COPPER TANNATE COMPLEX AS A POTENTIAL MARINE ANTIFOULING AGENT

SHARIFAH RADZIAH BINTI MAT NOR

UNIVERSITI SAINS MALAYSIA

2016

COPPER TANNATE COMPLEX AS A POTENTIAL MARINE ANTIFOULING AGENT

by

SHARIFAH RADZIAH BINTI MAT NOR

Thesis submitted in the fulfillment of the requirements for the degree of Master of Science

September 2016

ACKNOWLEDGEMENT

All praises are due to Allah S.W.T who had given blessing, strength and knowledge in finishing this thesis. I would like to gratefully acknowledge the guidance of my supervisor, Prof. Hjh. Darah Ibrahim and my co-supervisor Prof. Hj. Mohd Jain Noordin, who has been abundantly helpful and has assisted me in numerous ways.

Thousands thanks to all lab members of Industrial Biotechnology Research Laboratory (IBRL), especially Mr. Muhammad Norhafizi Ahmad, Miss Olivia Chan, Miss Nor Afifah Supardy, Miss Ang Swee Ngim, Mrs. Teh Faridah Nazari and Miss IU Chai Woei for sincerely sharing knowledge and assisting in conducting the research. This work also would not have been possible without Mrs. Azraa Achmad and Mrs. Azwin Usol Ghafli from the Material and Corrosion Chemistry Laboratory for their supervision and assistant in preparing the copper-tannate complex.

Not to forget, thanks to Dr. Rashidah Abdul Rahim, Miss. Zakiah Zakaria and Mrs. Rafidah Rasol from Molecular Biology Laboratory for their assistance in the molecular identification procedures. I also wish to sincerely thank all staffs of Electron Microscope (EM) Unit and Microbiology Laboratory of School of Biological Sciences under Universiti Sains Malaysia (USM), for the technical support in conducting this research.

Last but not least, this is also dedicated to my beloved parents Mr. Mat Nor Hamid and Mrs. Ramlah Jusoh, my daughters, Qaireen Aishah and Qaireen Ardini, siblings and the many friends for their unwavering support, infinite patience and inspiring advises along this journey. Thank you from my deepest heart.

ii

TABLES OF CONTENTS

Page

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	х
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvii
ABSTRAK	xxi
ABSTRACT	xxiii

CHAPTER 1 INTRODUCTION

1.1	Biofouling and antifouling technologies	1
1.2	Problem statements	3
1.3	Research objectives	4

CHAPTER 2 LITERATURE REVIEW

2.1	Biofo	uling	5
	2.1.1	Biofouling process	5
2.2	Marin	e organisms	7
2.3	Quoru	m sensing and biofilm development	10
	2.3.1	Quorum sensing in Gram-negative bacteria	11
	2.3.2	Quorum sensing in Gram-positive bacteria	13
2.4	Anti-f	ouling timeline	15
	2.4.1	First technologies used prior to mid 19 th century	15
	2.4.2	First antifouling paints used on steel hulls prior to 1960	15

2.5	Antifo	ouling m	nethods	18
	2.5.1	Chemi	ical antifouling methods	18
		2.5.1.	(a) Tributyltin self-polishing copolymer coatings	18
		2.5.1.	(b) Tin free SPC-technology	19
		2.5.1.	(c) Non-toxic antifouling technology	19
	2.5.2	Biolog	gical antifouling methods	20
		2.5.2.	(a) Enzyme that degrade adhesive used for settlement	20
		2.5.2.	(b) Enzyme that disrupt the biofilm matrix	21
		2.5.2.	(c) Enzyme that generate deterrents and biocides	21
		2.5.2.	(d) Enzyme that interfere with intercellular communication	22
		2.5.2.	(e) Challenges for enzymatic antifouling methods	22
	2.5.3	Physic	cal antifouling methods	23
		2.5.3.	(a) Antifouling by electrolysis and radiation	23
		2.5.3.	(b) Antifouling by modification of surface topography and	
		hydrop	phobic properties	24
		2.5.3.	(c) Antifouling by changing the zeta potential	25
		2.5.3.	(d) Challenges for physical antifouling methods	25
2.6	Biofor	uling eff	fects	26
		2.6.1	Biofouling effects on aquaculture industry	26
		2.6.2	Biofouling effects on shipping industry	27
2.7	Mang	rove for	est	28
	2.7.1		Matang Mangrove Forest Reserve	29
	2.7.2		Charcoal production	31
2.8	Rhizoj	<i>phora</i> sp	pecies	33
	2.8.1		Rhizophora apiculata	35

		2.8.1. (a) Taxonomy	35
		2.8.1. (b) Morphology descriptions	36
2.9	Tannin		38
	2.9.1	Chemical structures	39
	2.9.2	Tannin classes	41
		2.9.2. (a) Hydrolysable tannin	41
		2.9.2. (b) Condensed tannin	42
	2.9.3	Properties of tannin	42
2.10	Copper in ant	ifouling paint	44
	2.10.1 Coppe	er types and characteristics	44
	2.10.2 Ration	nal for using copper-tannate complex as antifouling agent	44

CHAPTER 3 MATERIAL AND METHODS

3.1	Isolati	ion, maintenance and identification of marine fouling bacteria	47
	3.1.1	Isolation of marine fouling bacteria	47
	3.1.2	Preservation of marine fouling bacteria	47
	3.1.3	Identification of marine fouling bacteria	48
		3.1.3. (a) Morphological Identification	48
		3.1.3. (a) (i) Colony morphology	48
		3.1.3. (a) (ii) Gram staining	48
		3.1.3. (a) (iii) Motility test	49
		3.1.3. (a) (iv) Pigmentation test	49
		3.1.3. (a) (v) Kovac's oxidase test	49
		3.1.3. (a) (vi) Glucose dissimilation test	49
		3.1.3. (a) (vii) Catalase test	49

	3.1.3. (a) (viii) Polymyxin B sensitivity test	50
	3.1.3. (a) (ix) Penicillin sensitivity test	51
	3.1.3. (b) Molecular DNA Identification	53
	3.1.3. (b) (i) Cultivation of bacteria	53
	3.1.3. (b) (ii) Genomic DNA Extraction	53
	3.1.3. (b) (iii) Agarose gel electrophoresis	53
	3.1.3. (b) (iv) Polymerase Chain Reaction (PCR)	53
	3.1.3. (b) (v) Purification of PCR product	53
	3.1.3. (b) (vi) Sequencing	54
3.2	Collection of Rhizophora apiculata mangrove barks	54
3.3	Extraction of mixed-tannin	54
3.4	Preparation of copper-tannate complexes	57
3.5	Antimicrobial activity of metal tannate complexes	59
	3.5.1 Preparation of bacterial inoculum	59
	3.5.2 Preparation of extracts solution	59
	3.5.3 Preparation of susceptibility test disc	60
	3.5.4 Agar diffusion test assay	60
3.6	Determination of Minimum Inhibitory Concentration (MIC)	61
	3.6.1 Stock extracts preparation	61
	3.6.2 Bacterial inoculum preparation	61
	3.6.3 Broth microdilution susceptibility test	62
3.7	Determination of Minimum Bactericidal Concentration (MBC)	65
	3.7.1 Antibacterial agent capacity	65
3.8	Determination of time-kill growth curve	65
3.9	Structural degeneration and morphological changes of bacterial cells	69

	3.9.1	Seed culture preparation	69
	3.9.2	Extract treatment	69
	3.9.3	Primary fixation	70
	3.9.4	Post-fixation	70
	3.9.5	Scanning Electron Microscope	71
		3.9.5. (a) Sputter coating	72
	3.9.6	Transmission Electron Microscope	72
		3.9.6. (a) Preparation of agar stripes containing cells sample	72
		3.9.6. (b) Dehydration steps	72
		3.9.6. (c) Embedding and polymerization	73
		3.9.6. (d) Preparation of ultrathin section	74
3.10	In vitro	p toxicity study	75
	3.10.1	Preparation of artificial seawater	75
	3.10.2	Hatching of brine shrimp Artemia salina	75
	3.10.3	Preparation of working stock of copper tannate complexes	76
	3.10.4	Brine Shrimp Lethality Test (BSLT)	77
3.11	Applic	ation of copper-tannate complex as antifoulant on the fish-net	78
	3.11.1	Preparation of copper-tannate complex based paint	78
	3.11.2	Application of copper-tannate complex based paint on the fish-net	79

CHAPTER 4 RESULTS

4.1	Identi	fication of marine fouling bacteria	83
	4.1.1	Morphological identification	83
	4.1.2	Biochemical test identification	86
	4.1.3	Molecular DNA identification	90

4.2	Antim	icrobial activity of metal-tannate complexes	94
4.3	Antim	icrobial activity of copper-tannate complex	98
4.4	Minin	num Inhibitory Concentration (MIC) and Minimum	
	Bacter	ricidal Concentration values of copper-tannate complex	101
4.5	Time-	kill study	106
	4.5.1	Time kill assay of Bacillus aquimaris IBRL FB13	108
	4.5.2	Time kill assay of Vibrio alginolyticus IBRL FB6	108
4.6	Morpl	hological changes of bacterial cells treated with copper-tannate	
	comp	lex	110
	4.6.1	SEM micrographs of Bacillus aquimaris IBRL FB13	111
	4.6.2	SEM micrographs of Vibrio alginolyticus IBRL FB6	114
	4.6.3	TEM cross section of Bacillus aquimaris IBRL FB13	117
	4.6.4	TEM cross section of Vibrio alginolyticus IBRL FB6	119
4.7	Cytoto	oxicity study of the copper-tannate complex on brine shrimp	
	Artem	ia salina	121
	4.7.1	Acute and chronic toxicity of copper-tannate complex	121
	4.7.2	Acute and chronic toxicity of mixed-tannin extract	123
	4.7.3	Acute and chronic toxicity of copper sulphate pentahydrate	123
4.8	Effect	of copper-tannate complex formulated paint on foulant growth	126
	4.8.1	One-month exposure in seawater	126
	4.8.2	Two months exposure in seawater	128

CHAPTER 5 DISCUSSION

5.1	Marine fouling bacteria	131
5.2	The significance of copper tannate as a potential antifouling agent	134

5.3	Effects of copper tannate on marine fouling bacteria	137
5.4	Cytotoxicity of copper tannate against brine shrimp	141
5.5	The potential use of copper-tannate formulation paint as antifouling	
	paint in fish-net	143
CHA	CHAPTER 6 CONCLUSION	
REFI	CRENCES	149
APPE	CNDICES	167
CON	FERENCES AND PROCEEDINGS	176

LIST OF TABLES

Page

Table 2.1	Stages of attachment of marine organisms on surfaces immersed	6
	in seawater	
Table 2.2	Characteristics of main marine macro-organism species	9
Table 2.3	Antifouling products used in the past, prior to mid-19 th century	16
Table 2.4	Types of antifouling paint used on steel hulls prior to 1960	17
Table 2.5	The medicinal value of different Rhizophora species in Asia	34
Table 3.1	Scheme for preparing extracts dilutions and bacterial suspension	52
	for broth micro-dilution assay	
Table 3.2	Scheme for preparing extract dilutions and bacterial suspension	64
	for MIC determination	
Table 3.3	Preparation of extract and bacterial inoculum for time kill assay	67
Table 3.4	List of dehydration steps for SEM samples	71
Table 3.5	List of dehydration steps for TEM samples	73
Table 3.6	Preparation of extract concentration for brine shrimp toxicity test	76
Table 3.7	Preparation of two different formulations for copper-tannate	79
	complex based paint	
Table 4.1	Morphological characteristics of isolated marine fouling bacteria	84
Table 4.2	Biochemical tests for the identification of marine fouling	87
	bacteria	
Table 4.3	Molecular DNA identification of isolated marine bacteria.	93
Table 4.4	Antimicrobial activity of four metal-tannate complexes on	96
	marine fouling bacteria using disc-diffusion assay.	
Table 4.5	Antimicrobial activity of copper-tannate complex on marine	100
	fouling bacteria performed using disc diffusion assay.	
Table 4.6	MIC and MBC values of copper-tannate complex on marine	102

х

fouling bacteria.

LIST OF FIGURES

Page

Figure 2.1	Quorum sensing system of two mutual organisms	12
Figure 2.2	Diagrammatic representations for Homoserine-lactone (HSL)	12
	mediated quorum-sensing system in Gram-negative bacteria of	
	Vibrio fischeri	
Figure 2.3	Diagrammatic representation for small peptide quorum sensing	13
	mediated systems in Gram-positive bacteria of Staphylococcus	
	aureus	
Figure 2.4	Diagrammatic representation of quorum sensing strategy used by	14
	Staphylococcus aureus to cause disease in the host	
Figure 2.5	A serious biofouling problem on fish farming cages from	27
	aquaculture industries	
Figure 2.6	The serious biofouling problem seen on ship hull	28
Figure 2.7	Location of the Matang Mangrove Forest Reserve, Perak	30
Figure 2.8	The process of debarking the Rhizophora apiculata barks	33
Figure 2.9	Pictures of Rhizophora apiculata	37
Figure 2.10	The chemical structure of tannin derivatives	40
Figure 2.11	Diagrammatic representation of monoflavonoid structure of	43
	Rhizophora apiculata mangrove tannins	
Figure 3.1	The Rhizophora apiculata mangrove barks as agrowaste from a	55
	charcoal factory in Kuala Sepetang, Perak, Malaysia	
Figure 3.2	Simplified procedure for mixed-tannin extraction from <i>R</i> .	56

apiculata mangrove barks

Figure 3.3	Flowchart for the preparation of copper-tannate complex	58
Figure 3.4	A 96 wells, U-shaped micro-titer plate and the actual plating	63
	distribution for broth micro-dilution assay	
Figure 3.5	The fishnet testing panels before and after painted with copper	80
	tannate complex paints.	
Figure 3.6	Two sets of duplicate quadrants for the fish-net testing panels	81
	painted with different formulations of copper-tannate complex	
	paint.	
Figure 3.7	Fishnet testing panels expose to the seawater	82
Figure 4.1	Morphological characteristics of the marine fouling bacterial	85
	isolates after 24 hours incubation at 30° C on marine agar medium	
Figure 4.2	Image of Gram-negative bacteria stain in pink color and Gram-	88
	positive bacteria in dark blue stain	
Figure 4.3	Interpretation of motility test result	88
Figure 4.4	Interpretation of glucose dissimilation test	89
Figure 4.5	Result interpretation for catalase test	89
Figure 4.6	Interpretation of Kovac's oxidase test	90
Figure 4.7	Gel electrophoresis fragments of 1KB plus ladder and the	92
	extracted DNA of all nine unknown isolates	
Figure 4.8	Agar diffusion assay of four metals-tannate complexes treated on	97
	marine fouling bacteria	

- Figure 4.9 Agar diffusion assay of copper tannate complex treated on marine 99 fouling bacteria
- Figure 4.10 Broth microdilution and spread plate method for determination of 103
 MIC and MBC values of copper-tannate complex on nine marine fouling bacteria
- Figure 4.11 The time kill curve graph of different concentrations of copper- 107 tannate complex on Gram-positive marine fouling bacteria,
 Bacillus aquimaris IBRL FB13
- Figure 4.12 The time kill curve graph of different concentrations of copper- 109 tannate complex on Gram-negative marine fouling bacteria, *Vibrio alginolyticus* IBRL FB6
- Figure 4.13 SEM micrographs of untreated and extract treated cells of 112 *Bacillus aquimaris* IBRL FB13 viewed under 15,000x
 magnification
- Figure 4.14 SEM micrographs of untreated and extract treated cells of 113 *Bacillus aquimaris* IBRL FB13 viewed under 50,000x
 magnification
- Figure 4.15 SEM micrographs of untreated and copper-tannate complex 115 treated cells of *Vibrio alginolyticus* IBRL FB6 viewed under 15,000x magnification
- Figure 4.16 SEM micrographs of untreated and copper-tannate complex 116 treated cells of *Vibrio alginolyticus* IBRL FB6 viewed under 50,000x magnification
- Figure 4.17 TEM micrographs of the untreated and copper-tannate complex 118 (2MIC) treated cells of *Bacillus aquimaris* IBRL FB13

- Figure 4.18 TEM micrographs of the untreated and copper-tannate complex 120 (2MIC) treated cells of *Vibrio alginolyticus* IBRL FB6
- Figure 4.19 Cytotoxicity effects of copper tannate complex on *Artemia salina* 122 after 6 hours (acute) and 24 hours (chronic) of exposure time.
- Figure 4.20 Cytotoxicity effects of mixed-tannin on brine shrimp *Artemia* 124 *salina* after 6 hours (acute) and 24 hours (chronic) of exposure.
- Figure 4.21 Cytotoxicity effects of copper sulphate pentahydrate 125 (CuSO₄.5H₂O) on brine shrimp *Artemia salina* after 6 hours (acute) and 24 hours (chronic) of exposure
- Figure 4.22 Effect of copper-tannate complex formulated paint on the fishnet 127 panels after one month of exposure in seawater at two different depths
- Figure 4.23 Effect of copper-tannate complex formulated paint on the fishnet 129 after two months of exposure in the seawater at two different depths

LIST OF ABBREVIATIONS

AHL	Acyl-homoserine lactone
Al	Aluminum
ATCC	American Type Culture Collection
BLAST	Basic Local Alignment Search Tool
BSLT	Brine Shrimp Lethality Test
CaCo ₃	Calcium carbonate
CDP	Controlled Depletion System
CFU	Colony Forming Unit
CHCL ₃	Chloroform
CLSI	Clinical and Laboratory Standard Institute
СО	Copper omadine
СР	Chloramphenicol
СРТ	Copper pyrithione
СТ	Copper-tannate
СТАВ	Cetyltrimethylammonium bromide
Cu	Copper
CuSO ₄ .5H ₂ 0	Copper sulphate pentahydrate
DF buffer	Detergent-free reaction buffer
DMSO	Dimethyl-sulfoxide
DNA	Deoxyribonucleic acid

EDTA	Ethylenediaminetetraacetic acid
EPS	Extracellular Polymeric Substances
FB	Fouling Bacteria
Fe	Iron
H ₂ O ₂	Hydrogen peroxide
HCIO	Hypochlorous acid
HMDS	Hexamethyldisilazane
HSL	Homoserine-lactone
IAA	Isoamyl alcohol
IBRL	Industrial Biotechnology Research Laboratory
IMO	International Maritime Organization
INT	p-iodonitrotetrazolium violet salts
KH ₂ PO ₄	Dipotassium orthophosphate
КОН	Potassium hydroxide
F	Fermentative
LC ₅₀	50% Lethal Concentration
LPS	Lipopolysaccharide
LuxI	Autoinducer synthase
LuxICDABE	Luciferase operon
LuxR	Binding transcriptional activator
МА	Marine agar

MBC	Minimum Bactericidal Concentrations
MIC	Minimum Inhibitory Concentrations
MRSA	Methicillin-Resistant Staphylococcus aureus
MTBA	Mangrove Tannin-Based Absorbent
Ν	Negative
O_2	Oxygen
OECD	Organization of Economic Cooperation and Development
OX	Oxidative
PCR	Polymerase Chain Reaction
PDMSE	Polydimethylsiloxane
PTFE	Polytetrafluoroethylene
QS	Quorum sensing
RNase A	Ribonuclease A
rRNA	Ribosomal ribonucleic acid
SDS	Sodium dodecyl sulfate
SEM	Scanning Electron Microscope
SiO ₂	Silicon dioxide
SPC	Self-Polishing Copolymer
SYEP	Seawater Yeast Extract Peptone agar
TAE	Tris-acetate-EDTA buffer
TBT	Tributyltin

ТВТО	Tributyltin oxide
TEEB	The Economic of Ecosystems and Biodiversity
TEM	Transmission Electron Microscope
TiO ₂	Titanium dioxide
WHOI	Woods Hole Oceanographic Institute
Zn	Zinc
ZnO	Zinc oxide

KOMPLEKS KUPRUM-TANNAT SEBAGAI AGEN ANTI-TEMPEL MARIN BERPOTENSI

ABSTRAK

Ekoran daripada penguatkuasaaan undang-undang yang mengharamkan penggunaan agen anti-tempel seperti tributyltin dan diuron yang mengancam hidupan laut, wujud satu keperluan mendesak untuk menghasilkan agen anti-tempel baharu yang lebih mesra alam. Oleh itu, antara salah satu alternatif untuk mengatasi masalah penempelan mikrooganisma adalah dengan menggunakan teknologi hijau. Dalam penyelidikan ini, ekstrak tannin daripada pokok bakau minyak atau nama saintifiknya Rhizophora apiculata telah dipilih sebagai sumber semulajadi yang memiliki keupayaan antimikrob dan berkebolehan untuk bergabung dengan ion logam seperti kuprum untuk menghasilkan kompleks logam-tannat yang akan dicampurkan ke dalam formula cat anti-tempel. Empat jenis kompleks logam-tannat yang di hasilkan kemudiannya di saring untuk mengesan aktiviti antimikrob dengan menggunakan asai agar plug ke atas beberapa pencilan bakteria marin. Kompleks kuprum-tannat menunjukkan aktiviti antimikrob yang paling kuat berbanding kompleks logamtannat yang lain dengan diameter zon perencatan antara 10-22 mm. Nilai MIC yang diperolehi pula ialah antara 0.25-1.00 mg/ml dan nilai MBC pula ialah antara 0.50mg/ml. Daripada nilai nisbah MBC/MIC, kompleks kuprum-tannat 2.00 menunjukkan kesan bakterisid terhadap tujuh pencilan bakteria marin dan kesan bakteriostatik terhadap pencilan Vibrio alginolyticus IBRL FB6 dan pencilan Bacillus aquimaris IBRL FB13. Aktiviti antibakteria kompleks kuprum-tannat

ΧХ

adalah bergantung kepada kepekatan ekstrak. Di antara perubahan pada bentuk dan struktur sel yang di kesan melalui Mikroskop Elektron Imbasan dan Mikroskop Elektron Transmisi ialah, kompleks kuprum-tannat menyebabkan sel-sel bakteria berubah daripada bentuk asal normal rod kepada bentuk yang tidak teratur, pembentukan kaviti atau lubang, permukaan sel yang berkedut serta kebocoran kandungan sitoplasma sel yang menyebabkan sel-sel akhirnya musnah. Ketoksikan kompleks kuprum-tannat juga di uji ke atas anak udang brin. Nilai LC_{50} menunjukkan ketoksikan kompleks kuprum-tannat di sumbang oleh ion-ion kuprum. Ketoksikan ekstrak berkadaran terus dengan kepekatan ekstrak dan lama masa. Untuk ujian lapangan, kompleks kuprum-tannat yang berbeza kepekatan di cat pada panel jaring ikan sebelum direndam di dalam laut selama dua bulan. Panel dengan kepekatan yang lebih tinggi iaitu 19.35 mg/ml, mempunyai aktiviti anti-tempel yang lebih kuat berbanding panel dengan kepekatan ekstrak yang lebih rendah iaitu 12.9 mg/ml. Secara kolektif, kajian awal ini membuktikan keupayaan kompleks kuprumtannat untuk memperlahankan dan mengurangkan penempelan mikroorganisma pada jaring ikan.

COPPER TANNATE COMPLEX AS A POTENTIAL MARINE ANTIFOULING AGENT

ABSTRACT

Due to the banned of many antifouling biocides such as tributyltin and diuron because of their toxic impacts on the marine environment, there is an urgent need for a novel antifouling agent. Therefore, one of the alternatives to overcome this biofouling problem is by shifting to the green technology. In this present study, tannin extracted from *Rhizophora apiculata* was selected as the natural source as it was proven to posses antimicrobial property and can be easily combined with metal ions (i.e: copper) to form a metal-tannate complexes that later can be incorporated in the antifouling paint. Four different metal-tannate complexes were tested for antimicrobial properties via disc-diffusion assay against a series of marine bacterial isolates. Copper-tannate complex showed the strongest antimicrobial activity with diameter zone of inhibition ranged from 10- 22 mm. The MIC and MBC values obtained ranged from 0.25 mg/ml to 1.00 mg/ml and from 0.50 mg/ml to 2.00 mg/ml, respectively. From the ratio of MBC/MIC, copper-tannate complex showed bactericidal effect on seven marine bacteria and bacteriostatic effect on Vibrio alginolyticus IBRL FB6 and Bacillus aquimaris IBRL FB13. Time kill assay revealed that the antibacterial activity of copper-tannate complex was a concentration-dependent. The main abnormalities observed via SEM and TEM study after treatment with copper-tannate complex were the alterations in morphology and cytology of the bacterial cells where bacterial cells changed from normal rod-shaped

xxii

bacillus to having an irregular appearance, showing formation of pits and cavities, wrinkle surface and lost in rigidity of the cells due to the leakage of cell cytoplasm. The toxicity of copper-tannate complex was determined on *Artemia salina*. By comparing the LC₅₀ values for acute (6 h) and chronic (24 h) toxicity of copper-tannate complex, mixed-tannin and copper sulphate pentahydrate, it can be concluded that the copper ions contributed to the toxicity of copper-tannate complexes and the increase of mortality is proportional to increase of extract concentration and exposure time. For the field test, copper- tannate formulated antifouling paint was applied on fishnet panels. After two months of exposure in the seawater, panels with higher concentration (19.35 mg/ml) of copper tannate complex were less affected with biofoulers compared to panels painted with lower concentration of copper-tannate (12.9 mg/ml). In conclusion, this preliminary study on the effects of copper-tannate complex formulated paint on the fishnets revealed the potential use of this complex in slowing the attachment of the biofoulers on the substract (the fish net).

CHAPTER 1 INTRODUCTION

1.1 Biofouling and antifouling technologies

As happens to all the great majority of solid surfaces immersed in seawater, after a relatively short immersion time they will become fouled with numerous marine organisms, which are more than 4000 species. This biofouling phenomenon is also defined as the accumulation of biotic deposits on a submerged surface that caused major technical and economical problems worldwide (Eguia & Trueba, 2007; Iyapparaj *et al.*, 2012). The development of biofouling involves both physical and biochemical reactions. The first step occurs within the first minutes of the biological settlement. It involves physical reaction, where a layer of 'conditioning' film builds from organic materials mostly (protein, proteoglycans and polysaccharides) provides a sticky surface that aid in microorganism adherence (Loeb & Neihof, 1975; Dexter *et. al.*, 1978; Baier, 1984; Lewin, 1984). Next step is the microorganism colonization where biofilm develops as bacteria and microalgae adhere to the surface.

Microorganism colonization involves two distinct steps: reversible adsorption and irreversible adhesion. Physical forces such as Brownian motion, electrostatic interaction, gravity and van-der-Waal forces essentially govern the former step (Fletcher & Loeb 1979; Walt *et al.*, 1985). The latter occurs mainly through biochemical effects such as secretion of extracellular polymeric substances (EPS). The biochemical reactions are effectively irreversible. Therefore, it would be easier to prevent biofouling at the physical reaction as efficient inhibition of the physical reaction would prevent the later biochemical reactions (Cao *et al.*, 2010). Biofouling has been recognized for causing many problems for more than 2000 years (Callow 1990). In shipping industry, microfouling alone can increase the fuel consumption by up to 18% and reduce the ship speed by at least 20%. This is due to the increased of frictional resistance that makes the hull rougher and the ship heavier. The fish farming industry and aquaculture in general suffer significantly from the effects of biofouling. For example the heavy fouling of fish cages and netting, which is costly to remove, is detrimental to fish health and yield and can cause equipments failure (Hellio *et al.*, 2000; Ross *et al.*, 2004; Braithwaite & McEvoy, 2005; Bazes *et al.*, 2006).

Natural product such as wax and tar were used as antifouling product. The first antifouling paints was reported in the mid-19th century, which contained copper and arsenic as toxicants agent. Among the currently available biocide (co-biocides) are, Irganol 1051 (2-methylthio-4-*tert*-butylamine-6-cyclopropylamine-*s*-triazine), Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), copper pyrithione, zinc pyrithione, SeanineTM 211 (member of 3(2H)-isothiazolone), and Zineb. However, their effects have not been fully studied.

Since the end of 1990s, antifouling paints have been made with combination of polyacrylic resins with biocides to prevent biofouling formation. Organotin compounds including tributyltin (TBT) and tributyltin oxide (TBTO) were widely used for controlling these sessile organisms (Suzuki *et al.*, 1992). In general, the TBT based paint was widely applied as an antifouling coating in the shipping industry before it was banned. The use of TBT has been restricted as of the International Maritime Organization (IMO) conference in 1998, and these coatings have been banned completely starting from 1st January 2008 (Clare, 1998; Champ 2000; Anna, 2009).

Due to the ban, there is a growing need for other methods of prevention of the biofouling. It is reported that the prevention of marine fouling can be achieved by coatings from which a controlled release of toxic molecules prevents the growth of adhered organisms (bacteria, algae and mollusks) by killing them (Fay *et al.*, 2007). The ideal replacement for TBT is an environmentally neutral coating with both antifouling and fouling-release properties (Magin *et al.*, 2010). In addition, the response to this ban has been the use of copper, zinc and a variety of organic compounds as the active, antifouling components.

The antifouling properties of tannins were claimed as early as 1881 (Jones, 1881). In recent studies, tannin from *Rhizophora apiculata* barks has been reported to possess antibacterial and anticandidal properties (Suraya *et al.*, 2011). In Malaysia, *R. apiculata* is a plant widely used in charcoal industry, where the barks of the *R. apiculata* are normally scraped out from the log and left to rot in the fields (as agrowaste). The barks of these plants are able to produce high yields of tannins.

1.2 Problem statements

Because non-toxic antifouling paints cannot as yet be produced on an industrial scale, there is an urgent need for the development of alternative formulations that promotes good antifouling performance without polluting the marine environment.

Therefore, in this present study, the mixed-tannin extracted from *R. apiculata* mangrove barks, which is a polar substance that is easily dissolved in water, will be combined with non-polar substance such as metal ions (copper) to form metal-tannate complexes, in order to reach an adequate leaching rate and ensures antifouling control when incorporated in antifouling paint formulation. The antimicrobial activities of all

metal-tannates complexes were studied. The selected metal-tannate complex with the strongest antimicrobial activity was further studied for the effect of exposure time on the growth profile of marine fouling bacteria, the toxicity and also antifouling activity of the metal-tannet on field test.

1.3 Research Objectives

- 1. To identify the marine bacteria isolates.
- 2. To extract mixed-tannin from *Rhizophora apiculata* barks using 70% acetone-water mixture and to prepare metal-tannate complexes by chelating process.
- 3. To screen the antimicrobial activity of the four metal-tannate complexes (copper-, zinc-, aluminium- and ferum-tannate) against identified marine fouling bacteria.
- 4. To determine the Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC) and time kill study of the copper-tannate complex against marine fouling bacteria, as well as its structural degeneration and toxicity tests.
- 5. To evaluate the potential application of the new antifouling paint containing coppertannate complex on fishnet panels in submerged seawater.

CHAPTER 2 LITERATURE REVIEW

2.1 Biofouling

Commonly in the marine environment, any natural and artificial surfaces immersed in seawater are colonized by biofoulers. This biofouling event is generally defined as the undesirable phenomenon of adherence and accumulation of biotic deposits on a submerged artificial surface or in contact with seawater (Iyapparaj et al., 2012). Ever since 2000 years ago, biofouling has been recognized for causing various problems worldwide (Callow, 1990). Biofouling involves a series of discrete physical, chemical and biological events, which later results in the formation of a complex layer of attached organisms known as biological fouling. Marine bacteria, fungi and yeast are major organisms involved in the formation of the microlayer, which is the first step in the process of biofouling formation (Holmstrom & Kjellberg, 1994). In general, there are two major categories of marine adhesion organisms. The first category includes 'micro fouling' or biofilm organisms, which consist of marine bacteria, micro-algae, protozoa and diatoms. The next category includes 'macro fouling' organisms such as macro-algae, barnacles, bryozoans and tubeworms (Dobretsov et al., 2006). The five most important macro-fouling species that have been reported are barnacles, mussels, polychaete worms, bryozoans and seaweeds (Stefan, 2009).

2.1.1 Biofouling process

The development of biofouling involves both physical and biochemical reactions as summarized in Table 2.1 (Almeida *et al.*, 2007). The first step of biofouling is

Processes involved	Attached organisms	Nature of film formed	Initiation time 1 min	
Stage 1: Essentially physical forces, such as electrostatic interactions, Brownian movement and Van der Walls forces.	Adhesion of organic molecules, such as proteins, polysaccharides and proteoglycans and, possibly, some inorganic molecules.	Conditioner		
Stage 2: Reversible "adsorption" of species, especially by physical forces and their subsequent adhesion interacting together with protozoans and rotifers.	Bacteria, such as <i>Pseudomonas</i> <i>putrefaciens</i> and <i>Vibrio alginolyticus</i> and diatoms (single-cell algae) such as <i>Achnantes brevipes, Amphora</i> <i>coffeaformis, Amphiprora paludosa,</i> <i>Nifzschia pusilla</i> and <i>Licmophora</i> <i>abbreviata.</i>	Microbial biofilm	1-24 hour (s)	
Stage 3: Arrangement of microorganisms with greater protection from predators, toxicants and environmental alterations, making it easier to obtain the nutrients necessary for the attachment of other microorganisms.	Spores of microalgae, such as <i>Ulothrix</i> <i>zonata</i> and <i>Enteromorpha intestinalis</i> and protozoans, including <i>Vaginicola</i> sp., <i>Zoolhamnium</i> sp. and <i>Vorticella</i> sp.	Biofilm	1 week	
Stage 4: Increase in the capture of more particles and organisms, such as larvae of marine macroorganisms, as a consequence of the pre-existence of the biofilm and the roughness created by the irregular microbial colonies that comprise it.	Larvae of macroorganisms, such as Balanus amphitrite (Crustacea), Laomedia flexuosa (Coelenterata), Electra crustulenta (Briozoa), Spirorbis borealis (Polychaeta), Mytilus edulis (Mollusca) and Styela coriacea (Tunicata)	Film consisting of the attachment and development of marine invertebrates and growth of macroalgae.	2-3 weeks	

Table 2.1: Stages of attachment of marine organisms on surfaces immersed in seawater

conditioning that occurs within the first minutes of the biological settlement. This stage involves physical reaction, where organic materials mostly protein, proteoglycans and polysaccharides form a layer of 'conditioning' film that provides a sticky surface that aid in microorganism adherence (Loeb & Neihof 1975; Dexter, 1978; Baier, 1984). Next step is the microorganism colonization where bacteria and microalgae adhere to the submerged surface and biofilm start to develop. Microorganism colonization involves two distinct steps: the reversible adsorption and irreversible adhesion. Physical forces such as Brownian motion, electrostatic interaction, gravity and van-der-Waal forces essentially administer the former step (Fletcher & Loeb 1979, Walt *et al.*, 1985). The latter step occurs mainly through biochemical effects such as secretion of extracellular polymeric substances (EPS). The biochemical reactions are effectively irreversible. Theoretically, it would be effective to prevent biofouling at the physical reaction stage as efficient inhibition of the physical reaction would prevent the later biochemical reactions (Cao *et al.*, 2011).

2.2 Marine organisms

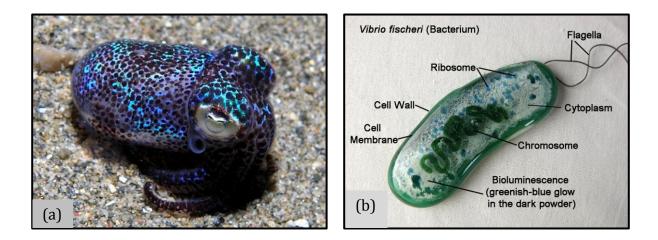
With a diversity of life forms that cover more than 70% of the earth's surface, the oceans represent the largest ecosystem on earth. Whereas, the largest fraction of biomass in the oceans is represented by microbes which comprise of both prokaryotes (bacteria and archae) and eukaryotes (algae, protists and fungi). Among the microbes, bacterial populations ranks as one of the dominant communities with a cell count in the pelagic water, is typically about 10^6 cells/ml (Ducklow, 2000). The total number of bacteria in oceanic waters has been estimated to 10^{29} cells (Whitman *et al.*, 1998). This number proves the existence of bacteria almost everywhere in the oceans. Their habitats are

diverse, including the open water, sediment, bodies of marine macro and microorganisms, estuaries, and hydrothermal vents (Goecke et al., 2010). Bacteria play an important role in controlling the life of many marine organisms including plants and animal. For example, biofilm-forming bacteria are known to transmit signals (quorum sensing) that affect the settlement of invertebrate larvae on those biofilms (Hadfield, 2011). Established associations between bacteria and animals are widely distributed in both marine and terrestrial ecosystems. Conserve associations with a more diverse microbial assemblage have also been reported where bacteria can induce permanent attachment in variety of taxa including the alga Ulva sp. (Joint et al., 2000), the coral Acropora microphthalma (Webster et al., 2004) and the polychaete Hydroides elegans (Hentschel et al., 2002; Lau et al., 2003; Bourne et al., 2008). Recently, marine organisms have attracted much attention for scientific researches due to their importance in various domains of sciences. Biofouling is one of the reasons that trigger the vast study of marine biofoulants and antifouling technologies. As in 1960s, the Organization of Economic Cooperation and Development (OECD) in many countries, including Portugal, has performed studies on the identification of the main marine macroorganisms that fix themselves to ship hulls and caused biofouling. Table 2.2 is showing the characteristics of main macroorganisms species that fouled on the ship hulls. Each of the groups and subgroups possess different different characteristics is more or less prevented from becoming fixed based on the toxicant level that have been incorporated in the different antifouling products used over the years.

Groups	Algae (plants)		Invertebrates (animals)						
Subgroups	(a) green, (b) brown and (c) red		Hard shell organisms			Grass type organisms	Small bush organisms	Spineless organisms	
Designation	(a) Enteromorpha, Ulva and Cladophora), (b) (Ectocarpus and Fucus, and (c) (Ceraminum)	Balanus	Barnacles	Molluscs	Fouling bryozoans	Hydroids or bryozoans	Hydroids or bryozoans	Ascidians	Sponges and sea anemones
Example of typical aspect		Elasimus							(1)
Designation	Green algae	Balanus	Calcareous polychaetes	Molluscs	Fouling bryozoans		Bryozoans	Ascidians	
Example of typical aspect							and the second s		
Short description	Only plants that become attached to immersed surface: a) close to surface; b) at mid depth; and c) at depth	Attached trunco- conical or cylindrical crustaceans	Barnacles are Balanus that are fixed to surfaces via a stem	Bivalves containing a spineless animal in their interior	Calcareous incrustations that multiply from a central individual	Organisms that cover surfaces with an open grass or fur	Like bushes of several centimetres and with branches	Constituted by a spineless bag with two tubular openings or starry plates	Spineless and spongy aspect (sponges) and sea anemones

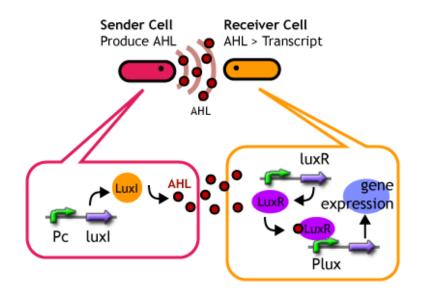
Table 2.2: Characteristics of main marine macroorganism species

[Source: Almeida et al., 2007]


2.3 Quorum sensing and biofilm development

Quorum sensing (QS) and biofilm development are closely interconnected processes (Solano et al., 2014). Quorum sensing is chemical communication in bacteria that involves producing, releasing, detecting and responding to small hormone-like molecule called auto-inducers. Biofilm formation is a cooperative group behavior that involves bacterial populations living embedded in a self-produced extracellular matrix (Solano et al., 2014). Bacteria use the chemical signal molecules that contain crucial information to communicate and coordinate the activities of large group of bacterial cells (Waters & Bassler, 2005). Quorum sensing might coordinate the switch to a biofilm lifestyle when the bacterial population density reached a threshold level (Solano et al., 2014). Thus, bacteria are able to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community (Waters & Bassler, 2005). Most quorum-sensingcontrolled processes are ineffective when single bacterium act alone, however it becomes effective when carried out simultaneously by a large number of bacterial cells. Quorum sensing enables bacteria to act as multicellular organisms by manipulating the distinction between prokaryotes and eukaryotes (Waters & Bassler, 2005). It is crucial to understand the quorum sensing systems in order to prevent the biofouling formation at early physical-reaction stage.

2.3.1 Quorum sensing in Gram-negative bacteria: HSL mediated system


The first described quorum-sensing system is that of the bioluminescent marine bacterium *Vibrio fischeri* that colonize the light organ of the Hawaiian squid *Eupryma* scolopes or bobtail squid (Figure 2.1) (Nealson & Hastings, 1979). It is a mutual

relationship where the bacteria benefit from the nutrient-rich light organ which encourage cells proliferation in numbers that are unachievable in seawater, whereas the squid (Figure 2.1a) uses the light provided by the bacteria (Figure 2.1b) for counter illumination to mask its shadow and prevent threat from the predators (Visick et al., 2000). As shows in Figure 2.2, two proteins LuxI, autoinducer synthase that produce acyl-homoserine lactone (AHL) and LuxR, binding transcriptional activator, control the expression of the luciferase operon (luxICDABE), which is required for the light production. When the AHL reaches a critical threshold concentration, LuxR binds to the AHL and form complex of (LuxR-AHL) that later activates the transcription of the operon encoding luciferase. The complex also induces expression of *luxI* because it is encoded in the luciferase operon. This regulatory configuration floods the environment with the signal that creates positive feedback loop and causes the entire population to switch into "quorum-sensing mode" and produce light. A large number of other Gramnegative proteobacteria possess LuxIR-type proteins and communicate with AHL signals (Manefield & Turner, 2002). Rather than rely exclusively on one LuxIR quorum sensing system, normally bacteria use one or more LuxIR systems, often in conjunction with other types of quorum-sensing circuits.

Figure 2.1: Quorum sensing system of two mutual organisms. (a) Bobtail squid from East Timor with visible blue glow that results from the presence of (b) *Vibrio fischeri* luminescence bacteria in the light organ.

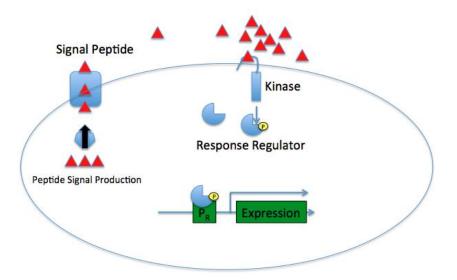
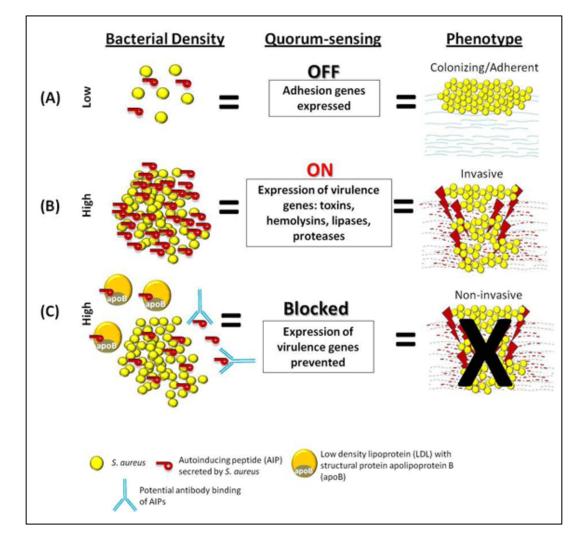

[Source:http://germzoo.blogspot.com/2012/01/living-machines-and-flashing-lights.html]

Figure 2.2: Diagrammatic representations for Homoserine-lactone (HSL) mediated quorum-sensing system in Gram-negative bacteria *Vibrio fischeri*. [Source:https://bli-research-in-syntheticbiologyandbiotechnology.wikispaces.com/Anna]


2.3.2 Quorum sensing in Gram-positive bacteria: Small peptide mediated systems

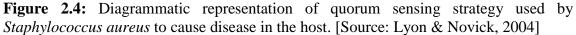

Differ from Gram-negative bacteria, Gram-positive bacteria use modified oligopeptides as signals to communicate and also "two component"-type membranebound sensor histidine-kinases as receptors. Figure 2.3 is showing the diagrammatic representation of the quorum sensing system in Gram-positive bacteria. A phosphorylation cascade that influences the activity of a DNA-binding transcriptional regulatory protein termed as response regulator mediates the signaling. Each Grampositive bacterium uses a signal different from that used by other bacteria and the cognate receptors are exquisitely sensitive to the signals' structures. Peptide signals are not diffusible across the membrane; hence dedicated oligopeptide exporters mediate the signal release. Many gram-positive bacteria communicate with multiple peptides in combination with other types of quorum-sensing signals.

Figure 2.3: Diagrammatic representation for small peptide quorum sensing mediated systems in Gram-positive bacteria of *Staphylococcus aureus*. [Source: http://openwetware.org/wiki/CH391L/S12/Quorum_Sensing]

Figure 2.4 is showing an example of peptide quorum sensing exists in *Staphylococcus aureus* (Tenover & Gaynes, 2000). *Staphylococcus aureus* uses a strategy to cause disease to the host. When at low cell density, the bacteria express their protein factors that promote attachment and colonization, whereas at high cell density, the bacteria repress these traits and initiate secretion of toxins, hemolysins and proteases that are presumably required for diffusion (Lyon & Novick, 2004).

2.4 Anti-fouling timeline

2.4.1 First technologies used prior to mid-19th century

Since ancient age, natural products such as wax, tar and asphalt were used as antifouling product. In the history of antifouling product, the Phoenicians and Carthaginians were the pioneer to introduce copper for antifouling purpose. The Greeks and Romans on the other hand started the use of lead sheathing. In the 18th century, the use of wooden sheathing covered with mixtures of tar, fat and pitch and studded with numerous metal nails was common as antifouling approach. Non-metallic sheathings were also used, such as rubber, vulcanite, cork and others. The first antifouling paints appeared only in the mid-19th century, containing copper, arsenic or mercury oxide as toxicants dispersed in linseed oil, shellac or rosin (WHOI, 1952; Lunn, 1974; Callow, 1990). The main antifouling products used prior to the mid-19th century is summarize in Table 2.3.

2.4.2 First antifouling paints used on steel hulls prior to 1960

The development of antifouling paints continues with the emergence of paints with binders based on different bituminous products and natural resins. However, it was reported to cause corrosion on the steel hulls. New products were then applied including "hot plastic paints, "rust preventive compounds" and "cold plastic paints". The first organometallic paints (with tin, arsenic, mercury and others) appeared in 1950 and gave rise to tributyltin (TBT)-based antifouling paints after numerous successive developments. Table 2.4 summarizes the main antifouling paints used on steel hulls prior to 1960.

Civilization Approximate / navigator period		Antifouling product	Reference
Oldest	Oldest	Wax, tar and asphalt	WHOI,1952; Callow, 1990
Phoenicians, Carthaginia	700 _{в.с.}	Pitch and possibly copper sheathing	WHOI,1952; Callow, 1990
ns	700 _{в.с.}	Lead sheathing and tallow	Lunn, 1974
Phoenicians	500 _{B.C.}	Coating of arsenic and sulphur mixed with oil	Callow, 1990
Greeks	300 _{B.C.}	Wax, tar and lead sheathing	Callow, 1990
Romans, Greeks	200 _{B.C.} to 45 A.D.	Lead sheathing with copper nails	WHOI, 1952
Vikings	10 _{A.D.}	Seal tar	WHOI, 1952
Plutarch	45-125 _{A.D.}	Scraping of algae, slime and pitch	WHOI, 1952
Several Columbus	$13^{\text{th}} - 15^{\text{th}}$ centuries	Pitch and mixture with oils, resin or tallow Pitch and tallow	WHOI, 1952
Continuous	•••••••••	Copper, possibly with a mixture of cement, iron dust and a copper compound (sulphide) or arsenic ore	WHOI, 1952;
	1618-1625		Lunn, 1974
Various	18 th century	Sacrificial wood sheathing on a layer of pitch and animal hair Wood sheathing covered with mixture of tar, fat, sulphur and pitch, with numerous metallic nails arranged with their heads forming a type of metallic sheathing.	Lunn, 1974 WHOI, 1952;
English	1758	Copper sheathing, which was abandoned for causing galvanic corrosion of iron, nails.	WHOI, 1952;
English	1786	Copper sheathing, using nails of copper and zinc alloy	Lunn, 1974
English	Early 19 th	Sir Humphrey Davy, after studying the copper corrosion process, demonstrated that copper	WHOI, 1952;
	century	dissolution in seawater prevented fouling	Callow, 1990
Various	1758-1816	Suggested sheathing of zinc lead, nickel, arsenic, galvanized steel and alloys of antimony, zinc and tin, followed by copper-plated wood sheathing.	Callow, 1990
	1862	Wood sheathing covered with copper sheathing (abandoned due to cost)	WHOI, 1952;
Various	Mid 19 th century	Paints containing toxicant (Cu, As or mercury oxide) dispersed in a polymeric binder (linseed oil, shellac, colophony)	WHOI, 1952;

Table 2.3: Antifouling products used in the past, prior to mid-19th century

Type of product	Main component		Remarks	Reference
and first used	Binder	Pigment	Keinai K5	Kererence
First paint (Mid-19 th century)	Linseed oil, Shellac varnish, tar, resins	Copper, arsenic or mercury oxides	Dispersion of toxicant in polymeric binder	WHOI, 1952 Callow, 1990
Insulating primer under antifouling paint (1847)	Idem, with preliminary insulating varnish coating	Copper, arsenic or mercury oxides	Insulation of hull from antifouling paint by application of varnish	Almeida <i>et al,</i> 2007
"Hot plastic paints" (1860)	Metallic soap composition	Copper sulphate	Similar to "Moravian"	Almeida <i>et al,</i> 2007
	Colophony	Copper compound	Italian "Moravian"	WHOI, 1952
Antifouling paint (1863)	Tar	Copper oxide	With naphtha or benzene	WHOI, 1952
Rust preventer (Late 19 th century)	Shellac primer and Shellac antifouling paint	Different toxicants	Shellac type paints	WHOI, 1952
Spirit varnish paints (1908-1926)	Grade A "Gum Shellac"	Red mercury oxide or zinc oxide, zinc dust and India red	With alcohol, turpentine essence or pine tar oil	WHOI, 1952
"Cold plastic paints" (1926)	Coal tar or coal tar + colophony	Copper or mercury oxides	Easier to apply than hot plastic paints	WHOI, 1952 Almeida <i>et al,</i> 2007
First organo- metallic paints (1950-1960)	Acrylic esters or others	Copper compounds Copper compounds + co- biocides	Some seemed capable of resolving the problem of marine fouling seasonably well	Almeida <i>et al,</i> 2007

Table 2.4: Types of antifouling paint used on steel hulls prior to 1960

2.5 Antifouling methods

It is important to research ways to prevent the biofilm formation due to the banned of many toxicant based antifouling paints recently. Several physical/mechanical, physical/chemical and biological/biochemical principles for the prevention of biofouling were used in the last 30 years (Gerencser *et al.*, 1962, Loeb & Neihof 1975, Characklis 1981, Dhar *et al.*, 1981, Branscomb & Rittschof 1984, Fletcher & Baier 1984, Humphries *et al.*, 1986). However, in general antifouling methods can actually be classified into three large categories, which are chemical, physical and biological methods (Cao *et al.*, 2011).

2.5.1 Chemical antifouling methods

2.5.1. (a) Tributyltin self-polishing copolymer coatings.

In 1974, Milne and Hails have patented the first tributyltin self-polishing copolymer (TBT-SPC) technology, which provide an excellent antifouling activity that revolutionized the whole shipping industry (Yebra *et al.*, 2004). TBT-SPC paints are based on acrylic polymer with TBT groups bound on the polymer backbone by an ester. When in contact with seawater, the soluble pigment particles (such as ZnO) begin to dissolve. The polishing rate of the TBT-SPC paints can be control by manipulating the polymer chemistry. Therefore, it is possible to balance between high effectiveness and a long lifespan plus the coatings can be customized for ships with different condition of operation. TBT-SPC paints have high mechanical strength, high stability to oxidation and short drying times. In general, the TBT-SPC was widely applied as an antifouling coating in the shipping industry before it was banned due to the deleterious toxicant effects.

2.5.1. (b) Tin-free SPC-technology

There are two types of tin-free antifouling coatings, which are (i) controlled depletion systems (CDPs) and (ii) tin-free self-polishing copolymers (tin-free SPCs). CDPs incorporate modern reinforcing resins with the same antifouling mechanism as the conventional resin matrix paints. Tin-free SPCs has similar function to TBT-SPC but do not contain tin. The performance of tin-free SPCs is better in comparison to the CDPs. Tin-free SPCs react in a similar to organic tin SPCs, but their matrix material is mostly acrylic copolymer and non-tin metals such as copper, zinc, and silicon. As an example, the Exion series from Kansai Paint uses insoluble Zinc acrylate, which is hydrolyzed to soluble acidic polymer (Yebra *et al.*, 2004).

2.5.1. (c) Non-toxic antifouling technology

Although it seems like no alternative antifouling technology is capable to replace the biocide-based coatings in the meantime, there are some non-toxic approaches that have been reported, in example, the silicone and fluoropolymer coatings (Holland *et al.*, 2004). It appears that fluoropolymers and silicones possess the antifouling property by release. Some low surface energy coatings with modified acrylic resin and nano-SiO2 were also developed (Chen *et al.*, 2008). However, attached fouling organisms are not as easily released as claimed (Brady 2001; Holland *et al.*, 2004; Umemura *et al.*, 2007). A part from that, this method has many disadvantages, such as expensive, poor mechanical properties and difficult to recoat. Thus, the performance is limited which leads the focus of antifouling study to other methods.

2.5.2 Biological antifouling methods

Some organisms are able to secrete enzymes or metabolites that have lowtoxicity and biodegradable to inhibit the growth of their competitors. Many attempts have been made by researchers to extract high concentrations of secondary metabolites for biological antifouling. The functional antifouling components have been reported in organisms such as fungi (Xiong *et al.*, 2009), sponges (Limna *et al.*, 2009) and some bacteria (Burgess *et al.*, 2003; Fernando & Carlos 2008). Various enzymes have been reported with antifouling properties such as oxidoreductase, transferases, hydrolase, lyase, isomerase and ligase (Dobretsov *et al.*, 2007; Jakob *et al.*, 2008; Chao *et al.*, 2010). In general, the function of enzymes for antifouling applications can be divided into the following four categories:

2.5.2. (a) Enzymes that degrade adhesive used for settlement

In macrofouling, protein and proteoglycans have an important role in the adhesion step. Proteases can hydrolyze peptide bonds at different sites. Thus, these enzymes can be used to degrade mucilage based on peptide to prevent biofouling. One example is the attachment of Ulva spores, barnacle cyprids and bryozoans were effectively inhibited by serine protease (Pettitt *et al.*, 2004; Dobretsov *et al.*, 2007) by reducing the adhesive effectiveness rather than any toxic effect (Nick *et al.*, 2008). However, the process is more complicated in microfouling (Pettitt *et al.*, 2004; Leroy *et al.*, 2008), because polysaccharide-based adhesive are as important as proteins during secondary adhesion. In general, glycosylase mediated the polysaccharide degradation and the process is difficult and quite complex (Chiovitti *et al.*, 2003). Glycosylase can

target only limited range or linkages. Therefore, it would be difficult to choose an appropriate glycosylase for broad-spectrum antifouling (Leroy *et al.*, 2008).

2.5.2. (b) Enzyme that disrupt the biofilm matrix

The varieties of EPS make biofilm very complex substances. Thus, a very broad combination of both hydrolyses and lyases are required to disintegrate their polymeric network (Jakob *et al.*, 2008). Biofilm are very adaptable to external conditions, the degradation of the crucial component will induce the generation of alternative components that will replace the original and establish a new network to proliferate the organism (Joao *et al.*, 2005). Tests have shown that even though alginase could detach a thin biofilm, it gave no effect on an identical biofilm that was already fully established (Joao *et al.*, 2005). In conclusion, the antifouling method of disrupting the biofilm matrix may not be suitable and effective due to the complexity and adaptability of the biofilm.

2.5.2. (c) Enzyme that generate deterrents and biocides

Recent antifouling compounds extracted from metabolites secreted by different marine animals or plants should be classified as deterrents rather than toxins (Krug, 2006; Krinstensen *et al.*, 2008). Some of the enzymes that possess such effect include glucose oxidase, hexose oxidase and haloperoxidase (Charlotte *et al.*, 1997; Krinstensen *et al.*, 2008). Glucose and hexose oxidase is used to generate hydrogen peroxide to induce oxidative damage in living cells (Imlay, 2003). Haloperoxidase catalyses the formation of hypohalogenic acids usually used in water treatment systems as disinfecting agents (Krinstensen *et al.*, 2008). Hypohalogenic acids have similar

characteristic as hydrogen peroxide that have high rate of decomposing into water and oxygen in seawater, this could be further study as potential nontoxic and biodegradable antifouling substances (Charlotte *et al.*, 1997).

2.5.2. (d) Enzyme that interfere with intercellular communication

As mentioned in section 2.2.1, quorum sensing plays an important role in biofilm formation. Some Gram-negative bacteria required N-acyl homoserine lactone (AHL) for quorum sensing mechanism. By first eliminating the AHL auto inducers may thus prevent the development of biofouling (Krinstensen *et al.*, 2008). AHL acylase able to degrade AHL and biofilm formation is inhibited by the increasing concentration of this enzyme. The settlement of Ulva spores and polychaete larvae was also affected by acylase to some extent (Callow & Callow, 2006; Huang *et al.*, 2008).

2.5.2. (e) Challenges for enzymatic antifouling methods

The temperature ranges of seawater from -2° C to 30° C can affect the enzyme activity and stability. It is very challenging to balance the effectiveness of the enzymatic antifouling coating and it lifespan because if the temperature is too high, the enzyme will decompose thus decrease the lifespan of the enzymatic antifouling coating. Apart from that, another crucial step in this antifouling method is to design an appropriate coating matrix that contains the enzyme for successful application. More study should be made to analyze the distribution of the enzyme and its amount because soluble enzymes will soon form a thick leaching layer.

2.5.3. Physical antifouling methods

2.5.3. (a) Antifouling by electrolysis and radiation

The most common physical method in preventing biofouling is to produce hypochlorous acid (HCIO), ozone bubbles, hydrogen peroxide or bromine through electrolysis of seawater (Chiang et al., 2000; Tadashi & Tae, 2000; Yebra et al., 2004;). Their strong oxidizing ability will spread all over the ship's hull and eliminate possible surface for fouling organism's attachment. Some of the systems are not highly efficient due to the large voltage drop across the surface that causes the corrosion problems of steel. Currently, titanium-supported anodic coating has been suggested with advantages such as having low decomposition tension, higher current efficiency, and lower energy consumption (Liang & Huang, 2000). Another method is by microcosmic electrochemical methods that use direct electron transfer between electrode and the microbial cells. This causes electrochemical oxidation of the intercellular substances, however it is expensive and the efficiency has not been established (Krinstensen et al., 2008). Vibration method such as acoustic technology has also been reported (Sanford & Rittscho, 1984). Hydroids, barnacles and mussels can be inhibited to some extent by either external vibration sources or piezoelectric coating (Miloud & Mireille, 1995). However, this method requires huge power consumption. Other studies have evaluated magnetic fields, ultraviolet radiation and radioactive coatings (Yebra et al., 2004), but these method are not practical in application. Another potential method is to use substrates with different color, which affect the attachment and growth of spores and worms (Swain et al., 2006).

2.5.3. (b) Antifouling by modification of surface topography and hydrophobic properties

In recent years, varying surface characteristics, including surface roughness, topography, hydrophobic behavior, and lubricity, have been investigated for antifouling application. Studies had shown that fouling diatoms adhere more strongly to a hydrophobic polydimethylsiloxane (PDMSE) surface than to glass. Bacteria and Ulva spores adhere strongly on the surface with greater angle and hydrophilic surface. Moreover, hydrophilic surfaces are thought to be capable of antifouling. For example, surface with metal nanoparticles such as TiO2 have antifouling behavior, because the photocatalytic activities introduced by solar ultraviolet make the surface more hydrophilic so the biofilm is washed more easily (Dineshrama et al., 2009). However, some species exhibit different adhesion behavior on the same set of surface highlighting the importance of differences in cell-surface interactions (Finlay et al., 2002; Sitaraman et al., 2006). Thus, it inspired the development of a surface that presents both hydrophilic and hydrophobic domains to settling cells and organisms. It has been shown that rougher surface increase adhesion of Pseudomonas (Scardino et al., 2006). In conclusion, the identification of effective antifouling topographies typically occurs through trial-and-error rather than predictive models, thus these theories are not sufficient to explain the real situation. Therefore, these formulas are not expected to guide the development of antifouling methods.