the numbering system has always been an

important issue in human daily life. The huge number of applications related to numbers and

arithmetic operations implies the signification of the numbering system as an essential necessity

more than in the past.

Followed by the emergence of numbers, arithmetic operations were gradually invented and

developed. The development between number systems and arithmetic operations has been

bilateral. Based on this relevancy, researchers have improved arithmetic operations by inventing

alternative numbering systems.

The main goal of this research is to increase the efficiency of large integers’ multiplication

and exponentiation which have many important applications, such as cryptography and other

scientific calculations. To achieve this goal, modification of known multiplication and

exponentiation algorithms running on top of a new numbering system has been identified as the

approach.

This chapter continues with the general definitions used in this work. Sections 2.3 reviews

the works related to the positional numbering system specially the related works in radix 2. We

describe the integer arithmetic algorithms used in this research in Section 2.4. Section 2.5 is

dedicated to the number theory based public-key cryptosystems and RSA cryptosystem. A

summary of this chapter is presented in Section 2.6.

17

2.1 Definitions

In this section, the definitions frequently used in this work such as Hamming weight and

complexity are explained. The other definitions will be defined in their related sections.

2.1.1 Hamming Weight

The Hamming weight (HW) of a string u (or a vector 𝑢 ∈ 𝐹𝑛) is the number of non-zero

symbols (or components 𝑢𝑖 ≠ 0) [40]. For a binary number or string of bits, Hamming weight is

the number of 1's in the binary number or string. For example if 𝐴 = 1000001110,

then HW(A) = 4. For a n-bit random binary number, the Hamming weight is always supposed
𝑛

2
.

In some work the percentage of Hamming weigh to the length of number is used.

2.1.2 Computational Complexity

An algorithm is a process to solve a class of mathematical problems on a computer. The

complexity of an algorithm can be defined as the cost (usually the running time, storage, and any

other relevant parameter) of solving the problems by the method specified in algorithm. The cost

of solving some problems is very high therefore, researchers try to discover a faster way (a faster

algorithm) to do them. Measuring the computational complexity of algorithms helps us to compare

the algorithms.

There are five standard asymptotic notations that are used to show and compare the growth

or complexities of algorithms. These notations are big-O (O) notation, little-o (o) notation, big

omega (Ω) notation, little omega (ω) notation and big theta () notation.

http://en.wikipedia.org/wiki/String_(computer_science)

18

2.2 Number Systems

Although the origins of numbers are not very clear, it is still safe to say that the

advancements of civilizations have revolved around numbers. In our daily and scholarly lives, the

role of numbering systems is getting more significant and crucial than in the past. Early

civilizations in 4000 B.C. utilized numbers just for counting and comparing. There was no

possibility of calculation with primal numeral systems. Trading, seasonal-agriculture, and

astronomy were main reasons to motivate the ancient people in Egypt and Greece to invent the

numbering system with computational capabilities.

One of the most significant changes in the history of numbering systems started with

positional number systems. The first achievement of positional number systems was to represent

the large numbers easily; dealing with large numbers was one of the obstacles of non-positional

number systems. Doing daily and complicated computations without positional number systems

is impossible.

In the next sections, positional number systems are defined and the most popular of them

such as decimal and binary are explained. The focus in this research would be on the binary

positional number systems which have a significant role in computer algebra, computer

architecture and some arithmetic operations.

2.2.1 Positional Number Systems

In Positional Number Systems (PNR), an integer of radix-r can be represented as follows:

(𝑎𝑛…𝑎2𝑎1𝑎0)𝑟 = 𝑎𝑛𝑟

𝑛 +⋯+𝑎2𝑟
2+𝑎1𝑟

1 + 𝑎0 =∑ 𝑎𝑖
𝑛

𝑖=0
𝑟𝑖

(2-1)

19

If ai ∈ 𝑆 = {0, … , 𝑟 − 1} ; then this representation is unique [41]. 𝑎𝑖 and 𝑆 are called as

digit, and digit set respectively. And the notations 𝑎𝑛 and 𝑎0 are also called the Most Significant

Digit MSD and the Least Significant Digit LSD correspondingly.

 Two most well-known positional number systems [11] are:

 Decimal numbers: 𝑆 = {0, … ,9} and 𝑟 = 10

 Binary numbers: 𝑆 = {0,1} and 𝑟 = 2

Equation (2-1) only represents some of PNRs called Fixed-base number system (FBNS).

Each term, 𝑎𝑖𝑟
𝑖, in the summation in this equation consists of two parts; digit 𝑎𝑖 and 𝑤𝑖 = 𝑟

𝑖

which is called weight or place value of 𝑎𝑖. The weight of each digit is obtained by multiplying

the weight of previous digit by base;

 𝑤𝑖+1 = 𝑟 × 𝑤𝑖 (2-2)

The distinction between FBNS and mixed-based number system (MBNS) is the value of r in

Equation (2-2). If 𝑟 be constant like in Equation (2-1), we say it is a FBNS, while if this value is

a variable we call it a MBNS. Equation (2-3) shows this property.

 𝑤𝑖+1 = 𝑟𝑖 × 𝑤𝑖 (2-3)

where there are integers i and j such that 𝑟𝑖 ≠ 𝑟𝑗.

If we use the representation of Equation (2-4) to show a number by its digits and their

corresponding weights

𝐴 = {

𝑑𝑖𝑔𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡

} = {
𝑎𝑛
𝑤𝑛

𝑎𝑛−1
𝑤𝑛−1

, … ,
𝑎0
𝑤0
}.

(2-4)

then FBNSs can also be represented by

20

{
𝑑𝑖𝑔𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡

} = {
𝑎𝑛
𝑟𝑤𝑛−1

𝑎𝑛−1
𝑟𝑤𝑛−2

, … ,
𝑎0

(𝑤0 = 1)
}’

(2-5)

and MBNS can be written as below:

{
𝑑𝑖𝑔𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡

} = {
𝑎𝑛

𝑟𝑛−1𝑤𝑛−1

𝑎𝑛−1
𝑟𝑛−2𝑤𝑛−2

, … ,
𝑎0

(𝑤0 = 1)
}.

(2-6)

Knuth [11] has been using the following representation for positional number systems.

 (𝑎𝑛…𝑎2𝑎1𝑎0){𝑟𝑛,𝑟𝑛−1,…,1} = {
𝑑𝑖𝑔𝑖𝑡𝑠
𝑟𝑎𝑑𝑖𝑐𝑒𝑠

} = {
𝑎𝑛
𝑟𝑛

𝑎𝑛−1
𝑟𝑛−1

, … ,
𝑎0

(𝑟0 = 1)
}

(2-7)

where the weight of digit can be obtain by Equation (2-3). There are also some non-standard

number systems with non-regular bases such as negative bases [42], fractional bases, real bases

[43, 44], complex bases[43] and quadratic bases [42].

2.2.1.1 Binary Number System

Although some researchers believe that the binary number has been invented initially in the

fifth century B.C by Pingala [45], Gottfried Leibniz is known as a mathematician who documented

the modern system of binary numbers in 1703 [46, 47]. The lengthy representation of binary

numbers was a large barrier to their daily utilization, but finally it has become a fundamental part

of human life with the introduction of computer. In 1854 British mathematician George Boole

introduced a new algebra based upon this number representation called Boolean algebra

[48]. Computer science and digital systems have been developed based upon this algebra.

Boolean algebra also plays a significant role in other topics such as number theory, statistics and

set theory.

We showed earlier in Section 2.2.1, binary number system is a positional number system

with digit set 𝑆 = {0,1} and base 𝑟 = 2. Representation of numbers in this base is more lengthy

compare to decimal numbers. For example:

21

100000010 = 111101000010010000002.

Each digit in binary system is called bit and the length of a number A in bits, given by the

formula

 𝐿(𝐴) = 𝐿(𝐴, 2) = ⌊log2 𝐴⌋ + 1. (2-8)

2.2.1.2 Signed-Binary Number System

Efficiency of some of the algorithms in number theory such as multiplication and

exponentiation depends on the Hamming weight of the binary numbers. To decrease the Hamming

weight of binary numbers, researchers proposed new number systems derived from binary number

system [23]. One of these number systems is called Signed-binary (SB) system which started by

using ‘-1’ in the representation of a binary number.

The idea behind of these kinds of number systems comes from the following series expansion

in number theory;

(1…1⏞
𝑛+1

)
2

=∑2𝑖
𝑛

𝑖=0

= 2𝑛+1 − 1 = (10…0⏞
𝑛

1̅)
2

, (2-9)

where 1̅ = (−1).

Hamming weight of each n-bit sequence of symbol ‘1’ decreases from n to 2. For example:

(1111111)2 = (10000001̅)2,

where

𝐻𝑊(1111111)2 = 7 and 𝐻𝑊(10000001̅)2 = 2.

The digit set and base in signed-binary number systems are defined as below

22

 𝑆 = {0,1, −1} and 𝑟 = 2. (2-10)

The representation by signed-binary is not unique. Booth [23], NAF [29] and MOF [24]

representations are the most known methods of this kind of representations but with different

Hamming weight.

Booth algorithm: Booth [23] in 1951 introduced an elegant algorithm to speed up the

multiplication algorithm on digital processors. His method is known as the origin of the signed-

binary representation of a number. He modified the common method of add and shift in the

multiplication algorithm by a method that scanned the multiplicand and determined to decide to

do addition, subtraction or nothing then shifted the result [49]. Although he did not directly

represent the numbers in signed-binary number, the hidden idea in his method was the signed-

binary idea.

Algorithm (2.1) describes the process of this Booth recoding. Let 𝐴 = (𝑎𝑛−1, … 𝑎0) and 𝐵 =

(𝑏𝑛−1, … 𝑏0). Let 𝑎−1 = 0 . We scan A from right to left for finding two adjacent bits 𝑎𝑖𝑎𝑖−1 in

the form of “01” or “10”. If 𝑎𝑖𝑎𝑖−1 = "01", then 𝑏𝑖 is set to 1. Where 𝑎𝑖𝑎𝑖−1 = "10", then 𝑏𝑖 is

set to ‘-1’. The rest of 𝑏𝑖’s will be remain zero.

 Algorithm (2.1) : Booth Recoding

Input : 𝐴 = (𝑎𝑛−1, … 𝑎0) is binary number

Output : 𝐵 = (𝐵𝑛−1, … 𝑏0) is signed-binary number

1. For 𝑖 = −1 up to 𝑛 − 1 do

// Scan A from right to left

// Assume 𝑎−1 = 0

2. a. If 𝑎𝑖 = 0 and 𝑎𝑖−1 = 1 then 𝑏𝑖 = 1

b. If 𝑎𝑖 = 1 and 𝑎𝑖−1 = 0 then 𝑏𝑖 = −1

// Check 𝑎𝑖𝑎𝑖−1 for” 01” or

// “10”. Set 𝑏𝑖

3. Return B

23

 Example as shown by Equation (2-11) shows how Booth algorithm works.

𝐴 = 111⏞

1001̅

000 01111⏞
10001̅

 → 𝐵 = 1001̅00010001̅ (2-11)

In the above example, the number of non-zero digits decreased from HW(A) = 7 to HW(B)

= 4. But, this does not always happen. Specially, when we have pairs of “01” or “10’. The

following example makes this issue more clear.

 𝐴 = 10101 ∶ 𝐻𝑊(𝐴) = 3 → 𝐵 = 11̅11̅11̅ ∶ 𝐻𝑊(𝐵) = 7 (2-12)

Since in Booth algorithm two bits are scanned, it sometimes is called Booth 2. Researchers

proposed Booth 3, Booth 4 and higher [27, 28, 50] to reduce the Hamming weight of binary

numbers which shown in Example (2-12).

Non-Adjacent Form Recoding (NAF): The Non-Adjacent Form (NAF) recoding was

proposed by Reitwiesner in 1960 [29]. As Algorithm (2.2) shows the NAF representation of a

number which can be obtained by scanning the integer from right to left.

Algorithm (2.2) : NAF Recoding

Input : 𝐴 = (𝑎𝑛−1, … 𝑎0) is binary number

Output : 𝐵 = (𝑏𝑛, … 𝑏0) is signed-binary number (NAF)

1. While 𝐴 > 0

2. For 𝑖 = 0 up to 𝑛 − 1 do // Read 𝑎𝑖 from right to left

3. a. If 𝑎 is odd then do

i. 𝑏𝑖 = 2 − (𝐴 𝑚𝑜𝑑 4)

ii. 𝐴 = 𝐴 − 𝑎𝑖

b. Else

i. 𝑏𝑖 = 0

ii. 𝐴 =
𝐴

2

iii. 𝑖 = 𝑖 + 1

4. Return B

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4021106

24

The following example shows a binary number and its NAF representation:

 NAF representation assures that between two non-zero digit, there is at least a zero. The

problem of Booth algorithm in its worst case has been solved in this algorithm.

Solinas [33] generalized the NAF recoding which can be used to improve the performance

of EC computations, while a Left-to-right NAF recoding algorithm was proposed by Joye and

Sung-Ming [51]. Darrel et al. [52] proved that every integer can be represented by NAF recoding

uniquely. Morain et.al. [53] proved the average of Hamming weight of a number after NAF

recoding would be minimal. Length of integer A, then 𝐻𝑊(𝐴) ≅
𝑛

3
.

Mutual Opposite Form (MOF): Algorithm NAF (see Algorithm (2.2)) shows that the

recoding method in NAF is done right to left, while left-to-right methods are more preferred for

calculating exponentiation and EC multiplication [54]. The first left-to-right recoding algorithm

called Mutual Opposite Form (MOF) introduced by Okeya et al. [24]. This method is bidirectional

and its inventors showed that MOF representation of a number is unique [24]. The average

Hamming weight of a number in MOF representation is about 50% (as same as of the binary

representation) [24].

 Although the Hamming weight of a MOF recoded number is greater than NAF recoded,

researchers [24] proved that for applications such as EC multiplication, the total cost of MOF

recoding and EC multiplication would be reasonable rather than of the NAF representation [29].

 𝐴 = 101111⏞

10001̅

0000 01111⏞
10001̅

 → 𝑁𝐴𝐹(𝐴)
= 1010001̅000010001̅

(2-13)

	TZ_20Jan_Final_first pages
	Thesis_17Jan2016_Final_second part

