FABRICATION, PHOTOCATALYTIC AND ADSORPTION OF IMMOBILIZED TiO$_2$/CHITOSAN-MONTMORILLONITE AND TiO$_2$/POLYANILINE BILAYER SYSTEMS FOR THE REMOVAL OF METHYL ORANGE DYE FROM AQUEOUS SOLUTIONS

NOOR NAZIHAH BINTI BAHHRUDIN

UNIVERSITI SAINS MALAYSIA

2016
FABRICATION, PHOTOCATALYTIC AND ADSORPTION OF IMMOBILIZED TiO$_2$/CHITOSAN-MONTMORILLONITE AND TiO$_2$/POLYANILINE BILAYER SYSTEMS FOR THE REMOVAL OF METHYL ORANGE DYE FROM AQUEOUS SOLUTIONS

by

NOOR NAZIHAH BINTI BAHRUDIN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

September 2016
ACKNOWLEDGEMENT

IN THE NAME OF ALLAH THE MOST GRACIOUS AND MOST MERCIFUL

First and foremost, all the praises and thanks are towards Allah, the Almighty, Who had given me strength, health and courage to complete this thesis. Special appreciation is dedicated to my research supervisor and mentor, Professor Dr Hj Mohd Asri Nawi who has been coaching me, especially in research from nothing till who I am today. Thank you, Prof, for your wise advice, patience, concern and constructive guidance throughout these years.

Special thanks are also awarded to Ministry of Higher Education of Malaysia for the sponsorship under My Phd program; FRGS grant; 203/PKIMIA/6711228 and Universiti Sains Malaysia for all the facilities provided. This thesis would not be completed without the help of these dedicated people; Mrs Nor Hayati, Mr Zamri, Mr Sujay, Mr Siva, Mr Johari, Ms Jamilah, Mrs Arlita, Mr Ong, Mr Yushamdan, SCS lecturers and supporting staff and to those whose names I didn’t mention here, thanks a lot for your endless cooperation and patience during the period of my study. Special thanks are also forwarded to my amazing and inspiring colleagues; Dr Sumiyyah, Dr Wan Izhan, Dr Ali, Dr Lelifajri, Dr Sharin, Dr Karam, Dr Ngoh, soon to be Dr; Nazrina, Fathanah, Salmiah, Sheilatina, Norlizawati and Wan Siti Azahayu for their informative discussion and self-encouragement.

Last but not least, an endless appreciation is dedicated to my beloved family members, my father, Hj. Bahrudin Daud, my mother, Hjh. Maimunah Yunus, my sisters, Maisarah and Yuhanis for the everlasting love, support and encouragement through the thick and thin moments of my life. Hopefully, all the experiences, knowledge and practices that I gained throughout these years would make me a better person for myself, family, religion and nation, insya Allah.
TABLE OF CONTENTS

Acknowledgement ii
Table of Contents iii
List of Tables xiv
List of Figures xvii
List of Abbreviations xxviii
Abstrak xxx
Abstract xxxii

CHAPTER ONE: INTRODUCTION

1.1 Photocatalysis: Historical Overview 1
1.2 Heterogeneous photocatalysis 4
1.3 Titanium dioxide 6
 1.3.1 Ideal photocatalyst 6
 1.3.2 Structure and properties 7
 1.3.3 Mechanism of the TiO$_2$ photocatalysis 8
 1.3.4 Langmuir Hinshelwood kinetic model 10
 1.3.5 Drawbacks and improvements 12
1.4 Chitosan (CS) 15
 1.4.1 Origin of CS 15
 1.4.2 Applications of CS 16
 1.4.3 Modification of CS 17
1.5 Montmorillonite 20
 1.5.1 Structure and properties 20
 1.5.2 Applications of MT in environmental remediation 21
1.6	Conducting polymer: Polyaniline	22
1.7	Adsorption	25
	1.7.1 Kinetic models	25
	1.7.2 Diffusion model	26
	1.7.3 Isotherm models	27
1.8	Combination of TiO$_2$ with polymers and clay	28
	1.8.1 TiO$_2$-CS	28
	1.8.2 TiO$_2$-MT	29
	1.8.3 TiO$_2$-conducting polymers	30
1.9	Immobilized photocatalysts	32
1.10	Immobilized layer by layer arrangements (bilayer system)	34
1.11	Mechanism of bilayer systems	39
	1.11.1 Solid-state oxidation	39
	1.11.2 Charge transfer	40
	1.11.2(a) Dye-saturated	40
	1.11.2(b) Incorporation of Fe$^{3+}$	41
	1.11.3 Photocatalytic-adsorptive removal processes	42
1.12	Water pollution from textile dyes: Methyl orange	43
1.13	Problem statements	46
1.14	Research objectives	47

CHAPTER TWO: MATERIALS AND METHODS

2.1	Chemicals and Reagents	49
2.2	Instruments and equipments	50
2.3	Reactor set-up	51
2.4 Preparation of CS and CS-MT casting solutions 52
2.5 Preparation of ENR_{50} solution 52
2.6 Preparation of ENR_{50}-PVC polymer blend 53
2.7 Preparation of TiO_2 formulation 53
2.8 Synthesis of PANI powder 53
2.9 Preparation of PANI formulation 54
2.10 Preparation of MO stock and standard solution 54
2.11 Fabrication of immobilized adsorbent and photocatalyst plates 55
 2.11.1 Fabrication of CS/GP and CS-MT/GP 55
 2.11.2 Fabrication of TiO_2/CS-MT/GP 55
 2.11.3 Fabrication of PANI/GP 55
 2.11.4 Fabrication of TiO_2/PANI/GP 56
2.12 Physical characterizations 56
 2.12.1 Scanning electron microscopy-Energy dispersive X-Ray 56
 2.12.2 Surface area and porosity 56
 2.12.3 X-Ray diffraction 57
 2.12.4 Photoluminescence 57
 2.12.5 UV-Visible diffuse reflectance 57
 2.12.6 Fourier transform infrared 58
2.13 Physical and chemical analyses 58
 2.13.1 Adherence test 58
 2.13.2 Point of zero charge (pH_{pzc}) 59
 2.13.3 Swelling index (SI) 60
 2.13.4 Total organic carbon (TOC) 60
 2.13.5 Detection of hydroxyl radicals 61
2.13.6 Ion chromatography (IC)

2.14 Batch adsorption study

2.14.1 Optimization of CS loading within the CS-MT casting solution

2.14.2 Optimization of MT loading within the CS-MT casting solution

2.14.3 Optimization of CS-MT loading

2.14.4 The effect of initial pH of the MO solutions

2.14.5 Comparison on adsorption of MO by CS-MT powder and CS-MT/GP

2.14.6 Thermodynamic study

2.15 Regeneration of spent CS-MT/GP

2.15.1 Effect of initial pH of ultra pure water on the desorption of MO

2.15.2 Photocatalytic regeneration of CS-MT/GP

2.15.3 Reusability of the regenerated CS-MT/GP

2.16 Photocatalytic and adsorption experiments

2.16.1 Photocatalytic degradation experiment

2.16.2 Adsorption experiment

2.17 Evaluation on the photocatalytic activity and adsorption of the systems

2.18 Fabrication of TiO$_2$/CS-MT/GP bilayer system

2.18.1 Optimization of CS-MT/GP adsorbent sub-layer loading

2.18.2 Optimization of TiO$_2$ top layer loading

2.19 Adsorption of MO by the TiO$_2$/CS-MT/GP bilayer system

2.19.1 Effect of initial MO concentrations

2.19.2 Thermodynamic study
2.20 The optimization of the operational parameters
 2.20.1 Effect of initial pH of MO solution
 2.20.2 Effect of initial MO concentrations

2.21 Detection of radical quenchers

2.22 Photo-etching of TiO$_2$/CS-MT/GP

2.23 Oxidation of CS within the CS-MT composite

2.24 Optimization of the regeneration time of TiO$_2$/CS-MT/GP

2.25 Evaluation on the reusability of TiO$_2$/CS-MT/GP

2.26 Mineralization of MO
 2.26.1 Dissolved organic carbon
 2.26.2 Ion chromatography analysis
 2.26.3 pH changes

2.27 Detection of intermediates during MO degradation

2.28 Preparation of PANI formulation
 2.28.1 Optimization of the amount of PVC powder within PANI formulation
 2.28.2 Optimization of the amount of PANI powder within PANI formulation
 2.28.3 Optimization of PANI loading in PANI/GP
 2.28.4 Effect of initial pH of MO solutions
 2.28.5 Effect of aeration flow rate
 2.28.6 Effect of initial MO concentrations
 2.28.7 Thermodynamic study

2.29 Fabrication of TiO$_2$/PANI/GP
 2.29.1 Optimization of PANI sub-layer loading
 2.29.2 Optimization of TiO$_2$ loading
2.30 Adsorption studies 78
 2.30.1 Effect of the initial MO concentrations 78
 2.30.2 Thermodynamic study 78
2.31 Photocatalytic-adsorptive removal of MO by TiO₂/PANI/GP 79
 2.31.1 Effect of initial pH of MO solutions 79
 2.31.2 Effect of aeration flow rate 79
 2.31.3 Effect of initial concentrations of MO 79
2.32 Photo-etching of TiO₂/PANI/GP 80
2.33 Evaluation on the reusability of the TiO₂/PANI/GP 80
2.34 Mineralization study 81
 2.34.1 Dissolved organic carbon 81
 2.34.2 Ion chromatography analysis 81
 2.34.3 pH changes 81
2.35 Detection of intermediates 81

CHAPTER THREE: ADSORPTION OF METHYL ORANGE ONTO IMMOBILIZED CHITOSAN-MONTMORILLONITE (CS-MT/GP)
3.1 Introduction 83
3.2 Optimization of the CS:MT ratio in casting solution 84
 3.2.1 Optimization of CS loading within the CS-MT casting solution 84
 3.2.2 Optimization of MT loading within the CS-MT casting solution 87
3.3 Characterizations of CS-MT composite (1:0.12 ratio of CS:MT) 90
 3.3.1 Scanning electron microscopy-Energy dispersive X-Ray (SEM-EDX) 90
 3.3.2 Surface area and porosity 93
3.3.3 Fourier transform infrared (FT-IR) 94
3.3.4 X-Ray diffraction (XRD) 96

3.4 Effect of parameters on adsorption of MO 98
3.4.1 Effect of CS-MT/GP loading on contact time 98
3.4.2 Effect of initial pH of MO solutions 100

3.5 Adsorption studies 103
3.5.1 Effect of initial concentrations on contact time 103
3.5.2 Kinetic studies 107
3.5.2(a) Pseudo first and second order models 107
3.5.2(b) Intraparticle diffusion 112
3.5.3 Isotherm studies 115

3.6 Thermodynamic study 118

3.7 Regeneration of spent CS-MT/GP 120
3.7.1 Desorption study of MO from the spent CS-MT/GP 121
3.7.2 Photocatalytic regeneration of spent CS-MT/GP 123

3.8 Characterizations of regenerated CS-MT/GP 124
3.8.1 UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) 124
3.8.2 Surface area and Fourier transform infrared (FT-IR) analyses 126
3.8.3 Reusability of the regenerated CS-MT/GP 127

CHAPTER FOUR: PHOTOCATALYTIC-ADSORPTIVE REMOVAL OF METHYL ORANGE BY TiO₂/CS-MT/GP

4.1 Introduction 130
4.2 Fabrication of TiO₂/CS-MT/GP 131
4.2.1 Preliminary study 131
4.2.2 Optimization of CS-MT/GP sub-layer loading

4.2.3 Optimization of TiO₂ loading

4.3 Adsorption studies

4.3.1 Effect of initial concentrations on contact time

4.3.2 Kinetic studies

4.3.3 Isotherm studies

4.3.4 Thermodynamic study

4.4 Characterizations of TiO₂/CS-MT/GP

4.4.1 Photoluminiscense analysis

4.4.2 UV-Vis diffuse reflectance spectroscopy

4.5 Effect of operational parameters on the photocatalytic-adsorptive removal of MO by TiO₂/CS-MT/GP

4.5.1 Effect of initial pH of MO solutions

4.5.2 Effect of initial MO concentrations

4.6 Identification of main oxidants in photocatalytic-adsorptive removal processes

4.6.1 Effect of N₂ gas

4.6.2 Effect of radical quenchers

4.6.3 Detection of hydroxyl radicals

4.7 Photo-etching of TiO₂/CS-MT/GP

4.8 Oxidation of CS within the CS-MT composite

4.9 Mechanism of TiO₂/CS-MT/GP photocatalytic-adsorptive removal processes

4.10 Reusability study

4.10.1 Effect of regeneration time of TiO₂/CS-MT/GP

4.10.2 Evaluation on the reusability of TiO₂/CS-MT/GP

4.11 Mineralization of MO
4.11.1 Total organic carbon
4.11.2 Evolution of ions
4.11.3 pH changes
4.12 Detection of intermediates

CHAPTER FIVE: ADSORPTION OF METHYL ORANGE ONTO PANI POWDER AND PANI/GP

5.1 Introduction
5.2 Preparation of PANI formulation
5.2.1 Optimization of the amount of PVC powder within PANI formulation
5.2.2 Optimization of the amount of PANI powder within PANI formulation
5.3 Characterizations of PANI powder and PANI-ENR\textsubscript{30}-PVC composite
5.3.1 Scanning electron microscopy-Energy dispersive X-Ray
5.3.2 Surface area and porosity
5.3.3 Fourier transform infrared (FT-IR)
5.3.4 UV-Vis diffuse reflectance spectroscopy
5.4 Effect of parameters on adsorption of MO
5.4.1 Effect of PANI sub-layer loading of PANI/GP
5.4.2 Effect of initial pH of MO solutions
5.4.3 Effect of aeration flow rate
5.5 Adsorption studies
5.5.1 Effect of initial concentrations on contact time
5.5.2 Kinetic studies
5.5.2(a) Pseudo first and second order models
5.5.2(b) Intraparticle diffusion model
CHAPTER SIX: PHOTOCATALYTIC-ADSORPTIVE REMOVAL OF METHYL ORANGE BY TiO\textsubscript{2}/PANI/GP

6.1 Introduction 225

6.2 Fabrication of TiO\textsubscript{2}/PANI/GP bilayer system 226
 6.2.1 Preliminary study 226
 6.2.2 Optimization of PANI sub-layer loading 230
 6.2.3 Optimization of TiO\textsubscript{2} loading 234

6.3 Adsorption studies 237
 6.3.1 Effect of initial concentrations on contact time 237
 6.3.2 Kinetic studies 238
 6.3.3 Isotherm studies 242
 6.3.4 Thermodynamic study 243

6.4 Characterizations of TiO\textsubscript{2}/PANI/GP 244
 6.4.1 Photoluminescence analysis 244
 6.4.2 UV-Vis diffuse reflectance spectroscopy 245
 6.4.3 Detection of hydroxyl radicals 247

6.5 Operational parameters 249
 6.5.1 Effect of initial pH of MO solutions 249
 6.5.2 Effect of aeration flow rate 251
 6.5.3 Effect of initial MO concentrations 253

6.6 Photo-etching of TiO\textsubscript{2}/PANI/GP 254

6.7 Mineralization studies 257
 6.7.1 Dissolved organic carbon 257

7.1 Introduction 270
7.2 Evaluation on the reusability of the bilayer systems 270
7.3 Adsorption studies 274
 7.3.1 Effect of initial concentrations on contact time 274
 7.3.2 Kinetic and isotherm studies 276
 7.3.3 Thermodynamic study 277
7.4 Physical characterizations 280
 7.4.1 Photoluminescence analysis 280
 7.4.2 UV-Vis diffuse reflectance analysis 281
 7.4.3 Detection of hydroxyl radicals 283
7.5 Summary of the comparative study between TiO₂/CS-MT/GP and TiO₂/PANI/GP bilayer systems 284

CHAPTER EIGHT: CONCLUSIONS AND FUTURE RECOMMENDATIONS

8.1 Conclusions 286
8.2 Future recommendations 291

REFERENCES 293

APPENDICES 319

ADDENDUM 326
LIST OF TABLES

Table 1.1	The characteristics match of ideal and TiO$_2$ photocatalyst	6
Table 1.2	Various methods for synthesis of PANI	24
Table 1.3	Combination of TiO$_2$ and polymers and their preparation method for the photocatalytic degradation of various pollutants	31
Table 1.4	Properties of methyl orange (MO) dye	45
Table 3.1	Percentage of elements present in CS/GP and CS-MT/GP	92
Table 3.2	BET results for MT powder, CS flakes, CS film and different ratios of CS-MT composites	94
Table 3.3	Summary of wavenumbers of the peaks present in CS and MT and their respective peak assignments	95
Table 3.4	Mean basal spacing of MT and CS-MT composite	97
Table 3.5	Point of zero charge of CS and CS-MT composite	102
Table 3.6	Pseudo first and second order kinetic model parameters, coefficient of determination and Chi square for the adsorption of MO onto CS-MT powder and CS-MT/GP	111
Table 3.7	Intraparticle diffusion parameters and coefficient of determination for the adsorption of MO onto CS-MT powder and CS-MT/GP	114
Table 3.8	Isotherm parameters and coefficient of determination for the adsorption of MO onto CS-MT powder and CS-MT/GP	117
Table 3.9	Thermodynamic parameters for the adsorption of MO onto CS-MT powder and CS-MT/GP	120
Table 3.10	BET results for fresh and regenerated CS-MT/GP	127
Table 4.1	Cross section thickness of different CS-MT/GP loadings at a fixed TiO$_2$ top layer loading in TiO$_2$/CS-MT/GP system	137
Table 4.2	Cross section area thickness of different TiO$_2$ loadings at a fixed CS-MT sub-layer loading in TiO$_2$/CS-MT/GP system	140
Table 4.3 Pseudo first order, pseudo second order and intraparticle diffusion constants, coefficient of determination and Chi square for the adsorption of MO at different initial concentrations
Table 4.4 Langmuir and Freundlich isotherm constants and coefficient of determination for the adsorption of MO onto TiO$_2$/CS-MT/GP
Table 4.5 Thermodynamic parameters for the adsorption of MO onto TiO$_2$/CS-MT/GP
Table 4.6 Band-gap energies and wavelength absorption edge of TiO$_2$/CS-MT/GP, TiO$_2$/CS/GP and TiO$_2$/GP
Table 4.7 The products of photocatalytic-adsorptive removal of MO by TiO$_2$/CS-MT/GP as identified by MS analysis
Table 5.1 Percentage of elements present in PANI powder and PANI-ENR$_{50}$-PVC composite
Table 5.2 BET results for PANI powder and PANI-ENR$_{50}$-PVC composite
Table 5.3 Summary of wavenumbers of the peaks present in PANI powder and PANI-ENR$_{50}$-PVC composite and their respective peak assignments
Table 5.4 Point of zero charge of PANI powder and PANI/GP
Table 5.5 Pseudo first and second order kinetic model parameters, coefficient of determination and Chi square for the adsorption of MO onto PANI powder and PANI/GP
Table 5.6 Intraparticle diffusion parameters and coefficient of determination for the adsorption of MO onto PANI powder and PANI/GP
Table 5.7 Isotherm parameters and coefficient of determination for the adsorption of MO onto PANI powder and PANI/GP
Table 5.8 Adsorption capacities of PANI and immobilized PANI composites on adsorption of MO
Table 5.9 Thermodynamic parameters for the adsorption of MO onto PANI powder and PANI/GP
Table 6.1 Cross section area thickness of PANI layer loadings at a fixed TiO$_2$ top layer loading
Table 6.2 Cross section area thickness of TiO$_2$ loadings at a fixed PANI sub-layer loading

Table 6.3 Pseudo first order, pseudo second order and intraparticle diffusion constants, coefficient of determination and Chi square for the adsorption of MO at different initial concentrations

Table 6.4 Isotherm parameters and coefficient of determination for the adsorption of MO onto TiO$_2$/PANI/GP

Table 6.5 Thermodynamic parameters for the adsorption of MO onto TiO$_2$/PANI/GP

Table 6.6 Band-gap energies and wavelength edge of TiO$_2$/GP and TiO$_2$/PANI/GP

Table 6.7 The products of photocatalytic-adsorptive removal of MO by TiO$_2$/CS-MT/GP as identified by LC-MS analysis

Table 7.1 The time taken for TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP to reach equilibrium, the concentration and removal of MO by TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP at 60 minutes for 20 and 40 mg L$^{-1}$ of MO concentrations

Table 7.2 The adsorption characteristics of TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP bilayer systems based on the adsorption of MO

Table 7.3 Thermodynamic parameters for the adsorption of MO onto TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP

Table 7.4 Band-gap energies and wavelength absorption edge of TiO$_2$/CS-MT/GP, TiO$_2$/PANI/GP and TiO$_2$/GP
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Time frame of photocatalysis research progress</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Schematic diagram of electrochemical photocell</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>The energy level diagram of a) a semiconductor and b) a dye molecule</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>The crystal structures of TiO$_2$; (a) anatase, (b) rutile and (c) brookite</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Schematic energy diagram of TiO$_2$ as adapted from Kazuhito et al. (2005)</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Molecular structures of cellulose, chitin and chitosan</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>The structure of MT</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Structures of polyaniline in various intrinsic redox states</td>
<td>23</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Molecular structure of emeraldine base of PANI</td>
<td>23</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Illustration of photocatalyst and adsorbent coated on a supporting material to form a TiO$_2$-adsorbent bilayer system</td>
<td>36</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Structural change of CS to oxidized CS during the photocatalytic oxidation of CS in TiO$_2$/CS/GP</td>
<td>40</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>Illustration of the possible mechanism involved during the photocatalytic degradation of RR4 by TiO$_2$/CS/GP</td>
<td>41</td>
</tr>
<tr>
<td>Figure 1.13</td>
<td>Molecular structure of MO dye</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Photocatalytic reactor set up.a) compact fluorescent lamp, b) Pasteur pipette, c) glass cell, d) coated plate, (e) PVC tubing, f) aquarium pump, g) scissor jack and h) power source</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Percentage of MO remaining after 60 minutes of adsorption by CS-MT/GP prepared using varied amount of CS with a fixed amount of MT within the casting solution: (CS-MT loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)</td>
<td>86</td>
</tr>
</tbody>
</table>
Figure 3.2 Percentage of CS-MT remaining on the glass plates after 30 seconds of adherence test as prepared using varied amount of CS with a fixed amount of MT within the casting solution. Inset is the same graph with y-axis range from 90-100 %. (CS-MT loading = 0.63 mg cm$^{-2}$)

Figure 3.3 The swelling index of CS-MT/GP at fixed amount of MT after 24 hours experiment. (CS-MT loading = 0.63 mg cm$^{-2}$)

Figure 3.4 Percentage of MO remaining after 60 minutes of adsorption by CS-MT/GP prepared using varied amount of MT with a fixed amount of CS within the casting solution: (CS-MT loading = 0.63 mg cm$^{-2}$; [MO]$_0$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 3.5 Percentage of CS-MT remaining on the glass plates after 30 seconds of adherence test as prepared using varied amount of MT with a fixed amount of CS within the casting solution. Inset is the same graph with y-axis range from 80-100 %. (CS-MT loading = 0.63 mg cm$^{-2}$).

Figure 3.6 The swelling index of CS-MT/GP at fixed amount of CS after 24 hours experiment. (CS-MT loading = 0.63 mg cm$^{-2}$)

Figure 3.7 SEM micrographs of a) CS/GP and b) CS-MT/GP at 1,000 x magnifications and c) CS/GP and d) CS-MT/GP at 10,000 x magnifications

Figure 3.8 EDX analysis of a) CS-MT powder and b) CS-MT/GP

Figure 3.9 FT-IR spectra of a) MT, b) CS flakes, c) CS film and d) CS-MT

Figure 3.10 Combined XRD patterns of a) CS/GP, b) MT powder and c) CS-MT/GP

Figure 3.11 Contact time of adsorption of MO at different amount of CS-MT loading on the glass plate. ([MO] = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 3.12 Percentage of MO removed and amount of MO adsorbed onto different amount of CS-MT/GP loading. ([MO] = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 3.13 Changes in molecular structure of MO in acidic and basic conditions
Figure 3.14 Percentage of MO removed and the amount of MO adsorbed by CS-MT/GP at different initial pH of MO solutions. (CS-MT loading = 1.27 mg cm\(^{-2}\); [MO] = 20 mg L\(^{-1}\); aeration flow rate = 40 mL min\(^{-1}\))

Figure 3.15 The amount of MO adsorbed by a) CS-MT powder and b) CS-MT/GP at different MO initial concentrations. (mass of CS-MT powder = 40 mg; CS-MT/GP loading = 1.27 mg cm\(^{-2}\); pH = 6.5; aeration flow rate = 40 mL min\(^{-1}\))

Figure 3.16 Pseudo first order kinetic plots for the adsorption of MO onto a) CS-MT powder and b) CS-MT/GP

Figure 3.17 Pseudo second order kinetic plots for the adsorption of MO onto (a) CS-MT powder and (b) CS-MT/GP

Figure 3.18 Intraparticle diffusion plots for the adsorption of MO onto a) CS-MT powder and b) CS-MT/GP

Figure 3.19 Combined plots of CS-MT powder and CS-MT/GP for a) Langmuir, b) Freundlich and c) Dubinin Radushkevich isotherm model

Figure 3.20 van’t Hoff ‘s plots for adsorption of MO onto CS-MT powder and CS-MT/GP

Figure 3.21 Percentage of MO desorbed from the spent CS-MT/GP in UPW solution adjusted to pH 4, pH 7 and pH 11. (CS-MT loading = 1.27 mg cm\(^{-2}\))

Figure 3.22 TOC values and percentage of MO removed from the spent CS-MT/GP during the photocatalytic regeneration in ultra pure water adjusted to pH 4, pH 7 and pH 11. (CS-MT loading = 1.27 mg cm\(^{-2}\))

Figure 3.23 UV-Vis DRS of photocatalytic regeneration of spent CS-MT/GP profile at a) pH 4, b) pH 7 and c) pH 11

Figure 3.24 FT-IR spectra for a) fresh and b) regenerated CS-MT/GP

Figure 3.25 The removal of MO for five cycles by fresh plate and after the first, second and third photocatalytic regeneration of CS-MT/GP, (CS-MT loading = 1.27 mg cm\(^{-2}\); [MO]\(_{0}\) = 20 mg L\(^{-1}\); pH = 6.5; aeration flow rate = 40 mL min\(^{-1}\))

Figure 4.1 a) Percentage of MO removed and b) pseudo first order rate constants after 60 minutes irradiation of different individual systems in TiO\(_2\)/CS-MT/GP. (TiO\(_2\) loading = 1.56 mg cm\(^{-2}\); CS loading, CS-MT= 1.27 mg cm\(^{-2}\); [MO]\(_{0}\) = 20 mg L\(^{-1}\); pH = 6.5; aeration flow rate = 40 mL min\(^{-1}\))
Figure 4.2 Pseudo first order rate constants of photocatalytic-adsorptive removal and adsorption by TiO$_2$/CS-MT/GP as a function of CS-MT sub-layer loading at a fixed TiO$_2$ top layer loading. (TiO$_2$ loading = 1.56 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.3 Cross section of TiO$_2$/CS-MT/GP at different CS-MT loading; a) 2.24 mg cm$^{-2}$ (TiO$_2$) /1.27 mg cm$^{-2}$ (CS-MT), b) 2.24 mg cm$^{-2}$ (TiO$_2$) /1.92 mg cm$^{-2}$ (CS-MT) and c) 1.92 mg cm$^{-2}$ of CS-MT/GP

Figure 4.4 Pseudo first order rate constants of photocatalytic-adsorptive removal and adsorption by TiO$_2$/CS-MT/GP as a function of TiO$_2$ top layer loading at a fixed CS-MT sub-layer loading. (CS-MT loading = 1.27 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.5 Cross section of TiO$_2$/CS-MT/GP at different TiO$_2$ loading; a) 1.27 mg cm$^{-2}$ (TiO$_2$) /1.27 mg cm$^{-2}$ (CS-MT), b) 2.54 mg cm$^{-2}$ (TiO$_2$) /1.27 mg cm$^{-2}$ (CS-MT) and c) 3.80 mg cm$^{-2}$ (TiO$_2$) /1.27 mg cm$^{-2}$ (CS-MT)

Figure 4.6 The amount of MO adsorbed by TiO$_2$/CS-MT/GP at different MO initial concentrations (TiO$_2$ loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.7 Pseudo first order kinetic plots for the adsorption of MO onto TiO$_2$/CS-MT/GP at different initial concentrations

Figure 4.8 Pseudo second order kinetic plots for the adsorption of onto TiO$_2$/CS-MT/GP at different initial concentrations

Figure 4.9 Intraparticle diffusion plots for the adsorption of MO onto TiO$_2$/CS-MT/GP system

Figure 4.10 Combined PL spectra of a) TiO$_2$/GP and b) TiO$_2$/CS-MT/GP

Figure 4.11 a)Combined UV-Vis DRS spectra and b) Tauc plot of TiO$_2$/CS-MT/GP, TiO$_2$/CS/GP and TiO$_2$/GP

Figure 4.12 Pseudo first order rate constants of TiO$_2$/CS-MT/GP by photocatalytic-adsorptive removal and adsorption at different initial pH solutions. (TiO$_2$ loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; aeration flow rate = 40 mL min$^{-1}$)
Figure 4.13 Pseudo first order rate constants of TiO$_2$/CS-MT/GP by photocatalytic-adsorptive removal and adsorption at different MO initial concentrations. (TiO$_2$ loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.14 a) Pseudo first order rate constants and b) percentage of MO remaining after the treatment by TiO$_2$/CS-MT/GP (control plate) in the presence of quenchers’ solution, (EDTA and 1,4-BQ) and N$_2$ gas. (TiO$_2$ loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; [MO]$_o$ = mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.15 Comparison between the individual systems in TiO$_2$/CS-MT on the production of hydroxyl radicals (‘OH): a) TiO$_2$/CS-MT/GP, b) TiO$_2$/CS/GP, c) TiO$_2$/GP and d) TA solution. (TiO$_2$ loading = 2.54 mg cm$^{-2}$; CS, CS-MT loading = 1.27 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.16 TOC values during the photo-etching of TiO$_2$/CS-MT/GP and TiO$_2$/GP for 12 hours of treatment. (TiO$_2$ loading = 6.35 mg cm$^{-2}$; CS-MT loading = 3.18 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.17 Comparison on the production of hydroxyl radicals (‘OH) by TiO$_2$/CS-MT/GP a) after, b) before photo-etching and TiO$_2$/GP c) after, d) before photo-etching and e) TA solution

Figure 4.18 Comparison of pseudo first order rate constants of MO removal by TiO$_2$/CS-MT/GP and TiO$_2$/GP before and after the photo-etching

Figure 4.19 UV-Vis DRS spectra of CS-MT/GP: (a) before and (b) after photo-etching for 12 hours at different ratio of CS to MT within CS-MT/GP; i) 1:0, ii) 1:0.12, iii) 1:0.33, iv) 1:1 and v) MT powder

Figure 4.20 Proposed structure of the photocatalytically oxidized CS sub-layer in the TiO$_2$/CS/GP system

Figure 4.21 Pseudo first order rate constants of TiO$_2$/CS-MT/GP for three cycles with regeneration time of 0.5, 1, 2 and 3 hours between cycles. (TiO$_2$ loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.22 Reusability of TiO$_2$/CS-MT/GP (photocatalytic-adsorptive removal), TiO$_2$/CS-MT/GP (adsorption) and TiO$_2$/GP (photocatalysis) for ten cycles based on percentage of MO remaining. (TiO$_2$ loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)
Figure 4.23 Reusability of TiO$_2$/CS-MT/GP (photocatalytic-adsorptive removal), TiO$_2$/CS-MT/GP (adsorption) and TiO$_2$/GP (photocatalysis) for ten cycles based on pseudo first order rate constant. (TiO$_2$ loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.24 Ratio of pseudo first order rate constant of TiO$_2$/CS-MT/GP (photocatalytic-adsorptive removal) to TiO$_2$/CS-MT/GP (adsorption) and TiO$_2$/GP (photocatalysis). (TiO$_2$ loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.25 TOC/TOC$_0$ values during the mineralization of MO by the TiO$_2$/CS-MT/GP and TiO$_2$/GP systems for 12 hours of treatment. (TiO$_2$ loading = 6.35 mg cm$^{-2}$; CS-MT loading = 3.18 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.26 The production of a) sulphate and b) nitrate ions, respectively in treated MO solution for 12 hours of treatment by the TiO$_2$/CS-MT/GP and TiO$_2$/GP systems. (TiO$_2$ loading = 6.35 mg cm$^{-2}$; CS-MT loading = 3.18 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.27 pH changes of MO solution after treatment with TiO$_2$/CS-MT/GP and TiO$_2$/GP systems for 12 hours. (TiO$_2$ loading = 6.35 mg cm$^{-2}$; CS-MT loading = 3.18 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 4.28 The profile of LC-MS spectra of the identified MO and its intermediates after 1 hour of photocatalytic-adsorptive removal by the TiO$_2$/CS-MT/GP system using a) phosphate buffer: methanol and b) water: acetonitrile mobile phase

Figure 4.29 Proposed mechanism pathway during the photocatalytic-adsorptive removal of MO by TiO$_2$/CS-MT/GP

Figure 5.1 Percentage of MO removed from the solution after adsorption by PANI/GP as prepared using different amount of PVC powder at a fixed amount of 2 g of PANI powder and 4 g of ENR$_{50}$ within PANI formulation. (PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate= 40 mL min$^{-1}$)

Figure 5.2 Percentage of PANI remaining after adherence test on the PANI/GP as prepared using different amount of PVC powder at a fixed amount of 2 g of PANI powder and 4 g of ENR$_{50}$ within PANI formulation. (PANI loading = 0.63 mg cm$^{-2}$)
Figure 5.3 Combined bar chart of the amount of MO adsorbed (q_e) and percentage of MO removed from the solution at different amount of PANI powder in PANI formulation. (PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 5.4 Percentage of PANI remaining on the PANI/GP after adherence test by sonication. (PANI loading = 0.63 mg cm$^{-2}$)

Figure 5.5 SEM micrographs of PANI powder at a) 5 000 x and b) 50 000 x and PANI-ENR$_{50}$-PVC composite at c) 5 000 x and d) 50 000 x of magnifications

Figure 5.6 EDX analysis of a) PANI powder and b) PANI-ENR$_{50}$-PVC composite

Figure 5.7 Nitrogen adsorption-desorption isotherm plot of a) PANI powder and b) PANI-ENR$_{50}$-PVC composite

Figure 5.8 FT-IR spectra of a) PANI powder and b) PANI-ENR$_{50}$-PVC composite

Figure 5.9 Combined UV-Vis DRS spectra of; (a) PANI powder and (b) PANI/GP

Figure 5.10 Effect of the amount of PANI loadings on the glass plates on the removal efficiency and the amount of MO adsorbed onto PANI/GP. ([MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 5.11 Effect of initial pH of MO solution on the amount of MO adsorbed onto PANI/GP. (PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; aeration flow rate = 40 mL min$^{-1}$)

Figure 5.12 Effect of aeration flow rate on the amount of MO adsorbed on PANI/GP. (PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5)

Figure 5.13 The amount of MO adsorbed by a) PANI powder and b) PANI/GP at different MO concentrations. (PANI loading = 0.63 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 5.14 Pseudo first order kinetic plots for the adsorption of MO onto a) PANI powder and b) PANI/GP

Figure 5.15 Pseudo second order kinetic plots for the adsorption of MO onto a) PANI powder and b) PANI/GP

Figure 5.16 Intraparticle diffusion plots for the adsorption of MO onto a) PANI powder and b) PANI/GP
Figure 5.17 Combined plots of PANI powder and PANI/GP for a) Langmuir, b) Freundlich and c) Dubinin Radushkevich isotherm model

Figure 5.18 Combined van’t Hoff’s plots for the adsorption of MO by PANI powder and PANI/GP

Figure 6.1 a) Percentage of MO removed and b) pseudo first order rate constants after 90 minutes irradiation of different individual systems in TiO$_2$/PANI/GP. (TiO$_2$ loading =1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.2 The changes in the color of MO solution during the photocatalytic-adsorptive removal by TiO$_2$/PANI/GP for 90 minutes of irradiation time

Figure 6.3 UV-Vis spectrum of decolorization profile of MO by TiO$_2$/PANI/GP for 90 minutes under light irradiation. a) 0, b) 30, c) 45, d) 60, e) 75 and f) 90 minutes

Figure 6.4 Pseudo first order rate constants of TiO$_2$/PANI/GP by photocatalytic-adsorptive removal and adsorption at different PANI sub-layer loading and a fixed TiO$_2$ loading. (TiO$_2$ loading = 1.27 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.5 Cross section of TiO$_2$/PANI/GP at different PANI sub-layer loadings; a) 1.27 mg cm$^{-2}$ (TiO$_2$) /0.32 mg cm$^{-2}$ (PANI), b) 1.27 mg cm$^{-2}$ (TiO$_2$) /0.63 mg cm$^{-2}$ (PANI), and c) 1.27 mg cm$^{-2}$ (TiO$_2$) /1.27 mg cm$^{-2}$ (PANI)

Figure 6.6 Pseudo first order rate constants of at different TiO$_2$ loadings TiO$_2$/PANI/GP by photocatalytic-adsorptive removal and adsorption at a fixed PANI/GP sub-layer loading. (PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.7 Cross section area of TiO$_2$/PANI/GP of different TiO$_2$ loadings; a) 0.63 mg cm$^{-2}$ (TiO$_2$)/0.63 mg cm$^{-2}$ (PANI), b) 1.27 mg cm$^{-2}$ (TiO$_2$)/0.63 mg cm$^{-2}$ (PANI) and c) 2.24 mg cm$^{-2}$ (TiO$_2$)/0.63 mg cm$^{-2}$ (PANI)

Figure 6.8 The amount of MO adsorbed by TiO$_2$/PANI/GP at different MO initial concentrations. (TiO$_2$ loading =1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.9 Pseudo first order kinetic plots for the adsorption of MO onto TiO$_2$/PANI/GP
Figure 6.10 Pseudo second order kinetic plots for the adsorption of MO onto TiO$_2$/PANI/GP

Figure 6.11 Intraparticle diffusion plots for the adsorption of MO onto TiO$_2$/PANI/GP

Figure 6.12 PL spectra of a) TiO$_2$/GP and b) TiO$_2$/PANI/GP

Figure 6.13 a) Combined UV-Vis DRS spectra of TiO$_2$/PANI/GP, TiO$_2$/GP and PANI/GP and b) Tauc plot

Figure 6.14 The production of hydroxyl radicals (OH) by; a) TiO$_2$/PANI/GP, b) TiO$_2$/GP and c) TA solution

Figure 6.15 Pseudo first order rate constants of TiO$_2$/PANI/GP by photocatalytic-adsorptive removal and adsorption at different initial pH of MO solutions. (TiO$_2$ loading =1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.16 Pseudo first order rate constants of TiO$_2$/PANI/GP by photocatalytic-adsorptive removal and adsorption at different aeration flow rate. (TiO$_2$ loading = 1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5)

Figure 6.17 Pseudo first order rate constants of TiO$_2$/PANI/GP by photocatalytic-adsorptive removal and adsorption at different initial MO concentrations. (TiO$_2$ loading = 1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.18 TOC values during the photo-etching of TiO$_2$/PANI/GP and TiO$_2$/GP systems for 11 hours under light irradiation. (TiO$_2$ loading = 1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.19 Pseudo first order rate constants of TiO$_2$/PANI/GP and TiO$_2$/GP before and after photo-etching. (TiO$_2$ loading = 1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.20 TOC/TOC$_o$ values during the mineralization of TiO$_2$/PANI/GP and TiO$_2$/GP for 10 hours of irradiation. (TiO$_2$ loading = 3.18 mg cm$^{-2}$; PANI loading = 1.58 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.21 Production of a) sulphate and b) nitrate ions in the treated MO solution for 10 hours of treatment by TiO$_2$/PANI/GP and TiO$_2$/GP system
Figure 6.22 pH changes of MO solution during the treatment by TiO$_2$/PANI/GP and TiO$_2$/GP systems

Figure 6.23 Reusability of TiO$_2$/PANI/GP, TiO$_2$/GP and PANI/GP systems for ten cycles based on percentage of MO removed. (TiO$_2$ loading = 1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 6.24 Reusability of TiO$_2$/PANI/GP, TiO$_2$/GP and PANI/GP systems for ten cycles based on pseudo first order rate constant. (TiO$_2$ loading = 1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$).

Figure 6.25 Ratio of pseudo first order rate constant of TiO$_2$/CS-MT/GP (photocatalytic-adsorptive removal) to TiO$_2$/CS-MT/GP (adsorption) and TiO$_2$/GP (photocatalysis). (TiO$_2$ loading = 1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; [MO]$_o$ = 20 mg L$^{-1}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$).

Figure 6.26 The profile of LC-MS spectra of the identified MO and its intermediates after 1 hour of photocatalytic-adsorptive removal by the TiO$_2$/CS-MT/GP system using a) phosphate buffer: methanol and b) water: acetonitrile mobile phase

Figure 6.27 Proposed mechanism pathway during the photocatalytic-adsorptive removal of MO by TiO$_2$/PANI/GP.

Figure 7.1 Reusability of TiO$_2$/CS-MT/GP, TiO$_2$/PANI/GP and TiO$_2$/GP systems for ten cycles based on percentage of MO remaining. (TiO$_2$ (CS-MT) loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; TiO$_2$ (PANI) loading =1.27 mg cm$^{-2}$; PANI loading= 0.63 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 7.2 Reusability of TiO$_2$/CS-MT/GP, TiO$_2$/PANI/GP and TiO$_2$/GP systems for ten cycles based on pseudo first order rate constant. (TiO$_2$ (CS-MT) loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; TiO$_2$ (PANI) loading = 1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; pH = 6.5; aeration flow rate = 40 mL min$^{-1}$)

Figure 7.3 Ratio of pseudo first order rate constant of photocatalytic-adsorptive removal to adsorption of TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP for ten cycles

xxvi
Figure 7.4 The amount of MO adsorbed by TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP at different MO initial concentrations. (TiO$_2$ (CS-MT) loading = 2.54 mg cm$^{-2}$; CS-MT loading = 1.27 mg cm$^{-2}$; TiO$_2$ (PANI) loading = 1.27 mg cm$^{-2}$; PANI loading = 0.63 mg cm$^{-2}$; aeration flow rate = 40 mL min$^{-1}$)

Figure 7.5 van’t Hoff’s plots for the adsorption of MO by TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP

Figure 7.6 PL spectra of (a) TiO$_2$/GP, (b) TiO$_2$/PANI/GP and c) TiO$_2$/CS-MT/GP

Figure 7.7 a) UV-Vis DRS spectra and b) Tauc plot of TiO$_2$/CS-MT/GP, TiO$_2$/PANI/GP and TiO$_2$/GP

Figure 7.8 The production of hydroxyl radicals (•OH) by a) TiO$_2$/CS-MT/GP, b) TiO$_2$/PANI/GP, c) TiO$_2$/GP and d) TA solution
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-BQ</td>
<td>1,4-benzoquinone</td>
</tr>
<tr>
<td>2,4-D</td>
<td>2,4-dichlorophenoxyacetic acid</td>
</tr>
<tr>
<td>AB1</td>
<td>acid black 1</td>
</tr>
<tr>
<td>APS</td>
<td>ammonium persulfate</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmet-Teller</td>
</tr>
<tr>
<td>BG</td>
<td>brilliant green</td>
</tr>
<tr>
<td>CS</td>
<td>chitosan</td>
</tr>
<tr>
<td>CS-MT/GP</td>
<td>chitosan-montmorillonite/glass plate single layer system</td>
</tr>
<tr>
<td>CR</td>
<td>Congo red</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>EDX</td>
<td>energy dispersive X-Ray</td>
</tr>
<tr>
<td>ENR$_{50}$</td>
<td>epoxidized natural rubber of 50% mole epoxidation</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>GP</td>
<td>glass plate</td>
</tr>
<tr>
<td>HA</td>
<td>humic acid</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest occupied molecular orbital</td>
</tr>
<tr>
<td>MB</td>
<td>methylene blue</td>
</tr>
<tr>
<td>MG</td>
<td>malachite green</td>
</tr>
<tr>
<td>MO</td>
<td>methyl orange</td>
</tr>
<tr>
<td>MT</td>
<td>montmorillonite</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PANI/ENR<sub>50</sub>/PVC</td>
<td>polyaniline/epoxidized natural rubber/poly (vinyl) chloride</td>
</tr>
<tr>
<td>PANI/GP</td>
<td>polyaniline/glass plate single layer system</td>
</tr>
<tr>
<td>PL</td>
<td>photoluminescence</td>
</tr>
<tr>
<td>PVA-GLA</td>
<td>poly (vinyl) alcohol-glutaraldehyde</td>
</tr>
<tr>
<td>PVC</td>
<td>poly (vinyl) chloride</td>
</tr>
<tr>
<td>PVP</td>
<td>poly (vinyl) pyrrolidone</td>
</tr>
<tr>
<td>RB5</td>
<td>reactive black 5</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron micrograph</td>
</tr>
<tr>
<td>TBOT</td>
<td>tetrabutyl orthotitanate</td>
</tr>
<tr>
<td>TiO<sub>2</sub>/CS-MT/GP</td>
<td>titanium dioxide/chitosan-montmorillonite/glass plate bilayer system</td>
</tr>
<tr>
<td>TiO<sub>2</sub>/GP</td>
<td>titanium dioxide/glass plate single layer system</td>
</tr>
<tr>
<td>TiO<sub>2</sub>/PANI/GP</td>
<td>titanium dioxide/polyaniline/glass plate bilayer system</td>
</tr>
<tr>
<td>TOC</td>
<td>total organic carbon</td>
</tr>
<tr>
<td>UV-Vis DR</td>
<td>ultraviolet-visible diffuse reflectance</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray diffraction</td>
</tr>
</tbody>
</table>
PEMFABRIKAN, FOTOMANGKINAN DAN PENJERAPAN SISTEM DWILAPISAN TERPEGUN TiO$_2$/KITOSAN-MONTMORILONIT DAN TiO$_2$/POLIANALINA UNTUK PENYINGKIRAN PEWARNA METIL JINGGA DARIPADA LARUTAN AKUEUS

ABSTRAK

Kajian ini adalah usaha untuk membangunkan dua sistem dwilapisan terpegun untuk penyingkirkan secara fotomangkinan-penjerapan pewarna metil oren (MO) daripada larutan akueus. Sistem dwilapisan terpegun melibatkan penjerap spesifik dan TiO$_2$ di atas plat kaca yang dinamakan TiO$_2$/kitosan-montmorilonit (TiO$_2$/CS-MT/GP) dan TiO$_2$/polianalina (TiO$_2$/PANI/GP) masing-masing telah difabrikasi melalui teknik pelitupan celup. Dalam kajian ini, CS-MT dan PANI berfungsi sebagai lapisan bawah manakala fotomangkin TiO$_2$ dijadikan sebagai lapisan atas. Pada awalnya, lapisan bawah untuk kedua-dua sistem dioptimumkan melalui kajian penjerapan dan dicirikan melalui mikroskop imbasan elektron (SEM), spektroskopi transformasi inframerah Fourier (FT-IR) dan analisis penjerapan-penyahjerapan N$_2$. Penambahan serbuk MT kepada matrik CS menurunkan kadar pembengkakan, menambahkan kekuatan mekanikal dan luas permukaan (S$_{BET}$) daripada 3.82 kepada 4.38 m2 g$^{-1}$ manakala penambahan ENR$_{50}$-PVC menambahkan kekuatan mekanikal tetapi menurunkan S$_{BET}$ serbuk PANI daripada 9.16 kepada 8.50 m2 g$^{-1}$. Penilaian aktiviti fotomangkinan oleh sistem dwilapisan dilakukan di bawah pancaran lampu pendarfluor kompak 45 Watt. Berat optimum lapisan penjerap adalah 1.27 dan 0.63 mg cm$^{-2}$ untuk masing-masing TiO$_2$/CS-MT/GP dan TiO$_2$/PANI/GP manakala berat TiO$_2$ optimum untuk TiO$_2$/CS-MT/GP dan TiO$_2$/PANI/GP masing-masing adalah 2.54 dan 1.27 mg cm$^{-2}$. Sistem TiO$_2$/CS-
MT/GP dan TiO₂/PANI/GP masing-masing mematuhi model kinetik penjerapan pseudo tertib pertama Lagergren dan pseudo tertib kedua Ho dan Mc Kay. Model isoterma Freundlich pula berupaya untuk menerangkan mekanisma penjerapan pada keseimbangan dan pembauran intra-zarah adalah salah satu kadar penghad untuk kedua-dua sistem. Sistem dwilapisan menghasilkan lebih radikal ·OH daripada sistem monolapisan TiO₂ kerana kadar pemisahan pasangan elektron-lubang yang lebih baik manakala jurang tenaga jalur TiO₂ dikurangkan dari 3.02 eV kepada 2.94 dan 2.95 eV, masing-masing untuk sistem TiO₂/CS-MT/GP dan TiO₂/PANI/GP. Keadaan operasi optimum bagi aktiviti fotomangkinan-penjerapan sistem dwilapisan adalah pH ambiien (6.5), kadar aliran udara 40 mL min⁻¹ dan kepekatan awal MO 20 mg L⁻¹. Sistem TiO₂/CS-MT/GP boleh mengekalkan kebolehulangan guna dalam purata penyingkiran sebanyak 97.7 ± 1.0 % dan kadar penyingkiran 0.088 ± 0.008 min⁻¹ sepanjang 10 kitaran manakala aktiviti fotomangkinan TiO₂/PANI/GP lebih baik pada tiga kitaran yang pertama tetapi menurun pada kitaran keempat dengan purata penyingkiran sebanyak 62.7 ± 10.2 % dan kadar penyingkiran adalah 0.017 ± 0.003 min⁻¹. Walau bagaimanapun, kadar penyingkiran sistem TiO₂/CS-MT/GP adalah 4 kali lebih baik dari TiO₂/GP manakala ia adalah 2.5 kali bagi sistem TiO₂/PANI/GP. Mineralisasi MO mencapai 82.8 % bagi TiO₂/CS-MT/GP dan 73.2 % bagi TiO₂/PANI/GP selepas 10 jam rawatan. Dalam pada itu, laluan penguraian menunjukkan spesis pertengahan utama yang terhasil adalah 4-{(E-[4-(metilamino)fenil]diazenil benzenasulfonat dan 4-{(E-[4-aminofenil]diazenil} benzenasulfonat. Secara perbandingan, sistem TiO₂/CS-MT/GP menunjukkan penyingkiran secara fotomangkinan-penjerapan pewarna MO yang lebih baik daripada sistem TiO₂/PANI/GP.
FABRICATION, PHOTOCATALYTIC AND ADSORPTION OF
IMMOBILIZED TiO$_2$/CHITOSAN-MONTMORILLONITE AND
TiO$_2$/POLYANILINE BILAYER SYSTEMS FOR THE REMOVAL OF
METHYL ORANGE DYE FROM AQUEOUS SOLUTIONS

ABSTRACT

This study was an effort to develop two immobilized bilayer systems for the photocatalytic-adsorptive removal of methyl orange (MO) dye from aqueous solution. The immobilized bilayer systems involving specific adsorbents and TiO$_2$ on the glass plates namely TiO$_2$/chitosan-montmorillonite (TiO$_2$/CS-MT/GP) and TiO$_2$/polyaniline (TiO$_2$/PANI/GP) systems had been fabricated via a dip coating technique. In this study, CS-MT and PANI, respectively functioned as the sub-layer while TiO$_2$ photocatalyst was made as the top layer. Initially, the respective adsorbent sub-layer of both systems was optimized via a batch adsorption study and characterized by using scanning electron microscopy (SEM), Fourier transform infra-red spectroscopy (FT-IR) and N$_2$ adsorption-desorption analysis. The addition of MT powder to CS matrix decreased the swelling degree, improved the mechanical strength and surface area (S$_{BET}$) of CS-MT from 3.82 to 4.38 m2 g$^{-1}$ while the addition of ENR$_{50}$-PVC decreased the S$_{BET}$ of PANI powder from 9.16 to 8.50 m2 g$^{-1}$ but improved its mechanical strength. The photocatalytic activity assessment of the bilayer systems was performed under the irradiation of a 45 Watts compact fluorescent lamp. The optimum adsorbent sub-layer loading was found to be 1.27 and 0.63 mg cm$^{-2}$ for TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP, respectively, while the optimum TiO$_2$ loading for TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP was 2.54 and 1.27 mg cm$^{-2}$, respectively. The TiO$_2$/CS-MT/GP and TiO$_2$/PANI/GP systems obeyed the
Lagergren’s pseudo first order and Ho and Mc Kay’s pseudo second order adsorption kinetic model, respectively. On the other hand, the Freundlich isotherm model could explain the adsorption mechanism at equilibrium whereas intra-particle diffusion was one of the rate limiting steps for both systems. The bilayer systems produced more 'OH radicals than the single layer TiO₂ due to better charge separation rate of electron-hole pairs while the band gap of TiO₂ was reduced from 3.02 eV to 2.94 and 2.95 eV for TiO₂/CS-MT/GP and TiO₂/PANI/GP system, respectively. The optimum operating conditions for the photocatalytic-adsorption activity of the bilayer systems were at ambient pH (6.5), 40 mL min⁻¹ of aeration flow rate and 20 mg L⁻¹ of MO initial concentration. The TiO₂/CS-MT/GP could maintain the reusability on the average removal of 97.7 ± 1.0 % and 0.088 ± 0.008 min⁻¹ removal rate throughout the 10 cycles, while the photocatalytic activity of TiO₂/PANI/GP was better at the first three cycles, but started to cease out at the 4th cycle with the removal average of 62.7 ± 10.2 % and 0.017 ± 0.003 min⁻¹ removal rate. Nevertheless, the removal rate of the MO of the TiO₂/CS-MT/GP system was 4 times better than TiO₂/GP while it was 2.5 times for the TiO₂/PANI/GP system. The mineralization of MO attained 82.8 % by TiO₂/CS-MT/GP and 73.2 % by TiO₂/PANI/GP after 10 hours of treatment. Meanwhile, the degradation pathways showed that the main intermediate species produced were 4-{(E-[4-(methylamino)phenyl] diazenyl}benzenesulfonate and 4-{(E-[4-aminophenyl] diazenyl}benzenesulfonate. Comparatively, the TiO₂/CS-MT/GP system showed better photocatalytic-adsorptive removal of the MO dye than the TiO₂/PANI/GP system.
CHAPTER ONE
INTRODUCTION

1.1 Photocatalysis: Historical Overview

Photocatalysis is defined as a photoreaction in the presence of a catalyst. This photoreaction is activated by photons from the light by appropriate energy (Mills and Le Hunte, 1997). According to Fujishima et al. (2008), the earlier work of photocatalysis had been reported by Renz at University of Lugano whereby he discovered that titania is partially reduced during the illumination of light in the presence of an organic compound, in which the oxide turns to dark colors (gray, blue and black) (Renz, 1921). Then, in 1924, Baur and Perret at the Swiss Federal Institute of Technology reported the photocatalytic deposition of metallic silver by ZnO. The studies were then continued for more years by different scientists and the progressed of those studies are shown in time frame as in Figure 1.1.

<table>
<thead>
<tr>
<th>Years</th>
<th>Research findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1921</td>
<td>Renz (1921) reported the partial reduction of titania under the light illumination in the presence of organic compound.</td>
</tr>
<tr>
<td>1927</td>
<td>Baur and Neuweiler (1927) discovered the photocatalytic deposition of a silver salt of metallic silver by ZnO and proposed Baur redox mechanism 1927.</td>
</tr>
<tr>
<td>1938</td>
<td>Goodeve and Kitchener (1938) proposed titania acted as the catalyst to accelerate the photochemical oxidation, studied other semiconductors and speculated on the precise mechanism.</td>
</tr>
</tbody>
</table>
1949: Jacobsen (1949) at the National Lead Company (USA) attempted to explain the paint chalking in terms of a redox mechanism.

1953: Markham and Laidler (1953) studied the photocatalytic reaction of ZnO as the photoanode for formation of H$_2$O$_2$ but neglected TiO$_2$ due to production of unmeasurable amount of H$_2$O$_2$.

1955: Stephens et al. (1955) at Wayne State University studied the production of H$_2$O$_2$ on several semiconductors and found that CdS is a more active photocatalyst than ZnO.

1958: Kennedy et al. (1958) at the University of Edinburgh found a correlation between the ability of TiO$_2$ sample to photocatalytically decompose chlorazol sky blue.

1964: Filimonov (1964) compared the photocatalytic oxidation of isopropanol to acetone on ZnO and TiO$_2$. They concluded that the mechanism of on TiO$_2$ involved reduction of O$_2$ to H$_2$O, while the O$_2$ reduction on ZnO was only to H$_2$O$_2$.

1965: McLintock and Ritchie (1965) studied the photocatalytic oxidation of ethylene and propylene at TiO$_2$ and proposed that it was possible to oxidize the organic compounds completely to H$_2$O and CO$_2$ which involved the production of superoxide from oxygen.

1967: Morrison and Freund (1967) found quantitatively that the availability of electrons and holes at the surface is dominant in the mechanism of a heterogeneously catalyzed reaction.

Figure 1.1: Time frame of photocatalysis research progress (Fujishima et al., 2008).
The historical breakthrough of photocatalysis was catalyzed by the demand of energy renewal and storage and the detoxification of harmful substances in water and air especially in the late 1960s (Ibhadon and Fitzpatrick, 2013; Linsebigler et al., 1995). In 1972, Akira Fujishima and his doctoral advisor, Kenichi Honda discovered the splitting of water by TiO$_2$ electrode in an electrochemical cell after an exposure to light of 415 nm wavelength (Fujishima and Honda, 1972). In the experiment (Figure 1.2), the photocurrent flowed from Pt counter electrode through the external circuit to TiO$_2$ electrode which was proven to cause the oxidation of water at the TiO$_2$ electrode with the evolution of oxygen while it was the reduction of water at the Pt electrode with the evolution of hydrogen (Nakata et al., 2012). Since then, there has been a growing interest in this discovery (oxidation and reduction potential of TiO$_2$) for numerous applications such as water splitting, hydrogen production, electrode and water/air treatment especially in the field of heterogeneous photocatalysis.

Figure 1.2: Schematic diagram of electrochemical photocell. (1) n-type TiO$_2$ electrode; (2) platinum black counter electrode; (3) ionically conducting separator; (4) gas buret; (5) load resistance; and (6) voltmeter (Hashimoto et al., 2005).
1.2 Heterogeneous photocatalysis

Application of photocatalysis is generally divided into homogeneous and heterogeneous photocatalysis. The homogeneous photocatalysis generally refers to the reactants and the photocatalysts existing in the same phase while the heterogeneous photocatalysis refers to photoreaction of a catalyst which is in a different phase from the reactants. Common examples of homogeneous photocatalysis are ozonation and photo-Fenton systems (Fe$^{2+}$ and Fe$^{2+}$/H$_2$O$_2$) (Kitsiou et al., 2009). Heterogeneous photocatalysis includes the process involving light irradiation on semiconductors namely TiO$_2$, ZnO, ZnS and CdS. Examples of heterogeneous photocatalysis are mild/total oxidation, dehydrogenation, hydrogen transfer, deuterium-alkane isotopic exchange, metal deposition, water detoxification and gaseous pollutant removal (Herrmann, 1999). The basic components of heterogeneous photocatalysis are (Teh and Mohamed, 2011):

1) An emitted photon of appropriate wavelength,
2) a strong oxidizing agent (O$_2$) and
3) a catalyst surface of a semiconductor material.

A semiconductor can be a material with electrical resistivity between that of an insulator and a conductor while a semiconductor photocatalyst is characterized by an electronic band structure in which the highest occupied energy band, valence band (VB) and conduction band (CB) are separated by a band gap (E_{bg}). The CB is the energy level for the reduction potential of photoelectrons; VB is for the oxidizing ability of photogenerated holes while the band gap defines the wavelength sensitivity of the semiconductor to irradiation. The magnitude of the fixed energy gap between the electron rich valence band and the largely vacant conduction band governs the extent of the thermal population of the conduction band (Fox and Dulay, 1993). In
other words, the higher band gap of a semiconductor corresponds to shorter light wavelength which eventually requires a higher energy for electron excitation from the VB to CB. However, the electronic band of a semiconductor is often confused with the electronic band of a dye molecule. The difference between the energy level in a semiconductor photocatalyst and a dye molecule is shown in Figure 1.3.

![Diagram](image)

Figure 1.3: The energy level diagram of a) a semiconductor and b) a dye molecule.

According to Pankaj *et al*. (2013), a semiconductor must be non-toxic, stable in aqueous solution containing toxic or reactive chemicals and resistant to photocorrosion under sunlight. Numerous semiconductors have been tested for heterogeneous photocatalysis especially for the purpose of environmental remediation such as ZnO, ZnS and CdS. Unfortunately, these semiconductors suffer from photocorrosion in which the former photocatalyst (ZnO and ZnS) releases Zn(OH)$_2$ and Zn$^{2+}$ while the latter (CdS) releases Cd$^{2+}$ ions upon irradiation in aqueous media (Pankaj *et al.*, 2013). Titanium dioxide (TiO$_2$) on the other hand, possesses several important characteristics such as stable, non-toxic, and inert and is now considered an effective photocatalyst (Mills *et al.*, 2015).
1.3 Titanium dioxide

1.3.1 Ideal photocatalyst

The successful application of TiO$_2$ in water purification was firstly reported in 1977 (Frank and Bard, 1977) on cyanide and sulfite. The specialty of TiO$_2$ which made it differs from other photocatalyst is in mixings of both of its anatase and rutile forms (Li et al., 2006). With the attractive and successful degradation of many organic pollutants, TiO$_2$ has become the most chosen photocatalyst in the field of photocatalysis. Table 1.1 lists the characteristics of TiO$_2$ which closely matches the ideal photocatalyst characteristics.

Table 1.1: The characteristics match of ideal and TiO$_2$ photocatalyst (Hondow et al., 2010; Ibhadon and Fitzpatrick, 2013).

<table>
<thead>
<tr>
<th>Ideal photocatalyst</th>
<th>TiO$_2$</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoactive</td>
<td>✓</td>
<td>High photoactivity in the presence of light.</td>
</tr>
<tr>
<td>Able to absorb visible and/or near UV light</td>
<td></td>
<td>Only active for light irradiation of wavelength $\lambda \leq 387$ nm however, it can be modified to adsorb light of $\lambda \geq 387$ nm.</td>
</tr>
<tr>
<td>Biologically and chemically inert</td>
<td>✓</td>
<td>Does not take part in the reaction whereby only acting as the mediator for redox reactions.</td>
</tr>
<tr>
<td>Photostable (not liable to photoanonic corrosion)</td>
<td>✓</td>
<td>Practical for long term use and applications</td>
</tr>
<tr>
<td>Inexpensive</td>
<td>✓</td>
<td>Naturally abundant resource of titanium</td>
</tr>
<tr>
<td>Non-toxic</td>
<td>✓</td>
<td>Safe for human and environment</td>
</tr>
<tr>
<td>Able to oxidize and reduce water to O$_2$ and H$_2$, respectively</td>
<td>✓</td>
<td>The photogenerated electron-holes can react with water via redox reaction to produce O$_2$ and H$_2$ since the band is larger than 1.23 eV.</td>
</tr>
</tbody>
</table>
1.3.2 Structure and properties

TiO$_2$ is a metal oxide with a molar mass of 79.90 g mol$^{-1}$ and classified as not hazardous by the United Nations (UN) Globally Harmonized System (GHS) of Classification and Labeling of Chemicals (IARC, 2010). The photocatalytic activity of TiO$_2$ is highly dependent on the geometry, crystalline phases, surface defects, specific surface area and particle sizes (Dai et al., 2015). There are three types of TiO$_2$ phase that are mostly studied; rutile, anatase and brookite as shown in Figure 1.4. Rutile is the most stable phase of TiO$_2$, followed by anatase and brookite which are metastable and can be transformed to rutile when heated (Kaplan et al., 2015). Other type of TiO$_2$ polymorphs namely TiO$_2$(B) and the layered titanates are rarely studied. However, the anatase has been reported to exhibit the best photoactivity among the three phases due to its efficiency in light harvesting, prolong the lifetimes of charge carriers and charge separation (Kaplan et al., 2015; Leyva et al., 2015). On the other hand, rutile phase suffers the weaker adsorption of organic pollutants and faster recombination of electron-hole pairs while brookite is difficult to synthesize (Zhang et al., 2011). In recent years, the preparation of mixed phase TiO$_2$ is actively being studied such as anatase-rutile (Wu et al., 2015; Zhang et al., 2015b; Zhang et al., 2015), anatase-TiO$_2$(B) (Dai et al., 2015; Parayil et al., 2013), and anatase-brookite (Zhang et al., 2011).

The commercial mixed phase TiO$_2$ (anatase and rutile) is currently available in the market, namely Millenium 1580 S, Kronos 7500 and Kronos 1002 and Evonik P-25 or Aeroxide P25 (Montes et al., 2014). Aeroxide P-25 TiO$_2$, which was used in this study, consists of 80 % of anatase and 20 % of rutile. According to the product information from Evonik, P-25 TiO$_2$ has a surface area of 50 ± 15 m2 g$^{-1}$ and average particle size of 21 nm. The mixture of anatase and rutile in P-25 TiO$_2$, enhances the
photoactivity due to low recombination of electron-hole pairs as a result of relative conduction band edge between the anatase and rutile (Dai et al., 2015). P-25 TiO$_2$ has become the standard photocatalyst among the other brand of TiO$_2$ as it exhibits good photoactivity for the degradation of varieties of pollutants whereby it became the main reason of the selection for this study.

Figure 1.4: The crystal structures of TiO$_2$: (a) anatase, (b) rutile and (c) brookite (Leandro et al., 2013).

1.3.3 Mechanism of the TiO$_2$ photocatalysis

The process of photocatalysis is initiated when light of appropriate wavelength was absorbed by TiO$_2$ photocatalyst. According to physic’s law, the wavelength is inversely proportional to the band gap energy. Therefore, the light wavelength should be similar or less than 380 nm since the band gap energy should be similar or greater than the band gap of TiO$_2$ for electron excitation from the valence to the conduction band to occur. The reaction on TiO$_2$ is shown as follows (Singh et al., 2013; Zangeneh et al., 2015):
Figure 1.5: Schematic energy diagram of TiO$_2$ as adapted from Kazuhito et al. (2005).

Step 1: Generation of photoholes and electrons:

\[\text{TiO}_2 + \text{hv} \rightarrow \text{TiO}_2 (e^-_{\text{CB}}) + \text{TiO}_2 (h^+_{\text{VB}}) \quad (1.1) \]

Step 2: Formation of hydroxyl radicals (\(^{\cdot}\text{OH}\)) by the photogenerated holes at valence band:

\[\text{H}_2\text{O} + h^+_{\text{VB}} \rightarrow \text{H}^+ + \text{^{\cdot}\text{OH}} \quad (1.2) \]
\[\text{OH}^- + h^+_{\text{VB}} \rightarrow \text{^{\cdot}\text{OH}} \quad (1.3) \]

Step 3: Formation of superoxide anion radical (O$_2^{-}$), hydroperoxyl radical (\(^{\cdot}\text{OOH}\)), hydrogen peroxide (H$_2$O$_2$) and hydroxyl radicals at the conduction band:

\[\text{O}_2 + e^-_{\text{CB}} \rightarrow \text{O}_2^{-}\cdot \quad (1.4) \]
\[\text{O}_2^{-}\cdot + \text{H}^+ \rightarrow \text{^{\cdot}\text{OOH}} \quad (1.5) \]
\[\text{^{\cdot}\text{OOH}} + \text{^{\cdot}\text{OOH}} \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \quad (1.6) \]
\[\text{H}_2\text{O}_2 + e^-_{\text{CB}} \rightarrow \text{OH}^- + \text{^{\cdot}\text{OH}} \quad (1.7) \]
\[\text{H}_2\text{O}_2 + \text{O}_2^- \rightarrow \cdot\text{OH} + \cdot\text{OH} + \text{O}_2 \quad (1.8) \]

Step 4: Oxidation of organic contaminant (R):

\[\text{R} + \cdot\text{OH} \rightarrow \rightarrow \rightarrow \text{CO}_2 + \text{H}_2\text{O} \quad (1.9) \]

\[\text{R} + \text{O}_2^- \rightarrow \rightarrow \rightarrow \text{CO}_2 + \text{H}_2\text{O} \quad (1.10) \]

\[\text{R} + h^+_{\text{VB}} \rightarrow \text{R}^{\cdot} \rightarrow \text{the degradation products} \quad (1.11) \]

\[\text{R} + e^-_{\text{CB}} \rightarrow \text{R}^- \rightarrow \text{the degradation products} \quad (1.12) \]

A successful photocatalytic oxidation of organic pollutants by TiO\textsubscript{2} is highly dependent on the production of \cdot\text{OH radicals at the VB of TiO\textsubscript{2}. However, the generated \cdot\text{OH radical is unstable and must be continuously generated in situ, by chemical or photochemical process (Leandro et al., 2013). Unless there are electron acceptors at the CB of TiO\textsubscript{2} after the excitation, the excited electrons could recombine with the photogenerated holes at the VB. Moreover, the recombination of electron-hole pairs would produce heat, which is unfavorable for the efficacy of the photocatalyst activity.}

1.3.4 Langmuir-Hinshelwood kinetic model

The Langmuir Hinshelwood equation was commonly used as to describe the heterogeneous photocatalysis. The equation of the Langmuir Hinshelwood kinetic model is given as in Equation 1.13 (Kumar et al., 2008a).

\[r = -\frac{dC}{dt} = \frac{k_\text{r}KC}{1 + KC'} \quad (1.13) \]

where \(r \) is the rate of reaction that changes with time.
The term r in Equation 1.13 was represented in terms of initial reaction rate, r_o, as a function of the initial dye concentration, C_o, or in terms of C_e, where C_e is the equilibrium dye concentration in solution. The initial rate of reaction as a function of C_o and C_e is given by Equations 1.14 and 1.15, respectively:

$$r_o = \frac{k_r C_o}{1 + K C_o}$$ \hspace{1cm} (1.14) \\
$$r_o = \frac{k_r C_e}{1 + K C_e}$$ \hspace{1cm} (1.15)

The parameter k_r and K which is a function of C_o or C_e can be predicted by linearizing Equations 1.14 and 1.15 as follows:

$$\frac{1}{r_o} = \frac{1}{k_r} + \frac{1}{k_r K C_o}$$ \hspace{1cm} (1.16)

The constants k_r and K can be calculated from the corresponding integrated expression between the limits: $C = C_o$ at $t = 0$ and $C = C_t$ at $t = t$. The integrated expression is given by:

$$\ln \left(\frac{C_o}{C_t} \right) + K (C_o - C) = k_r K t$$ \hspace{1cm} (1.17)

If the term $KC << 1$, the equation (1.13) is reduced to:

$$r = \frac{dC}{dt} = k_r K C$$ \hspace{1cm} (1.18)

Integrating equation (1.18) with respect to limits: $C = C_o$ at $t = 0$ and $C = C_t$ at $t = t$, the Langmuir Hinshelwood expression reduces to a pseudo first order kinetic and is given by:

$$\ln \left(\frac{C_o}{C_t} \right) = k_f K t = k t$$ \hspace{1cm} (1.19)

where the new constant k includes k_r and K.

11
A plot of $\ln\left(\frac{C_0}{C_t}\right)$ versus time (t) will give a straight line with the slope of k as the pseudo first order rate constant. The coefficient of determination (R^2) indicates the degree of agreement of the reaction with the Langmuir-Hinshelwood kinetic model, where:

- r: the rate of degradation ($\text{mg L}^{-1} \text{ min}$);
- C_e: the equilibrium concentration of pollutant (mg L^{-1});
- C_o: the initial concentration of pollutant (mg L^{-1});
- C_t: the concentration of pollutant at time t during degradation (mg L^{-1});
- K: equilibrium constant for adsorption of the substrate onto catalyst;
- k_r: limiting rate constant of reaction at maximum coverage under the given experimental conditions;
- r_o: initial rate of reaction (min^{-1});
- t: the irradiation time (min);
- k: the reaction rate constant (min^{-1}).

1.3.5 Drawbacks and improvements

Though many researchers had reported the excellent performance by TiO$_2$ photocatalyst in water abatement, it suffers from several drawbacks such as high recombination rate of electron-hole pairs and poor degradation rate for some organic pollutants. Therefore, the research progress in photocatalysis field continues to grow and new methods are being developed in order to overcome those obstacles.

The first intrinsic problem with TiO$_2$ photocatalyst was its high recombination rate of electron-hole pairs upon light irradiation. It was known that the lifetime of charge carriers in TiO$_2$ after excitation was very short which is 10-40 μs.
(Colbeau et al., 2003). The short lifetime due to high recombination of charge carriers could be overcome by surface sensitization using dye or metal complexes in order to induce better charge separation. The dye is anchored on TiO$_2$ surface by covalent, or physical or chemical bonding which induced the charge injection of the excited dye molecule into the CB of TiO$_2$ leading to successive photocatalytic degradation. This sensitization also increases the range of wavelength response towards the natural sunlight (Gupta and Tripathi, 2011). However, the dyes themselves can be photodegraded to form intermediates which need to be disposed. On the other hand, transition metal complexes such as Ru-polypyrindyl complexes induce the charge separation by the excited electrons which participate in the charge transfer of electrons to TiO$_2$ conduction band (Kalyanasundaram and Grätzel, 1998).

The second drawback of TiO$_2$ is the excitation of electron-hole pairs could be only initiated in the presence of high UV light intensity. Therefore, the solution is to change the band gap energy by coupling two semiconductors of suitable potential energy such as CdS-TiO$_2$, SnO$_2$-TiO$_2$ and ZnO-TiO$_2$ whereby the holes produced in smaller band gap semiconductor remain while the electrons are transferred to the conduction band of TiO$_2$ which induce charge separation (Jing and Guo, 2006). Another way is to dope TiO$_2$ with noble metals such as Ag (Albiter et al., 2015; Gomathi and Mohan, 2010), Au (Subramanian et al., 2003; Tahir et al., 2006; Zhu et al., 2009), Pt, Ni, Rh and Cu (Gupta and Tripathi, 2011) which can trap the electrons and free holes and enhance the charge separation at the valence band to participate in the photocatalytic oxidation reaction. This was due to the Fermi levels of these noble metals which are lower than that of TiO$_2$. Nevertheless, it was found that the properties of these TiO$_2$-noble metal composites are strongly dependent on the size of metal particle, composition and dispersion as if the concentration of metal was too
high, the absorption of the light photon would be reduced and the metal can become the electron-hole recombination centers which resulted in lower efficiency than the TiO$_2$. TiO$_2$ can also be doped with non-metal such as C,N,B,F (Valentin and Pacchioni, 2013) and carbon nano tube (CNT) (Ashkarran et al., 2015). The composites could decrease the band gap which make it visible light active. In addition, the TiO$_2$ could be also modified by co-doping the metal-metal such as Fe$^{3+}$ and Eu$^{3+}$ (Vasiliu et al., 2009), metal-non-metal; Cu-N (Song et al., 2008) and non-metal-non-metal; C-N (Nawawi and Nawi, 2014; Sabri et al., 2015). The TiO$_2$ co-doped system showed a red-shift in absorption spectrum and high photocatalytic activity than the single doped TiO$_2$ especially when exposed to total visible light.

Thirdly, the conventional TiO$_2$ in suspended or slurry mode requires post treatment due to its nanoparticle size, which is a tedious, time and money consuming filtration process. Apart from filtration, the steps of recovering the photocatalyst from the treated water solution involved the process of washing, filtering and drying, which may result in the lost of an amount of the photocatalyst during the process. To solve this drawback, different supports and immobilization techniques were used whereby the common support materials and their immobilization modes were glass beads; heat attachment (Daneshvar et al., 2005), granular activated carbon; dip hydrothermal (Wang et al., 2009), stainless steel; coating (Souzanchi et al., 2013) and glass plate; dip coating (Razak et al., 2014). However, the immobilization mode of TiO$_2$ might have some significant defects such as reducing the active sites exposure to light, as the area is fixed and the mass transfer hindrance increases, which lead to poor photocatalytic activity plus the need to seek for well-defined procedures and equipment (Singh et al., 2013). Coupling the photocatalyst and adsorbent in the immobilized form is another approach to enhance the overall
photocatalytic performance. TiO\(_2\) has been combined with various adsorbents such as silica oxide (SiO\(_2\)) (Rahman et al., 2014), montmorillonite (MT) (Bhattacharyya et al., 2004), activated carbon (AC) (Muthirulan et al., 2013) and chitosan (CS) nanofiber (Razzaz et al., 2016) whereby all systems showed enhanced photocatalytic performance than the bare TiO\(_2\) in the removal of the organic contaminants.

1.4 Chitosan (CS)

1.4.1 Origin of CS

Chitin is firstly identified in 1884 and is originated from the main component on shell of crustaceans such as shrimp and crab shell and cell walls of fungi and yeast (Younes and Rinaudo, 2015). Chitin was the second most abundant polysaccharides in nature after cellulose while CS is the derivation of chitin which had undergone the deacetylation process using NaOH as the deacetylation agent (Choi et al., 2016). Figure 1.6 provides the chemical structures of cellulose, chitin and CS. Chitin with more than 75 \% degree of deacetylation is known as CS while cellulose only differs with chitin and CS based on the hydroxyl group in its C-2 position. The process of deacetylation removes acetyl groups from the molecular chain of chitin and leaving behind a complete amino group (-NH\(_2\)). The degree of deacetylation depends on the content of the amino groups in the CS. Increasing temperature and strength of NaOH enhances the acetyl group removal from chitin, which then produces CS with different properties. CS was one of the main cationic polymers which forms inter and intra-molecular hydrogen bonding due to amine and hydroxyl groups which made the crystalline structure of CS rigid (Choi et al., 2016).
1.4.2 Applications of CS

CS is biodegradable, biocompatible, bioadhesive, hydrophilic, able to produce film and a good adsorbent (Zhao et al., 2015). The diverse properties of CS made it usable in different applications and fields such as pharmaceutical, biomedical, food, cosmetics (Rinaudo, 2006) and waste water remediation (Cárdenas et al., 2002; Janaki et al., 2012; Ngah and Fatinathan, 2010). The functionality of CS was based on the presence of hydroxyl and amino group which served as the coordination and reaction sites for modification which could attract the positive and negative chemical species to bound to its structure (Ngah and Fatinathan, 2010).

CS can also become bioadhesive since it offers a very good strength as compared to synthetic adhesive without containing volatile organic carbon (VOC)
(Patel, 2015). However, the material suffers from low strength and large shrinkage upon dehydration. Therefore, other materials such as clay when added into the CS matrix can significantly improve its thermal stability and mechanical properties, and may exert special behavior towards chemical species present in water (Wang et al., 2006). Such a system can also be used to fasten flocculation and improve the flake's textures (Shou et al., 2012).

1.4.3 Modification of CS

CS is not soluble in organic solvents and only dissolved in acidic aqueous media (HCl and CH$_3$COOH) whereby the solubility of CS is facilitated by the protonation of its primary amino group on the C-2 position of the D-glucosamine. The degree of protonation depends on the pKa of the acid and CS concentration which only converts CS into the pseudonatural cationic polymer (García et al., 2015; Rinaudo et al., 1999). Due to its excellent and vast properties, CS was modified chemically in order to produce novel CS-based materials or biohybrid with specific application properties which usually occurs at the –NH$_2$ primary group and hydroxyl group at the C-2 and C-6 position, respectively (García et al., 2015). However, due to its poor solubility in organic solvents, researchers have focused on improving its solubility and grafting process by attaching new functional groups. Garcia et al. (2015) had reported a novel and simple method via nitrooxide-mediated polymerization (NMP) to modify well-defined molecular weight CS in homogeneous media by utilizing CS-sodium dodecylbenzenesulfonate (SDBS)-glycidyl methacrylate (GMA) as a precursor. The poly (styrene) (PS), poly (butyl acrylate) (PBA), poly (acrylic acid) (PAA) respectively, are grafted onto the hydroxyl groups of CS-SDBS-GMA in DMSO to produce CS-GMA-PS, CS-GMA-PBA and CS-GMA-PAA as new CS based materials. Cai et al. (2009) prepared the soluble CS in
DMSO by grafting organo-soluble polymers, poly (ethyleneglycol) (PEG) and poly (\(\varepsilon\)-caprolactone) (PCL) onto CS using the acidic CS and sodium dodecylsulfate (SDS) solution as an intermediate. The authors found that the PEG and PCL became conjugated to CS through the hydroxyl groups while maintaining the cationic density of the amino groups intact on the surface of the CS. The SDS and SDBS which were responsible for the dissolution of grafted CS in DMSO could be removed by precipitation of the grafted polymer in DMSO into Tris aqueous solution or dialyzing against Tris solution (Cai et al., 2009; García et al., 2015).

Meanwhile, the CS films, beads, gels and fibers which were prepared by single CS solution suffer dehydration shrinkage in aqueous media and swelling defects upon thermal treatment. In addition, the solubility of CS in acidic media can be cumbersome, which eventually decrease the spectrum of its application (Ngah et al., 2005). To overcome this, the CS was modified chemically by cross-linkers such as epichlorohydrin (ECH), glutaraldehyde (GLA), glyoxal, ethylene glycol diglycidyl ether (EDGE), tripolyphosphate (TPP) and genipin (Berger et al., 2004; Obeid et al., 2013) basically to change the hydrophilicity of CS to be more hydrophobic. The cross-linking occurs in the amine and hydroxyl groups in C-2 and C-6 position that allows the formation of bridges between the polymer chains. Among the cross-linking agents, the dialdehydes such as GLA and glyoxal bind preferentially to the amino group of CS forming covalent imine bonds via a Schiff reaction while the epoxides, such as ECH prefers to bind to the free hydroxyl group (Berger et al., 2004). The cross-linked CS has an improved mechanical resistance, strength and stability in acidic, alkaline and chemical solution as well as under thermal treatment and compression (Azlan et al., 2009; Ngah et al., 2002). However, cross-linking agents such as GLA is known to be neurotoxic while glyoxal is
mutagenic, which may not be a good choice for biomedical, medical, pharmaceutical and tissue engineering applications (Berger et al., 2004).

Recently, the attention has been devoted to modifying the CS structure by combining with other potential materials such as zeolite and MT. The hydrophilic CS forms composite with clays which are alumino-silicates with a three-dimensional framework structure containing AlO$_4$ and SiO$_4$. Such combination would avoid the use of toxic and mutagenic chemicals which can harm human health. In addition, the combination of the two different types of adsorbents could improve the pore size, mechanical strength, chemical stability, hydrophilicity and biocompatibility of CS (Ngah et al., 2012). Another approach in modification of CS was via photo irradiation which causes changes in the polymeric structure of CS by inducing the chain scission, reducing the average molecular weight, improving solubility in water, changing the color intensity, optical and spectral sensitivity (Taei, 2011). CS has been modified by different light sources such as UV light (Praxedes et al., 2012), fluorescent lamp (Jawad and Nawi, 2012b), ultrasonic irradiation (Cravotto et al., 2005; Kasaai et al., 2008) and gamma (γ) rays (Kang et al., 2007; Tahtat et al., 2012). Nevertheless, until recently, the oxidative degradation are based on the formation of reactive $`$OH radicals from H$_2$O$_2$ (Chang et al., 2001), TiO$_2$ (Jawad and Nawi, 2012b) and O$_3$ (Yue et al., 2009) which are powerful oxidizing species. It receives attention whereby modification occurs when the oxidative radical species attack the 1,4 glycosidic linkages which result in the CS degradation (Kang et al., 2007). Modification of CS by a combination of photon from light source and oxidants could turn CS into the desired properties such as water-soluble, low molecular weight with added specialty in biological, chemical and physical properties than that of the ordinary CS (Kang et al., 2007).
1.5 Montmorillonite

1.5.1 Structure and properties

Montmorillonite (MT), the clay mineral is often confused with bentonite. Both bentonite and MT belong to the smectite group which is built from 2:1 aluminosilicate whereby alumina octahedral is switched between two tetrahedral of silica layers (Bhattacharyya and Gupta, 2008). In short, bentonite can be considered as the family name while MT is the species name. MT is referred to as “swelling clay minerals” due to the tendency for polar liquids to be taken in the interlayer space which makes MT a matrix for the preparation of functional composites in adsorbents, catalyst and flame retardants (Sun et al., 2015).

![Figure 1.7: The structure of MT. Source: http://sparc.fpv.umb.sk/ (accessed on 9.10 pm, 21st Feb 2016).](image)

The clay layer is characterized by permanent negative charges due to isomorphous substitution of Al$^{3+}$ atoms of the octahedra for lower valent cations (Mg$^{2+}$). Exchangeable cations (Na$^+$) are present in the interlayer spaces to
compensate the negative charge. In addition to the permanent charge, pH-dependent charge is present on the edges of clay layer; Al–OH (or Si–OH) groups at the edges are present as different states depending on the pH of the solution: Al–OH\(^{2+}\) (at low pH), Al–OH (at medium pH), and Al–O– (at high pH). Other than MT, there are several kinds of smectite-type clay minerals (e.g., saponite, hectorite, beidelite, and nontronite), which differ in chemical composition and the type of isomorphous substitution. Most of these clay minerals occur naturally in earth soils, whereas the composition, isomorphous substitution, impurity level, and crystallinity of the clays differ depending on the production areas. Synthetic clay minerals, which are suitable for chemical experiments due to lower impurity content, are also available (Nakato and Miyamoto, 2009).

1.5.2 Applications of MT in environmental remediation

The interlayer of MT contains negative charges which are counterbalanced by inorganic cations (e.g., Na\(^+\), Ca\(^{2+}\)) and exchangeable for adsorption of cationic contaminants such as heavy metals, cationic dyes (methylene blue (MB), malachite green (MG)) and cationic surfactants (Zhu et al., 2014). Since MT adsorbs cationic surfactant, it can undergo ion-exchange with its negative charge counterpart which the modified MT often called organo-MT was produced. Eventually, the modification can promote the adsorption of anionic contaminants such as humic acid, methyl orange (MO), 2-naphthol and neutral pollutant such as phenol (Jiang et al., 2002). Beside organic pollutants, organo-clays can also adsorb heavy metals such as Cu\(^{2+}\) and Zn\(^{2+}\) (Lin, 2002), Cr (VI) (Krishna et al., 2000) and Ni\(^{2+}\) (Ijagbemi et al., 2009). The properties of clays specifically MT as good adsorbents are due to their high specific surface area, high chemical and mechanical stability, cheap and vastly available from nature. Thus, MT has the potential to be widely used in wastewater
treatment for removing many types of pollutants and heavy metals besides activated carbon, a universal but costly adsorbent which restricts its wide application (Zhu et al., 2014).

1.6 Conducting polymer: Polyaniline

The breakthrough discovery of intrinsically conducting polymer (ICP) was initiated by MacDiarmid, Heeger and Shirakawa in 1977 whereby they discovered the exposure of polyacetylene to iodine vapor yielding conducting material (MacDiarmid, 2001). ICPs are completely different form the conducting polymers which are merely a physical mixture of conducting material (eg; metal or carbon powder) and a nonconductive polymer. ICPs on the other hand, are commonly known as a “synthetic metal” which possess the electrical, electronic, magnetic and optical properties of a metal while retaining the mechanical properties and processability (MacDiarmid, 2001). Recently, ICPs discovered were polypyrrole (Ppy), polythiophene, polyparaphenylene (PPP) and polyparaphenylene vinylene (PPV) (Bhadra et al., 2009).

Polyaniline (PANI), known as “aniline black” was rediscovered in 1980s (Čirić, 2013). PANI emerged as the promising material in the family of conducting polymers which allow the construction of polymer modified electrodes to be used as sensors, biosensors, and substrates for metallization (Ahmed, 2004). PANI has controlled conductivity within $10^{-10} - 10^1$ S cm$^{-1}$ range with ionic and proton conductivity, redox activity, electro- and solvatochromism, electrical storage, stable in extreme condition, high thermal stability and easy to synthesize (Ahmed, 2004; Yu and Shishov, 2012). The synthesis of PANI has expanded over the years and it became the most studied conducting polymer. Under different conditions, PANI can
exist in three main oxidation states as shown in Figure 1.8. The oxidation states on the other hand, are denoted by the y values as shown in Figure 1.9 whereby $y = 1$, 0.5 and 0 corresponding to the fully reduced polyaniline (benzenoid diamine), the half oxidized polyaniline (emeraldine), and the fully oxidized polyaniline (quinoid diimine), respectively (Wang et al., 2013b). According to Bhadra et al. (2009), the mode of synthesis was varied which were based on chemical, electrochemical, template, enzymatic, plasma and photo approaches. The most common method, chemical approach can be subdivided into the following modes as shown in Table 1.2.

![Figure 1.8: Structures of polyaniline in various intrinsic redox states (Chen, 2007)](image)

![Figure 1.9: Molecular structure of emeraldine base of PANI (Zeng and Ko, 1998).](image)
Table 1.2: Various methods for synthesis of PANI (Bhadra et al., 2009).

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterophase</td>
<td>Polymerization includes the precipitation, suspension, micro suspension, emulsion, miniemulsion, microemulsion, dispersion, reverse micelle and inverse (Carenza and Palma, 1985)</td>
</tr>
<tr>
<td>Solution</td>
<td>Processability is better since the prepared PANI is already in a solution (Kuramoto and Tomita, 1997).</td>
</tr>
<tr>
<td>Interfacial</td>
<td>Polymerization is carried out in a mixture of two immiscible solvents such as water and chloroform in the presence of different acids as dopants (Chen et al., 2007; Dallas et al., 2007).</td>
</tr>
<tr>
<td>Seeding</td>
<td>A typical template approach whereby foreign material is used as a seed. PANI obtained is similar to a nanofiber with high conductivity which dependent on the type and concentration of acids, the type of seed, solvent and the relative amount of seed to solvent (Xing et al., 2006).</td>
</tr>
<tr>
<td>Metathesis</td>
<td>PANI is formed when (p)-dichlorobenzene and sodium amide is heated at 220 °C for 12 hours in an organic medium such as benzene, whereby aniline monomer is not required (Guo et al., 2005).</td>
</tr>
<tr>
<td>Self assembling</td>
<td>The PANI films are grown on the film by polymerizing an aniline monomer in a vapor phase (Yang et al., 2007)</td>
</tr>
<tr>
<td>Electrochemical</td>
<td>i) Constant current (galvanostatic) Two-electrode assembly dipped in an electrolyte solution containing monomer, with specified current (Genies et al., 1985)</td>
</tr>
<tr>
<td></td>
<td>ii) A constant potential (potentiostatic) PANI powder adheres weakly on the electrode (Diaz and Logan, 1980).</td>
</tr>
<tr>
<td></td>
<td>iii) A potential scanning/cycling or sweeping (Diaz and Logan, 1980).</td>
</tr>
<tr>
<td>Sonochemical</td>
<td>Dropwise addition of an acidic ammonium persulfate (APS) solution to an acidic aniline solution with the aid of ultrasonic irradiation. The possible reactions within the system are (Jing et al., 2007):</td>
</tr>
<tr>
<td></td>
<td>i) the continuous formation of primary PANI nanofibers;</td>
</tr>
<tr>
<td></td>
<td>ii) the conversion of primary nanofibers into thicker fibers with uneven surfaces; and</td>
</tr>
<tr>
<td></td>
<td>iii) the growth and agglomeration of thicker.</td>
</tr>
</tbody>
</table>