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ZOT-BINARY: SISTEM NOMBOR BAHARU DAN APLIKASINYA 
PADA SISTEM KRIPTOGRAFI KUNCI AWAM YANG 

BERASASKAN TEORI NOMBOR  

 

ABSTRAK 

 

Kriptosistem Kunci Awam telah digunakan secara meluas dalam protokol seperti 

pengurusan kekunci, pengesahan, penyulitan kekunci, dan lain-lain.  Teori Nombor yang 

berasaskan Kriptosistem Kunci Awam adalah salah satu cabang utama dalam sistem Kriptografi 

Kunci Awam. Dua operasi utama dalam Teori Nombor berasaskan Kriptografi Kunci Awam 

adalah pendaraban dan nombor besar. Antara contoh kriptosistem yang terkenal yang mendapat 

manfaat daripada operasi ini ialah enkripsi dan dekripsi RSA, tandatangan digital EIGamal, dan 

pertukaran kunci Diffie-Hellman. Prestasi kriptografi primitif ini sangat bergantung pada 

kecekapan kedua-dua operasi tersebut. Adalah menjadi sesuatu kebiasaan untuk melakukan 

penambahbaikan terhadap kecekapan pendaraban dan pengeksponen melalui penggunaan kaedah 

pengekodan semula atau penggunaan sistem nombor bagi mengurangkan ukuran berat Hamming. 

ZOT adalah kaedah pengekodan semula yang terkini bagi mengurangkan ukuran berat Hamming. 

Tetapi, oleh kerana ZOT bukan berasaskan sistem kedudukan nombor, maka kos perlaksanaannya 

adalah tinggi. Fokus kajian ini adalah untuk membangunkan/mencipta ZOT yang cekap, 

berasaskan satu sistem kedudukan nombor yang mampu mempertingkatkan prestasi  asas 

algoritma bagi pendarapan dan pengeksponen. Satu daripada sistem kedudukan nombor yang 

dicadangkan dalam kajian ini adalah ZOT-Binary yang dapat mengurangkan berat Hamming 

secara siginifikan.  Seterusnya, cadangan sistem kedudukan nombor lain adalah LZOT-Binary 

iaitu satu sistem yang dapat mengurangkan saiz look-up table berbanding dengan ZOT-Binary. 

Untuk menilai keberkesanan sistem nombor yang dicadangkan, suatu persekitaran yang dapat 



xvii 
 

mengendali nombor yang besar telah dibangunkan terhadap perningkatan operasi  pendaraban, 

algorithma kuasa dua dan pengeksponenan masing-masing, Operasi yang dipertingkatkan telah 

dibandingkan dengan operasi asal. Berdasarkan dapatan kajian ini, ukuran pemberat Hamming 

ZOT-Binary dan  LZOT-Binary adalah  masing-masing 22 dan 23 peratus. Hasil kajian 

menunjukkan bahawa algoritma pendarapan klasik berasaskan ZOT-Binary iaitu ZOTB-CLM  bagi 

nombor dalam julat 128 bit hingga 8 Kbit  adalah hampir 20 kali lebih cepat daripada yang asal. 

Pada nombor dalam julat yang sama iaitu 128-bit kepada 8-Kbit, algoritma pendarapan yang 

dicadangkan, ZOTB-CLM menunjukkan kecepatan 5 hingga 25 kali lebih daripada algoritma 

pendarapan Karatsuba-klasik.  Dapatan kajian terhadap peningkatan kuasa dua ZOTB-SQ 

menunjukkan bahawa algoritma ZOTB-SQ juga signifikan iaitu 41 hingga 53 kali lebih cepat bagi 

pengeksponenan nombor dalam julat 128-bit hingga 8-Kbit, berbanding dengan algoritma 

pengeksponenan klasik. Dapatan juga menunjukkan bahawa algoritma pengeksponenan 

berdasarkan LZOT-Binary adalah lebih kurang 36 kali lebih cepat daripada algoritma 

pengeksponenan yang terkenal bagi nombor 128-bit dan berkurangan kepada 9.6 kali bagi nombor 

8-Kbit. RSA telah dipilih sebagai kajian kes bagi  menunjukkan keberkesanan sistem nombor yang 

dicadangkan oleh kajian ini dan operasi peningkatan terhadap kecekapan Teori Nombor 

berasaskan Sistem Kriptografi  Kunci Awam. Jumlah masa pelaksanaan bagi algoritma RSA yang 

beroperasi dengan menggunakan sistem nombor LZOT-Binary  adalah lebih kurang 10 hingga 36 

kali lebih cepat berbanding algoritma yang asal untuk julat nombor antara 128 bit hingga 8 Kbit. 

Sebagai rumusan, dapatan kajian tesis ini menunjukkan bahawa sistem nombor yang dicadangkan 

dan algoritma yang dipertingkatkan adalah sangat sesuai untuk digunakan pada Sistem Kriptografi  

Kunci Awam yang berasaskan Teori Nombor.  
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ZOT-BINARY: A NEW NUMBER SYSTEM AND ITS 
APPLICATION ON NUMBER THEORY BASED PUBLIC-KEY 

CRYPTOGRAPHY 

 

ABSTRACT 

 

Public-key cryptosystems are widely used in protocols such as key agreement, 

authentication, encryption; etc. Number theory based Public-key cryptosystems are one of the 

main branches in public-key cryptosystems. The two main operations in number theory based 

public-key cryptography are large number multiplication and exponentiation. For RSA encryption 

and decryption, ElGamal digital signature and Diffie-Hellman key exchange are some of the well-

known example of these cryptosystems which benefit from these operations. The performance of 

these cryptographic primitives is highly dependent on the efficiency of these operations. 

Improving the efficiency of multiplication and exponentiation through the use of a recoding 

method or utilizing a number system which can decrease the Hamming weight of numbers is very 

common. ZOT recoding method is one of the latest recoding methods used to decrease the 

Hamming weight of numbers. However, since it is not positional number systems its cost is high. 

The focus of this study is to devise an efficient ZOT-base positional number system capable of 

improving the performance of multiplication and exponentiation-based algorithms. One of the 

proposed positional number systems in this study is ZOT-Binary with the result of a significant 

reduction in the Hamming weight. LZOT-Binary is another proposed positional number system 

with a reduced size look-up table compared to ZOT-Binary. To evaluate the efficiency of the 

proposed number systems and their respective enhanced multiplication, squaring and 
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exponentiation algorithms, an environment that can handle large numbers was designed. The 

enhanced operations were compared to the original ones. Based on the results of this study, the 

Hamming weights of ZOT-Binary and LZOT-Binary are 22 and 23 percent respectively. The 

results show that classical multiplication algorithm based on ZOT-Binary, ZOTB-CLM, is 

approximately 20 times faster than the original, for numbers within the range of 128 bits to 8 Kbits. 

For the same 128-bit to 8-Kbit numbers, the proposed multiplication, ZOTB-CLM, is 25 to 5 times 

faster than the Karatsuba-classical multiplication algorithm. The results on the enhanced squaring, 

ZOTB-SQ, indicate that ZOTB-SQ is also significantly faster, that is 53 to 41 times faster for the 

128-bit to 8-Kbit numbers, than the classical squaring algorithm. The findings also show that the 

exponentiation algorithm based on LZOT-Binary is about 36 times faster than the popular 

exponentiation algorithm for 128-bits numbers and decreases to 9.6 times faster for 8-Kbits 

numbers. To show the impact of the proposed number systems and the enhanced operations on the 

efficiency of number theory based public-key cryptosystems, RSA was chosen as a case study. 

The total execution time for RSA algorithm that runs on LZOT-Binary number system is about is 

about 36 to 10 times faster than the original algorithm for numbers ranging from 128 bits to 8 

Kbits. In summary, the findings from this research indicate that the proposed number system and 

the enhanced algorithms are highly suitable for existing number theory based public-key 

cryptosystems.  
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CHAPTER ONE:   INTRODUCTION 

 

1.1 General Overview 

The steady acceleration of advances in computer science, over the past few decades have 

resulted an insatiable human appetite for greater data efficiency and convenience. Thus, 

cryptography has become a part of daily life as a branch of computer science that provides security 

over data. Secure communications, financial transactions, education, healthcare are just few 

examples of the many elements of modern society that are closely in interaction with 

cryptography. This tremendous development of information technology has brought up 

importance of information security more than ever [1, 2]. According to [1, 2], the main 

responsibilities of cryptography in the information security are about achieving the following 

goals: Confidentiality, Data integrity, Authentication and Non-repudiation. In order to achieve the 

above-mentioned goals, some cryptographic primitives have been designed which can be listed as 

follows and detailed out in Figure 1.1. 

Unkeyed primitives: These primitives are not based on any keys. Hash functions and 

random sequence generators are two main primitives in this class. 

Symmetric-key primitives: In this class, a single key called secret key is shared between 

two parties.  These primitives are used to encrypt a message, authenticate sender and data integrity. 

Some of the most well-known symmetric ciphers are: DES [2], AES [3] and RC5 [4]. 
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Figure 1.1: A taxonomy of cryptographic primitives [1] 

 

  Asymmetric-key (Public-key) primitives: This primitive is also known as public key, 

uses two mathematically related keys: public key and private key. Practically, it is infeasible to 

extract one key with just knowing the other key. This specification of public key primitives enables 

the users to transmit information over unsecure channels, while the key in the symmetric key 

schemes must be transmitted through a secure channel. 
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All four cryptographic goals mentioned before could be obtained using public key 

cryptosystems, while the symmetric key schemes do not include the non-repudiation 

characteristics. The reason is the existence of the exclusive private key for each user that is not 

shared with other users.    

Generally, public key cryptosystems are slower than symmetric key cryptosystems [5]. The 

operations used in the current defector public key cryptosystems are algebraic operations, while 

in symmetric key the operations are logical operations, which perform faster on computer [5].  

Consequently, it is preferred that public key cryptosystems be used for applications which deal 

with small messages. Digital signature and key exchange schemes are also instances of these 

applications. In fact, symmetric and asymmetric cryptosystems are two complement 

cryptosystems and hybrids of them can meet all of the cryptographic goals [3]. 

During the recent decades, number theory and public key cryptosystem have become 

intertwined more and more. Diffie and Hellman, introduced the first key exchange scheme in 1967 

based on modular exponentiation [6].  Few years later, in 1978 one the most used public key 

cryptosystem, called RSA [7], was introduced by Rivest, Shamir and Adleman. The main 

operation in RSA cryptosystem is also based on the modular exponentiation.  ElGamal key 

exchange [8] is another example of public key cryptosystems, which has been developed based on 

the modular exponentiation. Consequently, more efforts in public key cryptography have been 

dedicated to find algebraic operations or one-way functions that meet the specifications of public 

key cryptography [1].   

The performance of a public key cryptosystem is strongly related to the operations used in 

the cryptosystem. This research focuses on the modular exponentiation and multiplication, which 

are the two fundamental operations in the current public key cryptography.  
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Modular exponentiation: This operation is a one-way function used in public key 

cryptosystems such as RSA encryption, Diffie-Hellman key exchange and ElGamal digital 

signature.  Modular exponentiation expression is normally written as follows: 

 𝑥 = 𝑎𝑏mod 𝑛, (1-1) 

However, finding the inverse of modular exponentiation requires solving the discrete 

logarithm equation, 

 𝑏 =  𝐼𝑛𝑑𝑎
𝑥 (1-2) 

which is a known hard problem  [9]. It would take far too long and practically impossible when 

the case is, computing an RSA signature with a 1024-bit key that is equivalent of computing 

(𝑎1024)  modulo of a large number. 

The naive approach to calculate the modular exponentiation is just a consecutive 

multiplications and divisions [1, 11, 12], which is not an efficient way for large exponent. 

 
𝑎𝑏mod 𝑛 = (𝑎 × 𝑎 × …× 𝑎⏞        

𝑏

)mod 𝑛, (1-3) 

Binary exponentiation is a more efficient method with fewer operations. This method is 

based on the binary representation of the exponent. If:  

 𝑏 = ∑ (𝑏𝑖2
𝑖)

𝑘−1

𝑖=0
, (1-4) 

where  𝑏𝑖 ∈ {0,1}, then 

 𝑎𝑏 = ∏ (a2
𝑖𝑏𝑖)𝑘−1

𝑖=0 . (1-5) 

The term 𝑎2
𝑖
can be obtained by squaring the 𝑖th term:  𝑎2

𝑖−1
. The number of operations for 

calculating 𝑎𝑏 in naïve method is (𝑏 − 1) multiplications while in binary method, result can be 

computed by k times of squaring and 
𝑘

2
 times of multiplications (on average). From Equation 1.4, 
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it can be concluded that 𝑘 = 𝑙𝑜𝑔2 𝑏, in other words, the number of operations in binary method is 

considerably lower than the naïve method. Since the algorithm of the binary method starts from 

the least significant bit upwards to the most significant bit, it is also called Right-to-Left (R2L) 

binary method. Further improvement in usage memory could be achieved by starting binary 

algorithm from the most significant bit towards to the least significant bit, called Left-to-Right 

(L2R) binary method [10].  

Multiplication is one of the main operations in exponentiation calculation and it is slower 

than squaring by a small factor [22]. Multiplication can be time consuming when used frequently 

to multiply large numbers. Another approach to improve the time efficiency of binary 

exponentiation algorithms is decreasing the number of multiplication operations. The m-ary 

exponentiation [11, 12] works based on this idea. The exponent is segmented into m-bit groups. 

All of the values of 𝑎𝑔 for 0 < 𝑔 < 2𝑚 are computed earlier and saved in a table called look-up 

table (LUT). Suppose the length of number and the number of segments are k and t, then the 

number of multiplication and squaring would be 𝑡 =
𝑘

𝑚
 and k respectively. It should be considered 

that there is an optimum value for m based on the value of k, the length of number [13].    

Sliding window exponentiation is a modification of m-ary method. In this improved 

modification, only the upper half of the look-up table in the range of  2𝑚−1 < 𝑔 < 2𝑚 should be 

created. The optimum value of m (window size) against of k (length of number) has been reported 

in  [13].  Each segment in sliding window starts by 1. Following example shows the difference. 

          m-ary method :            𝐴 = 11⏟ 100⏟ 101⏟ 000⏟ 101⏟ 111⏟ 000⏟ 000⏟ 011⏟  

          Sliding Window:         𝐴 = 111⏟ 00101⏟ 000101⏟ 111⏟ 0000000 11⏟ 

There are also some studies on improving exponentiation algorithm for special cases of 

exponentiation.  For example, a survey on fixed base exponentiation algorithms has been reported 
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in  [14, 15].  Exponentiation with known exponent has been also studied by some other scholars 

[16].  

The above mentioned methods to improve exponentiation computation are mostly focused 

on reducing the number of sub-operations of multiplication used in the exponentiation algorithm. 

There is another approach that concerns on using fast multiplication and squaring as main sub-

operations in exponentiation. Following, the most important studies related to this approach are 

briefly reviewed. 

Modular Multiplication: There are two ways to calculate modular multiplication: 

multiplying and then reducing, or combining the multiplication and the reduction steps together 

as an operation. Therefore, any algorithm, which improves the performance of one or more of 

these operations, can be used to enhance the performance of modular multiplication. 

The most popular multiplications algorithms for large numbers are classical [11], Karatsuba 

[17], Toom-Cook  [18, 19] and Shonang-Strassen [20] algorithms; in which the first two 

algorithms are more common than the others and the most used algorithms in the range of the 

currently used public-key cryptosystems [21].   

 Although the complexity of the classical multiplication algorithm,O(n2), is higher than the 

complexity of the other algorithms, Xianjin and Longshu [22] have shown that the classical 

multiplication algorithm is theoretically efficient for multiplying numbers that are shorter than 255 

digits. In addition, it has also been shown that the classical multiplication algorithm is efficient in 

terms of memory utilization. The Karatsuba multiplication algorithm has less 

complexity, O(n1.58), compared to the classical multiplication algorithm. However, the overhead 

of the Karatsuba multiplication algorithm for lower-range numbers (i.e., fewer than 255 digits) 
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has caused researchers [22] to combine both the classical and Karatsuba algorithms to achieve 

better overall algorithm efficiency.  

Another approach to improve the multiplication algorithms is creating or using alternative 

positional number systems [23-25]which are computationally more efficient than non-positional 

number systems [26].  For example, by proposing signed-binary numbers [23] instead of the usual 

standard binary numbers, some researchers have managed to decrease the number of partial 

products in the classical multiplication algorithm and have therefore increased the overall 

algorithm efficiency. In positional number systems, an integer of radix-r can be written as follows,  

 (𝑎𝑛…𝑎2𝑎1𝑎0)𝑟 = 𝑎𝑛𝑟
𝑛 +⋯+𝑎2𝑟

2+𝑎1𝑟
1 + 𝑎0 (1-6) 

If 0 ≤ 𝑎𝑖 < 𝑟 ; then this representation is unique. We call ai as a digit, and its related set, 

such as 𝑆 =  {0,1, … , 𝑟 − 1} as the digit set. Decimal numbers with 𝑟 = 10 and  𝑎𝑖𝜖 𝑆 =

 {0,1, … ,9}, as well as the binary numbers [11] with 𝑟 = 2  and 𝑎𝑖𝜖 𝑆 =  {0,1}, are the two most 

well-known positional numbering systems. In this work, we focus on the binary positional number 

systems. 

 There is another type of binary numbers known as Signed Binary (SB) representation with 

𝑆 =  {0, ±1}. The Booth [23], higher-radix Booth [27, 28], Non Adjacent-Form NAF [29] and 

Mutual Opposite Form MOF [24] are examples of SB number systems that have been invented to 

reduce the number of sub-operations in arithmetic calculations such as multiplication [23, 30], 

exponentiation [11, 12] and scalar multiplication [24, 29] computations. Multi-Based Number 

System (MBNS) is another group of number systems [31], which uses more than one base. The 

Double-Base Number System (DBNS) [25] is an example of a number system from this group. 

The numbers in DBNS are represented as follows, 

 ∑𝑐𝑖2
𝑎𝑖 3𝑏𝑖                                                               (1-7) 
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where 𝑐𝑖𝜖 {0,1}  and  a𝑖 , 𝑏𝑖  𝜖 𝑍
+. 

Improving the efficiency of multiplication algorithms by using LUT (Look-up tables) is 

another method that researchers try to benefit from. For example, a group of work based on the 

binary numbers is the sliding window method, namely, wNAF [32, 33], wMOF [24] and wmbNAF 

[34-36]. In summary, by using efficient numbers recoding, both number of calculations and 

efficiency of each single calculation will be improved. The study of number systems and exploring 

this area to enhance or create new concepts could be remarkable for researchers.  

1.2 Research Motivation 

In the recent years, a number representation called ZOT [37, 38] which derived from the 

binary number system has been proposed and researchers showed that the performance of 

Karatsuba multiplication algorithm can be enhanced by using this recoding. This improvement is 

gained from the low Hamming weight property of the ZOT representation. 

 As mentioned earlier reducing the Hamming weight of the exponent, reduces the number of 

sub-operations in an exponentiation calculation. In addition, the lower Hamming weight of 

numbers in a multiplication, the less number of sub-operations in multiplication calculation. Thus, 

a number representation with lower Hamming weight can benefit exponentiation calculation from 

these two mentioned aspects.       

Since ZOT representation is not a positional number system therefore, the overhead for 

applying it in a multiplication is relatively high. Considering this point leads to this work, that is 

to create a new number system based on ZOT representation. This number system should keep the 

advantages of ZOT recoding plus advantages of positional number systems in calculations. 
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1.3 Problem Statement 

Modular exponentiation is one of the main operations used in number theory based 

cryptosystems which is a time consuming calculation by nature. Manipulating and recoding the 

exponent is a common method used by researchers to improve the efficiency of modular 

exponentiation. Using faster multiplication and squaring algorithms is also another approach to 

improve the efficiency of this operation. Recoding numbers or changing the representation of 

numbers is the most common method used to make multiplication and squaring more efficient. A 

recording method of binary numbers called ZOT is one of the latest efforts to improve the 

multiplication for public-key cryptosystems via decreasing the Hamming weight of the numbers. 

Since ZOT representation is not a positional number system, it cannot be easily generalized and 

used for the other multiplication algorithms or squaring and exponentiation calculations, the cost 

of such calculations would be relatively high anyway. Therefore, the aims of this research are first, 

to create positional number systems based on ZOT representation to apply in multiplication and 

squaring algorithms; and second, to use the new number systems to recode an exponent of an 

exponentiation operation to achieve a lower Hamming weight exponent and consequently less 

calculation, therewith, improving the efficiency of number theory based public-key cryptosystems 

such as RSA. 

Research Questions: The following research questions are retrieved from problem 

statement: 

1. Can the number recoding method called ZOT which efficiently decrease the HW of 

numbers be generalized to an efficient positional number system for calculations such as 

multiplication, squaring and exponentiation? 
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2. How efficient would be the modular operations such as multiplication, squaring and 

exponentiation after being enhanced by the proposed positional number systems in range 

of number theory based public-key cryptosystems? 

3. How efficient would be the number theory based public-key cryptosystems after 

applying the new positional number systems and the new enhanced operations? 

1.4 Research Scope 

Authentication, Key agreement and key transport are some of the popular protocols in 

information security that have been developed base on the public key primitives. Many operations 

in modular arithmetic have been used in public key cryptosystems such as RSA, Diffie-Hellman 

(D-H) key exchange and ElGamal digital signature.  

 
Figure 1.2: Scope of research 

 

This study focuses on some of these operations such as multiplication, squaring and 

exponentiation. Since the concentration of this research is on the number theory based 

cryptosystems, the performance of these operations in range of public-key cryptosystems has been 
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investigated. The scope of this study will be limited to methods of improving the running time of 

these operations (see Figure 1.2). Since the classical division does not depend on the Hamming 

weight or other special shape of numbers [39], then it is not in the scope of this research. 

1.5 Research Objectives 

The overall goal of this research is to promote ZOT recoding method for calculations such 

as multiplication, squaring and exponentiation in range of number theory based public-key 

cryptosystem. The main objectives of this thesis are listed as below: 

 To define number systems based on ZOT recoding and explore the potential of the 

proposed number systems on improving the time efficiency of the number theory based 

public-key cryptosystems. 

 To enhance multiplication, squaring and exponentiation algorithms, the highly used 

operations in number theory based public-key cryptosystems, based on the proposed 

number systems. 

 To apply the proposed number systems and the enhanced computational algorithms on 

RSA (as a case study) to improve its time efficiency as a representative of number theory 

based public-key cryptosystems which use multiplication, squaring and exponentiation. 

 

1.6 Research Methodology  

To meet the three research objectives mentioned in Section 1.5, the following method, 

experiments and tools have been set up. 

The review of modular arithmetic, which has a crucial role in public key cryptosystems 

showed us that designing an efficient number system is the most common way to improve the 
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efficiency of the multiplication, squaring and exponentiation algorithms. Hence, in the first step, 

few positional number systems based on ZOT recoding were defined. The literature review 

indicates this recoding method has a good potential to be a number system and improve the 

efficiency of multiplication. To enhance the currently used multiplication, squaring and 

exponentiation algorithms in number theory based public-key cryptosystems the proposed number 

systems were used and the enhanced operations were applied on RSA cryptosystem. This system 

is one of the well-known cryptosystems in number theory based cryptosystems, which is used as 

standard in many applications. In addition, since the operations used in RSA are as same as 

operations used in other cryptosystems such as ElGamal and Diffie-Hellman,  it can demonstrate 

the impact of the proposed number systems and enhanced operations on efficiency of number 

theory based cryptosystems. To evaluate and analyze the proposed number systems and operations 

the following experiments have been set up. The tools and conditions of experiments are also 

explained herewith.  

1. Analyzing the efficiency of the proposed number system to improve the efficiency of 

the proposed enhanced operations: The first metric used for measuring the efficiency of the 

proposed number systems is Hamming weight. The Hamming weight of the proposed number 

systems is calculated in two ways; mathematically and experimentally. The lower Hamming 

weight is, the more potential there is for efficiency. The second metric is the running time of 

converting numbers from binary to the proposed number systems. It would be contributory to 

measure and compare the cost of conversion of the proposed number systems to binary and the 

running time of the proposed operations to determine which one of the number systems is the more 

efficient in enhancing the operations of multiplication, squaring and exponentiation.  

2. Analyzing the efficiency of the enhanced operations: Three metrics have been 

considered to evaluate the efficiency of these operations. The first one is to determine the number 

of non-zero partial products of the algorithms that is directly related to the HW of the original 
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numbers and is a more reliable metric when the main sub-operations are partial products. The 

second metric is the running time of the proposed operations. To investigate the more efficient 

number system among the proposed number systems for improving the efficiency of the enhanced 

operations, the running time of the enhanced operations after applying the proposed number 

systems is measured. Since the multiplication and squaring operations are two main operations in 

exponentiation, then identifying the more efficient multiplication and squaring helps to define the 

more efficient exponentiation as well. Finding the more efficient exponentiation guides to know 

how to maximize the improvement of the efficiency of RSA by choosing the more efficient sub-

operations. The last metric is measuring the memory for the LUTs required for multiplication, 

squaring and exponentiation. Depending on the application, this metric helps us choose the 

appropriate number system for enhancing the operations.    

3. Analyzing the efficiency of RSA after applying the enhanced operations: This 

cryptosystem is one of the well-known cryptosystems in number theory based 

cryptosystems, and is used as standard in many applications. In addition, since the operations used 

in RSA are the same operations as used in other cryptosystems such as ElGamal and Diffie-

Hellman, it can readily demonstrate the impact of the proposed number systems and its enhanced 

operations on efficiency of number theory based cryptosystems. The main metric to measure the 

efficiency of RSA after applying the enhanced operations is counting the number of operations, 

especially the number of partial products. The second metric is running time which helps us 

evaluate the overall efficiency of RSA, experimentally. The last metric used to analyze is the 

amount of memory for saving the required LUTs. 

 

Tools and Conditions:  

Software:  In order to collect data and analyze the proposed number systems and operations, 

a computer software supporting large number calculations has been developed. This software 
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includes all the proposed algorithms and operations plus the original ones. It also consists of the 

required functions to measure the different metrics that have been considered for evaluation of the 

proposed algorithms.   

Hardware: In order to be more confident with the experimental results, all experiments have 

been conducted using two PCs. The results are then averaged.  

Data sampling: The number of samples has been calculated and the data have been 

generated randomly within the range of public-key cryptography. 

1.7 Research Contributions  

The significant contributions of this research are as follows: 

 New positional number systems based on ZOT recoding: 

o CBONS, LCBONS, ZOT-Binary, LZOT-Binary. 

 Enhancing classical multiplication, squaring and Left-to-right exponentiation algorithms 

for large numbers in range of number theory based public-key cryptosystems: 

o ZOTB-CLM, LZOTB-CLM, LZOTB-SQ, LZOTB-L2REXP-E, LZOTB-

L2REXP-M, LZOTB-L2REXP-EM, 

 Applying the new number systems and enhanced operations on RSA: 

o LZOTB-RSA 

1.8 Thesis Outline 

This thesis has been organized into six chapters. The first chapter provides an 

overview of the research content. Chapter 2 continues with the related works on the large 

number multiplication and exponentiation as the most frequently used operations in number theory 

based cryptosystems. Chapter 3 proposes few new number systems based on ZOT recoding 

method, such as ZOT-Binary, LZOT-Binary, and enhances   multiplication and exponentiation 
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algorithms in range of number theory based public-key cryptosystems by using the proposed 

number systems. Details on the implementation of the conversion algorithms, such as converting 

binary numbers to ZOT-Binary numbers, and all the enhanced algorithms are presented in Chapter 

4. Meanwhile, the results of this research are presented in the Chapter 5. Chapter 5 provides the 

results and discussion; and finally Chapter 6 concludes.  
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CHAPTER TWO:  LITERATURE REVIEW 

 

The history of human civilization shows that the numbering system has always been an 

important issue in human daily life. The huge number of applications related to numbers and 

arithmetic operations implies the signification of the numbering system as an essential necessity 

more than in the past.  

Followed by the emergence of numbers, arithmetic operations were gradually invented and 

developed. The development between number systems and arithmetic operations has been 

bilateral. Based on this relevancy, researchers have improved arithmetic operations by inventing 

alternative numbering systems.  

The main goal of this research is to increase the efficiency of large integers’ multiplication 

and exponentiation which have many important applications, such as cryptography and other 

scientific calculations. To achieve this goal, modification of known multiplication and 

exponentiation algorithms running on top of a new numbering system has been identified as the 

approach. 

This chapter continues with the general definitions used in this work. Sections 2.3 reviews 

the works related to the positional numbering system specially the related works in radix 2. We 

describe the integer arithmetic algorithms used in this research in Section 2.4. Section 2.5 is 

dedicated to the number theory based public-key cryptosystems and RSA cryptosystem. A 

summary of this chapter is presented in Section 2.6. 
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2.1 Definitions 

In this section, the definitions frequently used in this work such as Hamming weight and 

complexity are explained. The other definitions will be defined in their related sections.  

2.1.1 Hamming Weight 

The Hamming weight (HW) of a string u (or a vector 𝑢 ∈ 𝐹𝑛) is the number of non-zero 

symbols (or components 𝑢𝑖 ≠ 0) [40]. For a binary number or string of bits, Hamming weight is 

the number of 1's in the binary number or string. For example if 𝐴 = 1000001110, 

then HW(A) = 4. For a n-bit random binary number, the Hamming weight is always supposed  
𝑛

2
. 

In some work the percentage of Hamming weigh to the length of number is used. 

2.1.2 Computational Complexity 

An algorithm is a process to solve a class of mathematical problems on a computer. The 

complexity of an algorithm can be defined as the cost (usually the running time, storage, and any 

other relevant parameter) of solving the problems by the method specified in algorithm. The cost 

of solving some problems is very high therefore, researchers try to discover a faster way (a faster 

algorithm) to do them. Measuring the computational complexity of algorithms helps us to compare 

the algorithms.  

There are five standard asymptotic notations that are used to show and compare the growth 

or complexities of algorithms. These notations are big-O (O) notation, little-o (o) notation, big 

omega (Ω) notation, little omega (ω) notation and big theta () notation. 

http://en.wikipedia.org/wiki/String_(computer_science)
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2.2 Number Systems 

Although the origins of numbers are not very clear, it is still safe to say that the 

advancements of civilizations have revolved around numbers. In our daily and scholarly lives, the 

role of numbering systems is getting more significant and crucial than in the past. Early 

civilizations in 4000 B.C. utilized numbers just for counting and comparing. There was no 

possibility of calculation with primal numeral systems. Trading, seasonal-agriculture, and 

astronomy were main reasons to motivate the ancient people in Egypt and Greece to invent the 

numbering system with computational capabilities. 

One of the most significant changes in the history of numbering systems started with 

positional number systems. The first achievement of positional number systems was to represent 

the large numbers easily; dealing with large numbers was one of the obstacles of non-positional 

number systems. Doing daily and complicated computations without positional number systems 

is impossible. 

In the next sections, positional number systems are defined and the most popular of them 

such as decimal and binary are explained. The focus in this research would be on the binary 

positional number systems which have a significant role in computer algebra, computer 

architecture and some arithmetic operations.    

2.2.1  Positional Number Systems 

In Positional Number Systems (PNR), an integer of radix-r can be represented as follows:  

 
(𝑎𝑛…𝑎2𝑎1𝑎0)𝑟 = 𝑎𝑛𝑟

𝑛 +⋯+𝑎2𝑟
2+𝑎1𝑟

1 + 𝑎0 =∑ 𝑎𝑖
𝑛

𝑖=0
𝑟𝑖 

(2-1) 
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If ai ∈ 𝑆 =  {0, … , 𝑟 − 1} ; then this representation is unique [41]. 𝑎𝑖 and 𝑆 are called as 

digit, and digit set respectively. And the notations  𝑎𝑛 and 𝑎0 are also called the Most Significant 

Digit MSD and the Least Significant Digit LSD correspondingly. 

  Two most well-known positional number systems [11] are: 

 Decimal numbers:  𝑆 =  {0, … ,9}    and    𝑟 = 10 

 Binary numbers:    𝑆 =  {0,1}           and    𝑟 = 2 

 

Equation (2-1) only represents some of PNRs called Fixed-base number system (FBNS). 

Each term, 𝑎𝑖𝑟
𝑖, in the summation in this equation consists of two parts; digit 𝑎𝑖 and  𝑤𝑖 = 𝑟

𝑖 

which is called weight or place value of 𝑎𝑖. The weight of each digit is obtained by multiplying 

the weight of previous digit by base; 

 𝑤𝑖+1 = 𝑟 × 𝑤𝑖 (2-2) 

The distinction between FBNS and mixed-based number system (MBNS) is the value of r in 

Equation (2-2). If 𝑟 be constant like in Equation (2-1), we say it is a FBNS, while if this value is 

a variable we call it a MBNS. Equation (2-3) shows this property. 

  𝑤𝑖+1 = 𝑟𝑖 × 𝑤𝑖 (2-3) 

where there are integers i and j such that 𝑟𝑖 ≠ 𝑟𝑗. 

If we use the representation of Equation (2-4) to show a number by its digits and their 

corresponding weights  

 
𝐴 = {

𝑑𝑖𝑔𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡

} = {
𝑎𝑛
𝑤𝑛

𝑎𝑛−1
𝑤𝑛−1 

, … ,
𝑎0
𝑤0
}. 

(2-4) 

then FBNSs can also be represented by 



20 

 

 
{
𝑑𝑖𝑔𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡

} = {
𝑎𝑛
𝑟𝑤𝑛−1

𝑎𝑛−1
𝑟𝑤𝑛−2

, … ,
𝑎0

(𝑤0 = 1)
}’ 

(2-5) 

and MBNS can be written as below:  

 
{
𝑑𝑖𝑔𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡

} = {
𝑎𝑛

𝑟𝑛−1𝑤𝑛−1

𝑎𝑛−1
𝑟𝑛−2𝑤𝑛−2

, … ,
𝑎0

(𝑤0 = 1)
}. 

(2-6) 

Knuth [11] has been using the following representation for positional number systems. 

 (𝑎𝑛…𝑎2𝑎1𝑎0){𝑟𝑛,𝑟𝑛−1,…,1} = {
𝑑𝑖𝑔𝑖𝑡𝑠
𝑟𝑎𝑑𝑖𝑐𝑒𝑠

} = {
𝑎𝑛
𝑟𝑛

𝑎𝑛−1
𝑟𝑛−1

, … ,
𝑎0

(𝑟0 = 1)
} 

(2-7) 

where the weight of digit can be obtain by Equation (2-3). There are also some non-standard 

number systems  with non-regular bases such as negative bases [42], fractional bases,  real bases 

[43, 44],  complex bases[43]  and quadratic bases [42].   

2.2.1.1 Binary Number System 

Although some researchers believe that the binary number has been invented initially in the 

fifth century B.C by Pingala [45], Gottfried Leibniz is known as a mathematician who documented 

the modern system of binary numbers in 1703 [46, 47]. The lengthy representation of binary 

numbers was a large barrier to their daily utilization, but finally it has become a fundamental part 

of human life with the introduction of computer. In 1854 British mathematician George Boole 

introduced a new algebra based upon this number representation called Boolean algebra 

[48].  Computer science and digital systems have been developed based upon this algebra. 

Boolean algebra also plays a significant role in other topics such as number theory, statistics and 

set theory. 

We showed earlier in Section 2.2.1, binary number system is a positional number system 

with digit set  𝑆 =  {0,1} and base  𝑟 = 2. Representation of numbers in this base is more lengthy 

compare to decimal numbers. For example: 
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100000010 = 111101000010010000002. 

Each digit in binary system is called bit and the length of a number A in bits, given by the 

formula  

 𝐿(𝐴) = 𝐿(𝐴, 2) = ⌊log2 𝐴⌋ + 1. (2-8) 

2.2.1.2 Signed-Binary Number System 

Efficiency of some of the algorithms in number theory such as multiplication and 

exponentiation depends on the Hamming weight of the binary numbers. To decrease the Hamming 

weight of binary numbers, researchers proposed new number systems derived from binary number 

system [23]. One of these number systems is called Signed-binary (SB) system which started by 

using ‘-1’ in the representation of a binary number.  

The idea behind of these kinds of number systems comes from the following series expansion 

in number theory;  

 
(1…1⏞  
𝑛+1

)
2

=∑2𝑖
𝑛

𝑖=0

= 2𝑛+1 − 1 = (10…0⏞  
𝑛

1̅)
2

, (2-9) 

where    1̅ = (−1).  

Hamming weight of each n-bit sequence of symbol ‘1’ decreases from n to 2. For example: 

(1111111)2 = (10000001̅)2, 

where 

𝐻𝑊(1111111)2 = 7    and     𝐻𝑊(10000001̅)2 = 2. 

The digit set and base in signed-binary number systems are defined as below    
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 𝑆 =  {0,1, −1}    and    𝑟 = 2. (2-10) 

The representation by signed-binary is not unique. Booth [23], NAF [29] and MOF [24] 

representations are the most known methods of this kind of representations but with different 

Hamming weight.  

Booth algorithm: Booth [23] in 1951 introduced an elegant algorithm to speed up the 

multiplication algorithm on digital processors. His method is known as the origin of the signed-

binary representation of a number. He modified the common method of add and shift in the 

multiplication algorithm by a method that scanned the multiplicand and determined to decide to 

do addition, subtraction or nothing then shifted the result [49]. Although he did not directly 

represent the numbers in signed-binary number, the hidden idea in his method was the signed-

binary idea. 

Algorithm (2.1) describes the process of this Booth recoding. Let 𝐴 = (𝑎𝑛−1, … 𝑎0) and 𝐵 =

(𝑏𝑛−1, … 𝑏0).  Let 𝑎−1 = 0 . We scan A from right to left for finding two adjacent bits 𝑎𝑖𝑎𝑖−1 in 

the form of “01” or “10”. If 𝑎𝑖𝑎𝑖−1 = "01", then  𝑏𝑖 is set to 1. Where 𝑎𝑖𝑎𝑖−1 = "10", then 𝑏𝑖 is 

set to ‘-1’. The rest of 𝑏𝑖’s will be remain zero. 

 

 Algorithm (2.1) : Booth Recoding 

Input  : 𝐴 = (𝑎𝑛−1, … 𝑎0) is binary number 

Output  : 𝐵 = (𝐵𝑛−1, … 𝑏0) is signed-binary number 

   

1. For  𝑖 = −1 up to 𝑛 − 1 do 

 

// Scan A from right to left   

// Assume 𝑎−1 = 0   

2. a. If  𝑎𝑖 = 0  and 𝑎𝑖−1 = 1 then  𝑏𝑖 = 1 

b. If  𝑎𝑖 = 1  and 𝑎𝑖−1 = 0 then  𝑏𝑖 = −1 

// Check 𝑎𝑖𝑎𝑖−1  for” 01” or  

// “10”. Set 𝑏𝑖  

3. Return B  
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 Example as shown by Equation (2-11)  shows how Booth algorithm works. 

   
𝐴 = 111⏞

1001̅

000 01111⏞    
10001̅

   →   𝐵 = 1001̅00010001̅  (2-11) 

In the above example, the number of non-zero digits decreased from HW(A) = 7 to HW(B) 

= 4. But, this does not always happen. Specially, when we have pairs of “01” or “10’. The 

following example makes this issue more clear. 

   𝐴 = 10101 ∶  𝐻𝑊(𝐴) = 3  →    𝐵 = 11̅11̅11̅ ∶   𝐻𝑊(𝐵) = 7 (2-12) 

Since in Booth algorithm two bits are scanned, it sometimes is called Booth 2. Researchers 

proposed Booth 3, Booth 4 and higher [27, 28, 50] to reduce the Hamming weight of binary 

numbers which shown in Example (2-12).  

Non-Adjacent Form Recoding (NAF): The  Non-Adjacent Form (NAF) recoding was 

proposed by Reitwiesner in 1960 [29]. As Algorithm (2.2) shows the NAF representation of a 

number which can be obtained by scanning the integer from right to left.  

 

 

Algorithm (2.2) : NAF Recoding 

Input  : 𝐴 = (𝑎𝑛−1, … 𝑎0) is binary number 

Output  : 𝐵 = (𝑏𝑛, … 𝑏0)    is signed-binary number (NAF) 
   

1. While 𝐴 > 0    

2.     For  𝑖 = 0 up to 𝑛 − 1 do // Read 𝑎𝑖 from right to  left   

3. a. If 𝑎 is odd then do 

i.  𝑏𝑖 = 2 − (𝐴  𝑚𝑜𝑑  4) 

ii.  𝐴 = 𝐴 − 𝑎𝑖 

b. Else 

i. 𝑏𝑖 = 0 

ii. 𝐴 =
𝐴

2
  

iii. 𝑖 = 𝑖 + 1 

 

4. Return  B  

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4021106
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The following example shows a binary number and its NAF representation:  

 NAF representation assures that between two non-zero digit, there is at least a zero. The 

problem of Booth algorithm in its worst case has been solved in this algorithm.  

Solinas [33] generalized the NAF recoding which can be used to improve the performance 

of EC computations, while a Left-to-right NAF recoding algorithm was proposed by Joye and 

Sung-Ming [51].  Darrel et al. [52] proved that every integer can be represented by NAF recoding 

uniquely. Morain et.al. [53] proved the average of Hamming weight of a number after NAF 

recoding would be minimal. Length of integer A, then 𝐻𝑊(𝐴) ≅
𝑛

3
.  

Mutual Opposite Form (MOF): Algorithm NAF (see Algorithm (2.2)) shows that the 

recoding method in NAF is done right to left, while left-to-right methods are more preferred for 

calculating exponentiation and EC multiplication [54]. The first left-to-right recoding algorithm 

called Mutual Opposite Form (MOF) introduced by Okeya et al. [24]. This method is bidirectional 

and its inventors showed that MOF representation of a number is unique [24]. The average 

Hamming weight of a number in MOF representation is about 50% (as same as of the binary 

representation) [24]. 

 Although the Hamming weight of a MOF recoded number is greater than NAF recoded, 

researchers [24] proved that for applications such as EC multiplication, the total cost of MOF 

recoding and EC multiplication would be reasonable rather than of the NAF representation [29]. 

   
                       𝐴 = 101111⏞    

10001̅

0000 01111⏞    
10001̅

   →   𝑁𝐴𝐹(𝐴)
= 1010001̅000010001̅ 

(2-13) 
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