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PEMFABRIKAN, FOTOMANGKINAN DAN PENJERAPAN SISTEM 

DWILAPISAN TERPEGUN TiO2/KITOSAN-MONTMORILONIT DAN 

TiO2/POLIANALINA UNTUK PENYINGKIRAN PEWARNA METIL 

JINGGA DARIPADA LARUTAN AKUEUS 

 

ABSTRAK 

Kajian ini adalah usaha untuk membangunkan dua sistem dwilapisan 

terpegun untuk penyingkiran secara fotomangkinan-penjerapan pewarna metil oren 

(MO) daripada larutan akueus. Sistem dwilapisan terpegun melibatkan penjerap 

spesifik dan TiO2 di atas plat kaca yang dinamakan TiO2/kitosan-montmorilonit 

(TiO2/CS-MT/GP) dan TiO2/polianalina (TiO2/PANI/GP) masing-masing telah 

difabrikasi melalui teknik pelitupan celup. Dalam kajian ini, CS-MT dan PANI 

berfungsi sebagai lapisan bawah manakala fotomangkin TiO2 dijadikan sebagai 

lapisan atas. Pada awalnya, lapisan bawah untuk kedua-dua sistem dioptimumkan 

melalui kajian penjerapan dan dicirikan melalui mikroskop imbasan elektron (SEM), 

spektroskopi transformasi inframerah Fourier (FT-IR) dan analisis penjerapan-

penyahjerapan N2. Penambahan serbuk MT kepada matrik CS menurunkan kadar 

pembengkakan, menambahkan kekuatan mekanikal dan luas permukaan (SBET)  

daripada 3.82 kepada 4.38 m
2
 g

-1 
manakala penambahan ENR50-PVC menambahkan 

kekuatan mekanikal tetapi menurunkan SBET serbuk PANI daripada 9.16 kepada 8.50 

m
2
 g

-1
. Penilaian aktiviti fotomangkinan oleh sistem dwilapisan dilakukan di bawah 

pancaran lampu pendarfluor kompak 45 Watt. Berat optimum lapisan penjerap 

adalah 1.27 dan 0.63 mg cm
-2

 untuk masing-masing TiO2/CS-MT/GP dan 

TiO2/PANI/GP manakala berat TiO2 optimum untuk TiO2/CS-MT/GP dan 

TiO2/PANI/GP masing-masing adalah 2.54 dan 1.27 mg cm
-2

. Sistem TiO2/CS-
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MT/GP dan TiO2/PANI/GP masing-masing mematuhi model kinetik penjerapan 

pseudo tertib pertama Lagergren dan pseudo tertib kedua Ho dan Mc Kay. Model 

isoterma Freundlich pula berupaya untuk menerangkan mekanisma penjerapan pada 

keseimbangan dan pembauran intra-zarah adalah salah satu kadar penghad untuk 

kedua-dua sistem. Sistem dwilapisan menghasilkan lebih radikal 
•
OH daripada 

sistem monolapisan TiO2 kerana kadar pemisahan pasangan elektron-lubang yang 

lebih baik manakala jurang tenaga jalur TiO2 dikurangkan dari 3.02 eV kepada 2.94 

dan 2.95 eV, masing-masing untuk sistem TiO2/CS-MT/GP dan TiO2/PANI/GP. 

Keadaan operasi optimum bagi aktiviti fotomangkinan-penjerapan sistem dwilapisan 

adalah pH ambien (6.5), kadar aliran udara 40 mL min
-1

 dan kepekatan awal MO 20 

mg L
-1

. Sistem TiO2/CS-MT/GP boleh mengekalkan kebolehulangan guna dalam 

purata penyingkiran sebanyak  97.7 ± 1.0 % dan kadar penyingkiran 0.088 ± 0.008 

min
-1

 sepanjang 10 kitaran manakala aktiviti fotomangkinan TiO2/PANI/GP lebih 

baik pada tiga kitaran yang pertama tetapi mula menurun pada kitaran keempat 

dengan purata penyingkiran sebanyak 62.7 ± 10.2 % dan kadar penyingkiran adalah 

0.017 ± 0.003 min
-1

. Walau bagaimanapun, kadar penyingkiran sistem TiO2/CS-

MT/GP adalah 4 kali lebih baik dari TiO2/GP manakala ia adalah 2.5 kali bagi sistem 

TiO2/PANI/GP. Mineralisasi MO mencapai 82.8 % bagi TiO2/CS-MT/GP dan     

73.2 % bagi TiO2/PANI/GP selepas 10 jam rawatan. Dalam pada itu, laluan 

penguraian menunjukkan spesis pertengahan utama yang terhasil adalah 4-{(E-[4-

(metilamino)fenil]diazenil benzenasulfonat dan 4-{(E-[4-aminofenil]diazenil} 

benzenasulfonat. Secara perbandingan, sistem TiO2/CS-MT/GP menunjukkan 

penyingkiran secara fotomangkinan-penjerapan pewarna MO yang lebih baik 

daripada sistem TiO2/PANI/GP.  
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FABRICATION, PHOTOCATALYTIC AND ADSORPTION OF 

IMMOBILIZED TiO2/CHITOSAN-MONTMORILLONITE AND 

TiO2/POLYANILINE BILAYER SYSTEMS FOR THE REMOVAL OF 

METHYL ORANGE DYE FROM AQUEOUS SOLUTIONS 

 

ABSTRACT 

This study was an effort to develop two immobilized bilayer systems for the 

photocatalytic-adsorptive removal of methyl orange (MO) dye from aqueous 

solution. The immobilized bilayer systems involving specific adsorbents and TiO2 on 

the glass plates namely TiO2/chitosan-montmorillonite (TiO2/CS-MT/GP) and 

TiO2/polyaniline (TiO2/PANI/GP) systems had been fabricated via a dip coating 

technique. In this study, CS-MT and PANI, respectively functioned as the sub-layer 

while TiO2 photocatalyst was made as the top layer. Initially, the respective 

adsorbent sub-layer of both systems was optimized via a batch adsorption study and 

characterized by using scanning electron microscopy (SEM), Fourier transform infra-

red spectroscopy (FT-IR) and N2 adsorption-desorption analysis. The addition of MT 

powder to CS matrix decreased the swelling degree, improved the mechanical 

strength and surface area (SBET) of CS-MT from 3.82 to 4.38 m
2
 g

-1 
while the 

addition of ENR50-PVC decreased the SBET of PANI powder from 9.16 to 8.50 m
2
 g

-1
 

but improved its mechanical strength. The photocatalytic activity assessment of the 

bilayer systems was performed under the irradiation of a 45 Watts compact 

fluorescent lamp. The optimum adsorbent sub-layer loading was found to be 1.27 

and 0.63 mg cm
-2

 for TiO2/CS-MT/GP and TiO2/PANI/GP, respectively, while the 

optimum TiO2 loading for TiO2/CS-MT/GP and TiO2/PANI/GP was 2.54 and 1.27 

mg cm
-2

, respectively. The TiO2/CS-MT/GP and TiO2/PANI/GP systems obeyed the 
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Lagergren’s pseudo first order and Ho and Mc Kay’s pseudo second order adsorption 

kinetic model, respectively. On the other hand, the Freundlich isotherm model could 

explain the adsorption mechanism at equilibrium whereas intra-particle diffusion was 

one of the rate limiting steps for both systems. The bilayer systems produced more 

•
OH radicals than the single layer TiO2 due to better charge separation rate of 

electron-hole pairs while the band gap of TiO2 was reduced from 3.02 eV to 2.94 and 

2.95 eV for TiO2/CS-MT/GP and TiO2/PANI/GP system, respectively. The optimum 

operating conditions for the photocatalytic-adsorption activity of the bilayer systems 

were at ambient pH (6.5), 40 mL min
-1

 of aeration flow rate and 20 mg L
-1 

of MO 

initial concentration. The TiO2/CS-MT/GP could maintain the reusability on the 

average removal of 97.7 ± 1.0 % and 0.088 ± 0.008 min
-1

 removal rate throughout 

the 10 cycles, while the photocatalytic activity of TiO2/PANI/GP was better at the 

first three cycles, but started to cease out at the 4
th

 cycle with the removal average of 

62.7 ± 10.2 % and 0.017 ± 0.003 min
-1

 removal rate. Nevertheless, the removal rate 

of the MO of the TiO2/CS-MT/GP system was 4 times better than TiO2/GP while it 

was 2.5 times for the TiO2/PANI/GP system. The mineralization of MO attained   

82.8 % by TiO2/CS-MT/GP and 73.2 % by TiO2/PANI/GP after 10 hours of 

treatment. Meanwhile, the degradation pathways showed that the main intermediate 

species produced were 4-{(E-[4-(methylamino)phenyl] diazenyl}benzenesulfonate 

and 4-{(E-[4-aminophenyl] diazenyl}benzenesulfonate. Comparatively, the 

TiO2/CS-MT/GP system showed better photocatalytic-adsorptive removal of the MO 

dye than the TiO2/PANI/GP system.  
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CHAPTER ONE 

INTRODUCTION 

 

 

1.1 Photocatalysis: Historical Overview 

Photocatalysis is defined as a photoreaction in the presence of a catalyst. This 

photoreaction is activated by photons from the light by appropriate energy (Mills and 

Le Hunte, 1997). According to Fujishima et al. (2008), the earlier work of 

photocatalysis had been reported by Renz at University of Lugano whereby he 

discovered that titania is partially reduced during the illumination of light in the 

presence of an organic compound, in which the oxide turns to dark colors (gray, blue 

and black) (Renz, 1921).  Then, in 1924, Baur and Perret at the Swiss Federal 

Institute of Technology reported the photocatalytic deposition of metallic silver by 

ZnO. The studies were then continued for more years by different scientists and the 

progressed of those studies are shown in time frame as in Figure 1.1.   

 

 

  

 

 

 

 

 

Renz (1921) reported the partial reduction of titania 

under the light illumination in the presence of 

organic compound.  

        1921 

        1927 

Baur and Neuweiler (1927) discovered the 

photocatalytic deposition of a silver salt of metallic 

silver by ZnO and proposed Baur redox mechanism 

1927.  

       1938 

Goodeve and Kitchener (1938) proposed titania 

acted as the catalyst to accelerate the 

photochemical oxidation, studied other 

semiconductors and speculated on the precise 

mechanism.    

                    Years                                                   Research findings 
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Figure 1.1: Time frame of photocatalysis research progress (Fujishima et al., 2008). 

 

        1949 

Jacobsen (1949) at the National Lead Company 

(USA) attempted to explain the paint chalking in 

terms of a redox mechanism.  

        1953 

Markham and Laidler (1953) studied the 

photocatalytic reaction of ZnO as the photoanode 

for formation of H2O2 but neglected TiO2 due to 

production of unmeasurable amount of H2O2. 

        1955 

Stephens et al. (1955) at Wayne State University 

studied the production of H2O2 on several 

semiconductors and found that CdS is a more 

active photocatalyst than ZnO.   

        1958 

Kennedy et al. (1958) at the University of 

Edinburgh found a correlation between the ability 

of TiO2 sample to photocatalytically decompose 

chlorazol sky blue.  

        1964 

Filimonov (1964) compared the photocatalytic 

oxidation of isopropanol to acetone on ZnO and 

TiO2. They concluded that the mechanism of on 

TiO2 involved reduction of O2 to H2O, while the O2 

reduction on ZnO was only to H2O2.  

        1965 

McLintock and Ritchie (1965) studied the 

photocatalytic oxidation of ethylene and propylene 

at TiO2 and proposed that it was possible to oxidize 

the organic compounds completely to H2O and CO2 

which involved the production of superoxide from 

oxygen. 

        1967 

Morrison and Freund (1967) found quantitatively 

that the availability of electrons and holes at the 

surface is dominant in the mechanism of a 

heterogeneously catalyzed reaction.  
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The historical breakthrough of photocatalysis was catalyzed by the demand of 

energy renewal and storage and the detoxification of harmful substances in water and 

air especially in the late 1960s (Ibhadon and Fitzpatrick, 2013; Linsebigler et al., 

1995).  In 1972, Akira Fujishima and his doctoral advisor, Kenichi Honda discovered 

the splitting of water by TiO2 electrode in an electrochemical cell after an exposure 

to light of 415 nm wavelength (Fujishima and Honda, 1972). In the experiment 

(Figure 1.2), the photocurrent flowed from Pt counter electrode through the external 

circuit to TiO2 electrode which was proven to cause the oxidation of water at the 

TiO2 electrode with the evolution of oxygen while it was the reduction of water at the 

Pt electrode with the evolution of hydrogen (Nakata et al., 2012). Since then, there 

has been a growing interest in this discovery (oxidation and reduction potential of 

TiO2) for numerous applications such as water splitting, hydrogen production, 

electrode and water/air treatment especially in the field of heterogeneous 

photocatalysis.   

 

 
 

Figure 1.2: Schematic diagram of electrochemical photocell. (1) n-type TiO2 

electrode; (2) platinum black counter electrode; (3) ionically conducting 

separator; (4) gas buret; (5) load resistance; and (6) voltmeter 

(Hashimoto et al., 2005). 

Pt TiO2 
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1.2 Heterogeneous photocatalysis 

Application of photocatalysis is generally divided into homogeneous and 

heterogeneous photocatalysis. The homogeneous photocatalysis generally refers to 

the reactants and the photocatalysts existing in the same phase while the 

heterogeneous photocatalysis refers to photoreaction of a catalyst which is in a 

different phase from the reactants. Common examples of homogeneous 

photocatalysis are ozonation and photo-Fenton systems (Fe
2+

 and Fe
2+

/H2O2) 

(Kitsiou et al., 2009). Heterogeneous photocatalysis includes the process involving 

light irradiation on semiconductors namely TiO2, ZnO, ZnS and CdS. Examples of 

heterogeneous photocatalysis are mild/total oxidation, dehydrogenation, hydrogen 

transfer, deuterium-alkane isotopic exchange, metal deposition, water detoxification 

and gaseous pollutant removal (Herrmann, 1999). The basic components of 

heterogeneous photocatalysis are (Teh and Mohamed, 2011);  

1) An emitted photon of appropriate wavelength, 

2) a strong oxidizing agent (O2) and 

3) a catalyst surface of a semiconductor material.      

A semiconductor can be a material with electrical resistivity between that of 

an insulator and a conductor while a semiconductor photocatalyst is characterized by 

an electronic band structure in which the highest occupied energy band, valence band 

(VB) and conduction band (CB) are separated by a band gap (Ebg). The CB is the 

energy level for the reduction potential of photoelectrons; VB is for the oxidizing 

ability of photogenerated holes while the band gap defines the wavelength sensitivity 

of the semiconductor to irradiation. The magnitude of the fixed energy gap between 

the electron rich valence band and the largely vacant conduction band governs the 

extent of the thermal population of the conduction band (Fox and Dulay, 1993). In 
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other words, the higher band gap of a semiconductor corresponds to shorter light 

wavelength which eventually requires a higher energy for electron excitation from 

the VB to CB. However, the electronic band of a semiconductor is often confused 

with the electronic band of a dye molecule. The difference between the energy level 

in a semiconductor photocatalyst and a dye molecule is shown in Figure 1.3. 

 

 

    

 

 

    

         (a)                                                            (b) 

Figure 1.3: The energy level diagram of a) a semiconductor and b) a dye molecule. 

 

 According to Pankaj et al. (2013), a semiconductor must be non-toxic, stable 

in aqueous solution containing toxic or reactive chemicals and resistant to 

photocorrosion under sunlight. Numerous semiconductors have been tested for 

heterogeneous photocatalysis especially for the purpose of environmental 

remediation such as  ZnO, ZnS and CdS. Unfortunately, these semiconductors suffer 

from photocorrosion in which the former photocatalyst (ZnO and ZnS) releases 

Zn(OH)2 and Zn
2+

 while the latter (CdS) releases Cd
2+

 ions upon irradiation in 

aqueous media (Pankaj et al., 2013). Titanium dioxide (TiO2) on the other hand, 

possesses several important characteristics  such as stable, non-toxic, and inert and is 

now considered an effective photocatalyst (Mills et al., 2015).     

 

 

LUMO 

HOMO 

hv ≥ Eg 

CB 

    VB 

hv ≥ Eg 
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1.3 Titanium dioxide 

1.3.1 Ideal photocatalyst 

 The successful application of TiO2 in water purification was firstly reported 

in 1977 (Frank and Bard, 1977) on cyanide and sulfite. The specialty of TiO2 which 

made it differs from other photocatalyst is in mixings of both of its anatase and rutile 

forms (Li et al., 2006). With the attractive and successful degradation of many 

organic pollutants, TiO2 has become the most chosen photocatalyst in the field of 

photocatalysis. Table 1.1 lists the characteristics of TiO2 which closely matches the 

ideal photocatalyst characteristics.  

 

Table 1.1:  The characteristics match of ideal and TiO2 photocatalyst (Hondow et al., 

2010; Ibhadon and Fitzpatrick, 2013). 

Ideal photocatalyst TiO2 Remarks 

Photoactive √ High photoactivity in the presence of 

light. 

Able to absorb visible and/or near 

UV light 

 Only active for light irradiation of 

wavelength λ ≤ 387 nm however, it 

can be modified to adsorb light of λ 

≥ 387 nm. 

Biologically and chemically inert √ Does not take part in the reaction 

whereby only acting as the mediator 

for redox reactions. 

Photostable (not liable to 

photoanonic corrosion) 

√ Practical for long term use and 

applications 

Inexpensive √ Naturally abundant resource of 

titanium 

Non-toxic √ Safe for human and environment 

Able to oxidize and reduce water to 

O2 and H2, respectively 

√ The photogenerated electron-holes 

can react with water via redox 

reaction to produce O2 and H2 since 

the band is larger than 1.23 eV.  
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1.3.2 Structure and properties 

TiO2 is a metal oxide with a molar mass of 79.90 g mol
-1

 and classified as not 

hazardous by the United Nations (UN) Globally Harmonized System (GHS) of 

Classification and Labeling of Chemicals  (IARC, 2010). The photocatalytic activity 

of TiO2 is highly dependent on the geometry, crystalline phases, surface defects, 

specific surface area and particle sizes (Dai et al., 2015). There are three types of 

TiO2 phase that are mostly studied; rutile, anatase and brookite as shown in Figure 

1.4. Rutile is the most stable phase of TiO2, followed by anatase and brookite which 

are metastable and can be transformed to rutile when heated (Kaplan et al., 2015). 

Other type of TiO2 polymorphs namely TiO2(B) and the layered titanates are rarely 

studied. However, the anatase has been reported to exhibit the best photoactivity 

among the three phases due to its efficiency in light harvesting, prolong the lifetimes 

of charge carriers and charge separation (Kaplan et al., 2015; Leyva et al., 2015). On 

the other hand, rutile phase suffers the weaker adsorption of organic pollutants and 

faster recombination of electron-hole pairs while brookite is difficult to synthesize 

(Zhang et al., 2011). In recent years, the preparation of mixed phase TiO2 is actively 

being studied such as anatase-rutile (Wu et al., 2015; Zhang et al., 2015b; Zhang et 

al., 2015), anatase-TiO2(B) (Dai et al., 2015; Parayil et al., 2013), and anatase-

brookite (Zhang et al., 2011). 

The commercial mixed phase TiO2 (anatase and rutile) is currently available 

in the market, namely Millenium 1580 S, Kronos 7500 and Kronos 1002 and Evonik 

P-25 or Aeroxide P25 (Montes et al., 2014). Aeroxide P-25 TiO2, which was used in 

this study, consists of 80 % of anatase and 20 % of rutile. According to the product 

information from Evonik, P-25 TiO2 has a surface area of 50 ± 15 m
2
 g

-1
 and average 

particle size of 21 nm. The mixture of anatase and rutile in P-25 TiO2, enhances the 
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photoactivity due to low recombination of electron-hole pairs as a result of relative 

conduction band edge between the anatase and rutile (Dai et al., 2015). P-25 TiO2 

has become the standard photocatalyst among the other brand of TiO2 as it exhibits 

good photoactivity for the degradation of varieties of pollutants whereby it became 

the main reason of the selection for this study.  

 

 

Figure 1.4:  The crystal structures of TiO2; (a) anatase, (b) rutile and (c) brookite 

(Leandro et al., 2013).  

 

1.3.3 Mechanism of the TiO2 photocatalysis 

 The process of photocatalysis is initiated when light of appropriate 

wavelength was absorbed by TiO2 photocatalyst. According to physic’s law, the 

wavelength is inversely proportional to the band gap energy. Therefore, the light 

wavelength should be similar or less than 380 nm since the band gap energy should 

be similar or greater than the band gap of TiO2 for electron excitation from the 

valence to the conduction band to occur. The reaction on TiO2 is shown as follows 

(Singh et al., 2013; Zangeneh et al., 2015): 
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Figure 1.5:  Schematic energy diagram of TiO2 as adapted from Kazuhito et al. 

(2005). 

 

Step 1: Generation of photoholes and electrons: 
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-
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H2O2 + O2
• -

                        
•
OH + OH

-  
+ O2                        (1.8) 

Step 4: Oxidation of organic contaminant (R): 

R + 
•
OH → → → CO2 + H2O               (1.9) 

R + O2
• -

 → → → CO2 + H2O              (1.10) 

R + h
+

 VB → R
• +

 → the degradation products                    (1.11) 

R + e
-
CB → R

• -
 → the degradation products                       (1.12) 

 

A successful photocatalytic oxidation of organic pollutants by TiO2 is highly 

dependent on the production of 
•
OH radicals at the VB of TiO2. However, the 

generated 
•
OH radical is unstable and must be continuously generated in situ, by 

chemical or photochemical process (Leandro et al., 2013). Unless there are electron 

acceptors at the CB of TiO2 after the excitation, the excited electrons could 

recombine with the photogenerated holes at the VB. Moreover, the recombination of 

electron-hole pairs would produce heat, which is unfavorable for the efficacy of the 

photocatalyst activity.    

 

1.3.4 Langmuir-Hinshelwood kinetic model 

The Langmuir Hinshelwood equation was commonly used as to describe the 

heterogeneous photocatalysis. The equation of the Langmuir Hinshelwood kinetic 

model is given as in Equation 1.13  (Kumar et al., 2008a). 

r =   - 
dC

dt
=    

 r C

     C 
                     (1.13) 

where r is the rate of reaction that changes with time. 
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The term r in Equation 1.13 was represented in terms of initial reaction rate, ro, as a 

function of the initial dye concentration, Co, or in terms of Ce, where Ce is the 

equilibrium dye concentration in solution. The initial rate of reaction as a function of 

Co and Ce is given by Equations 1.14 and 1.15, respectively: 

ro = 
 r Co

     C 
                  (1.14) 

ro = 
 r C 

     Ce

                  (1.15) 

The parameter kr and K which is a function of Co or Ce can be predicted by 

linearizing Equations 1.14 and 1.15 as follows: 

 

  
 = 

 

 r
  +  

 

 r Co

                           (1.16) 

The constants kr and K can be calculated from the corresponding integrated 

expression between the limits: C = Co at t = 0 and C = Ct at t = t. The integrated 

expression is given by: 

ln  
Co

Ct
 + K (Co − C)= krKt               (1.17) 

If the term KC << 1, the equation (1.13) is reduced to: 

r = -
dC

dt
 = krKC                (1.18) 

Integrating equation (1.18) with respect to limits: C = Co at t = 0 and C = Ct at t = t, 

the Langmuir Hinshelwood expression reduces to a pseudo first order kinetic and is 

given by:  

ln  
Co

Ct
 = krKt = kt                                                          (1.19) 

where the new constant k includes kr and K.  
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A plot of ln  
Co

Ct
  versus time (t) will give a straight line with the slope of k as the 

pseudo first order rate constant. The coefficient of determination (R
2
) indicates the 

degree of agreement of the reaction with the Langmuir-Hinshelwood kinetic model,  

where;   

r:   the rate of degradation (mg L
-1

 min); 

Ce: the equilibrium concentration of pollutant (mg L
-1

);  

Co: the initial concentration of pollutant (mg L
-1

); 

Ct:  the concentration of pollutant at time t during degradation (mg L
-1

); 

K:  equilibrium constant for adsorption of the substrate onto catalyst; 

kr: limiting rate constant of reaction at maximum coverage under the given 

experimental conditions; 

ro: initial rate of reaction (min
-1

); 

t:  the irradiation time (min);  

k:  the reaction rate constant (min
-1

). 

 

1.3.5 Drawbacks and improvements 

 Though many researchers had reported the excellent performance by TiO2 

photocatalyst in water abatement, it suffers from several drawbacks such as high 

recombination rate of electron-hole pairs and poor degradation rate for some organic 

pollutants. Therefore, the research progress in photocatalysis field continues to grow 

and new methods are being developed in order to overcome those obstacles.  

 The first intrinsic problem with TiO2 photocatalyst was its high 

recombination rate of electron-hole pairs upon light irradiation. It was known that the 

lifetime of charge carriers in TiO2 after excitation was very short which is 10-40 μs 
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(Colbeau et al., 2003). The short lifetime due to high recombination of charge 

carriers could be overcome by surface sensitization using dye or metal complexes in 

order to induce better charge separation. The dye is anchored on TiO2 surface by 

covalent, or physical or chemical bonding which induced the charge injection of the 

excited dye molecule into the CB of TiO2 leading to successive photocatalytic 

degradation. This sensitization also increases the range of wavelength response 

towards the natural sunlight (Gupta and Tripathi, 2011). However, the dyes 

themselves can be photodegraded to form intermediates which need to be disposed. 

On the other hand, transition metal complexes such as Ru-polypyridyl complexes 

induce the charge separation by the excited electrons which participate in the charge 

transfer of electrons to TiO2 conduction band (Kalyanasundaram and Grätzel, 1998). 

The second drawback of TiO2 is the excitation of electron-hole pairs could be 

only initiated in the presence of high UV light intensity. Therefore, the solution is to 

change the band gap energy by coupling two semiconductors of suitable potential 

energy such as CdS-TiO2, SnO2-TiO2 and ZnO-TiO2 whereby the holes produced in 

smaller band gap semiconductor remain while the electrons are transferred to the 

conduction band of TiO2 which induce charge separation (Jing and Guo, 2006). 

Another way is to dope TiO2 with noble metals such as Ag (Albiter et al., 2015; 

Gomathi and Mohan, 2010), Au (Subramanian et al., 2003; Tahir et al., 2006; Zhu et 

al., 2009), Pt, Ni, Rh and Cu (Gupta and Tripathi, 2011) which can trap the electrons 

and free holes and enhance the charge separation at the valence band to participate in 

the photocatalytic oxidation reaction. This was due to the Fermi levels of these noble 

metals which are lower than that of TiO2. Nevertheless, it was found that the 

properties of these TiO2-noble metal composites are strongly dependent on the size 

of metal particle, composition and dispersion as if the concentration of metal was too 
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high, the absorption of the light photon would be reduced and the metal can become 

the electron-hole recombination centers which resulted in lower efficiency than the 

TiO2. TiO2 can also be doped with non-metal such as C,N,B,F (Valentin and 

Pacchioni, 2013) and carbon nano tube (CNT) (Ashkarran et al., 2015). The 

composites could decrease the band gap which make it visible light active. In 

addition, the TiO2 could be also modified by co-doping the metal-metal such as Fe
3+

 

and Eu
3+ 

(Vasiliu et al., 2009),
 
metal-non-metal; Cu-N (Song et al., 2008) and non-

metal-non-metal; C-N (Nawawi and Nawi, 2014; Sabri et al., 2015). The TiO2 co-

doped system showed a red-shift in absorption spectrum and high photocatalytic 

activity than the single doped TiO2 especially when exposed to total visible light. 

Thirdly, the conventional TiO2 in suspended or slurry mode requires post 

treatment due to its nanoparticle size, which is a tedious, time and money consuming 

filtration process. Apart from filtration, the steps of recovering the photocatalyst 

from the treated water solution involved the process of washing, filtering and drying, 

which may result in the lost of an amount of the photocatalyst during the process. To 

solve this drawback, different supports and immobilization techniques were used 

whereby the common support materials and their immobilization modes were glass 

beads; heat attachment (Daneshvar et al., 2005), granular activated carbon; dip 

hydrothermal (Wang et al., 2009), stainless steel; coating (Souzanchi et al., 2013) 

and glass plate; dip coating (Razak et al., 2014). However, the immobilization mode 

of TiO2 might have some significant defects such as reducing the active sites 

exposure to light, as the area is fixed and the mass transfer hindrance increases, 

which lead to poor photocatalytic activity plus the need to seek for well-defined 

procedures and equipment (Singh et al., 2013). Coupling the photocatalyst and 

adsorbent in the immobilized form is another approach to enhance the overall 
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photocatalytic performance. TiO2 has been combined with various adsorbents such as 

silica oxide (SiO2) (Rahman et al., 2014), montmorillonite (MT) (Bhattacharyya et 

al., 2004), activated carbon (AC) (Muthirulan et al., 2013) and chitosan (CS) 

nanofiber (Razzaz et al., 2016) whereby all systems showed enhanced photocatalytic 

performance than the bare TiO2 in the removal of the organic contaminants. 

 

1.4      Chitosan (CS)  

1.4.1   Origin of CS 

Chitin is firstly identified in 1884 and is originated from the main component 

on shell of crustaceans such as shrimp and crab shell and cell walls of fungi and 

yeast (Younes and Rinaudo, 2015). Chitin was the second most abundant 

polysaccharides in nature after cellulose while CS is the derivation of chitin which 

had undergone the deacetylation process using NaOH as the deacetylation agent 

(Choi et al., 2016). Figure 1.6 provides the chemical structures of cellulose, chitin 

and CS. Chitin with more than 75 % degree of deacetylation is known as CS while 

cellulose only differs with chitin and CS based on the hydroxyl group in its C-2 

position. The process of deacetylation removes acetyl groups from the molecular 

chain of chitin and leaving behind a complete amino group (-NH2). The degree of 

deacetylation depends on the content of the amino groups in the CS. Increasing 

temperature and strength of NaOH enhances the acetyl group removal from chitin, 

which then produces CS with different properties. CS was one of the main cationic 

polymers which forms inter and intra-molecular hydrogen bonding due to amine and 

hydroxyl groups which made the crystalline structure of CS rigid (Choi et al., 2016). 
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Figure 1.6:  Molecular structures of cellulose, chitin and chitosan (Kirsch et al., 

2014). 

 

1.4.2  Applications of CS 

 CS is biodegradable, biocompatible, bioadhesive, hydrophilic, able to 

produce film and a good adsorbent (Zhao et al., 2015). The diverse properties of CS 

made it usable in different applications and fields such as pharmaceutical, 

biomedical, food, cosmetics (Rinaudo, 2006) and waste water remediation (Cárdenas 

et al., 2002; Janaki et al., 2012; Ngah and Fatinathan, 2010). The functionality of CS 

was based on the presence of hydroxyl and amino group which served as the 

coordination and reaction sites for modification which could attract the positive and 

negative chemical species to bound to its structure (Ngah and Fatinathan, 2010). 

CS can also become bioadhesive since it offers a very good strength as 

compared to synthetic adhesive without containing volatile organic carbon (VOC) 
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(Patel, 2015). However, the material suffers from low strength and large shrinkage 

upon dehydration. Therefore, other materials such as clay when added into the CS 

matrix can significantly improve its thermal stability and mechanical properties, and 

may exert special behavior towards chemical species present in water (Wang et al., 

2006). Such a system can also be used to fasten flocculation and improve the flake's 

textures (Shou et al., 2012). 

 

1.4.3    Modification of CS 

CS is not soluble in organic solvents and only dissolved in acidic aqueous 

media (HCl and CH3COOH) whereby the solubility of CS is facilitated by the 

protonation of its primary amino group on the C-2 position of the D-glucosamine. 

The degree of protonation depends on the pKa of the acid and CS concentration 

which only converts CS into the pseudonatural cationic polymer (García et al., 2015; 

Rinaudo et al., 1999). Due to its excellent and vast properties, CS was modified 

chemically in order to produce novel CS-based materials or biohybrid with specific 

application properties which usually occurs at the –NH2 primary group and hydroxyl 

group at the C-2 and C-6 position, respectively (García et al., 2015). However, due to 

its poor solubility in organic solvents, researchers have focused on improving its 

solubility and grafting process by attaching new functional groups. Garcia et al. 

(2015) had reported a novel and simple method via nitroxide-mediated 

polymerization (NMP) to modify well-defined molecular weight CS in homogeneous 

media by utilizing CS-sodium dodecylbenzenesulfonate (SDBS)-glycidyl 

methacrylate (GMA) as a precursor. The poly (styrene) (PS), poly (butyl acrylate) 

(PBA), poly (acrylic acid) (PAA) respectively, are grafted onto the hydroxyl groups 

of CS-SDBS-GMA in DMSO to produce CS-GMA-PS, CS-GMA-PBA and CS-

GMA-PAA as new CS based materials. Cai et al. (2009) prepared the soluble CS in 
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DMSO by grafting organo-soluble polymers, poly (ethyleneglycol) (PEG) and poly 

(ε-caprolactone) (PCL) onto CS using the acidic CS and sodium dodecylsulfate 

(SDS) solution as an intermediate. The authors found that the PEG and PCL became 

conjugated to CS through the hydroxyl groups while maintaining the cationic density 

of the amino groups intact on the surface of the CS. The SDS and SDBS which were 

responsible for the dissolution of grafted CS in DMSO could be removed by 

precipitation of the grafted polymer in DMSO into Tris aqueous solution or dialyzing 

against Tris solution (Cai et al., 2009; García et al., 2015). 

Meanwhile, the CS films, beads, gels and fibers which were prepared by 

single CS solution suffer dehydration shrinkage in aqueous media and swelling 

defects upon thermal treatment. In addition, the solubility of CS in acidic media can 

be cumbersome, which eventually decrease the spectrum of  its application (Ngah et 

al., 2005). To overcome this, the CS was modified chemically by cross-linkers such 

as epichlorohydrin (ECH), glutaraldehyde (GLA), glyoxal, ethylene glygol 

diglycidyl ether (EDGE), tripolyphosphate (TPP) and genipin (Berger et al., 2004; 

Obeid et al., 2013) basically to change the hydrophilicity of CS to be more 

hydrophobic. The cross-linking occurs in the amine and hydroxyl groups in C-2 and 

C-6 position that allows the formation of bridges between the polymer chains. 

Among the cross-linking agents, the dialdehydes such as GLA and glyoxal bind 

preferentially to the amino group of CS  forming covalent imine bonds via a Shiff 

reaction while the epoxides, such as ECH prefers to bind to the free hydroxyl group 

(Berger et al., 2004). The cross-linked CS has an improved mechanical resistance, 

strength and stability in acidic, alkaline and chemical solution as well as under 

thermal treatment and compression (Azlan et al., 2009; Ngah et al., 2002). However, 

cross-linking agents such as GLA is known to be neurotoxic while glyoxal is 
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mutagenic, which may not be a good choice for biomedical, medical, pharmaceutical 

and tissue engineering applications (Berger et al., 2004). 

Recently, the attention has been devoted to modifying the CS structure by 

combining with other potential materials such as zeolite and MT. The hydrophilic CS 

forms composite with clays which are alumino-silicates with a three-dimensional 

framework structure containing AlO4 and SiO4. Such combination would avoid the 

use of toxic and mutagenic chemicals which can harm human health. In addition, the 

combination of the two different types of adsorbents could improve the pore size, 

mechanical strength, chemical stability, hydrophilicity and biocompability of CS 

(Ngah et al., 2012). Another approach in modification of CS was via photo 

irradiation which causes changes in the polymeric structure of CS by inducing the 

chain scission, reducing the average molecular weight, improving solubility in water, 

changing the color intensity, optical and spectral sensitivity (Taei, 2011). CS has 

been modified by different light sources such as UV light (Praxedes et al., 2012), 

fluorescent lamp (Jawad and Nawi, 2012b), ultrasonic irradiation (Cravotto et al., 

2005; Kasaai et al., 2008) and gamma (γ) rays (Kang et al., 2007; Tahtat et al., 

2012). Nevertheless, until recently, the oxidative degradation are based on the 

formation of reactive 
•
OH radicals from H2O2 (Chang et al., 2001), TiO2 (Jawad and 

Nawi, 2012b) and O3 (Yue et al., 2009) which are powerful oxidizing species. It 

receives attention whereby modification occurs when the oxidative radical species 

attack the 1,4 glycosidic linkages which result in the CS degradation (Kang et al., 

2007). Modification of CS by a combination of photon from light source and 

oxidants could turn CS into the desired properties such as water-soluble, low 

molecular weight with added specialty in biological, chemical and physical 

properties than that of the ordinary CS (Kang et al., 2007).   
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1.5 Montmorillonite 

1.5.1 Structure and properties 

 Montmorillonite (MT), the clay mineral is often confused with bentonite. 

Both bentonite and MT belong to the smectite group which is built from 2:1 

aluminosilicate whereby alumina octahedral is switched between two tetrahedral of 

silica layers (Bhattacharyya and Gupta, 2008). In short, bentonite can be considered 

as the family name while MT is the species name. MT is referred to as “swelling clay 

minerals” due to the tendency for polar liquids to be ta en in the interlayer space 

which makes MT a matrix for the preparation of functional composites in adsorbents, 

catalyst and flame retardants (Sun et al., 2015). 

 

 

Figure 1.7:  The structure of MT. Source: http://sparc.fpv.umb.sk/ (accessed on 9.10 

pm, 21
st
 Feb 2016). 

  

 

The clay layer is characterized by permanent negative charges due to 

isomorphous substitution of Al
3+

 atoms of the octahedra for lower valent cations 

(Mg
2+

). Exchangeable cations (Na
+
) are present in the interlayer spaces to 
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compensate the negative charge. In addition to the permanent charge, pH-dependent 

charge is present on the edges of clay layer; Al–OH (or Si–OH) groups at the edges 

are present as different states depending on the pH of the solution: Al–OH
2+

 (at low 

pH), Al–OH (at medium pH), and Al–O– (at high pH). Other than MT, there are 

several kinds of smectite-type clay minerals (e.g., saponite, hectorite, beidelite, and 

nontronite), which differ in chemical composition and the type of isomorphous 

substitution. Most of these clay minerals occur naturally in earth soils, whereas the 

composition, isomorphous substitution, impurity level, and crystallinity of the clays 

differ depending on the production areas. Synthetic clay minerals, which are suitable 

for chemical experiments due to lower impurity content, are also available (Nakato 

and Miyamoto, 2009). 

 

1.5.2 Applications of MT in environmental remediation 

 The interlayer of MT contains negative charges which are counterbalanced by 

inorganic cations (e.g., Na
+
, Ca

2+
) and exchangeable for adsorption of cationic 

contaminants such as heavy metals, cationic dyes (methylene blue (MB), malachite 

green (MG)) and cationic surfactants (Zhu et al., 2014). Since MT adsorbs cationic 

surfactant, it can undergo ion-exchange with its negative charge counterpart which 

the modified MT often called organo-MT was produced. Eventually, the 

modification can promote the adsorption of anionic contaminants such as humic acid, 

methyl orange (MO), 2-naphthol and neutral pollutant such as phenol (Jiang et al., 

2002). Beside organic pollutants, organo-clays can also adsorb heavy metals such as 

Cu
2+

 and Zn
2+

 (Lin, 2002), Cr (VI) (Krishna et al., 2000) and Ni
2+ 

(Ijagbemi et al., 

2009). The properties of clays specifically MT as good adsorbents are due to their 

high specific surface area, high chemical and mechanical stability, cheap and vastly 

available from nature. Thus, MT has the potential to be widely used in wastewater 
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treatment for removing many types of pollutants and heavy metals besides activated 

carbon, a universal but costly adsorbent which restricts its wide application (Zhu et 

al., 2014).     

 

1.6 Conducting polymer: Polyaniline 

The breakthrough discovery of intrinsically conducting polymer (ICP) was 

initiated by MacDiarmid, Heeger and Shirakawa in 1977 whereby they discovered 

the exposure of polyacetylene to iodine vapor yielding conducting material 

(MacDiarmid, 2001). ICPs are completely different form the conducting polymers 

which are merely a physical mixture of conducting material (eg; metal or carbon 

powder) and a nonconductive polymer. ICPs on the other hand, are commonly 

 nown as a “synthetic metal” which possess the electrical, electronic, magnetic and 

optical properties of a metal while retaining the mechanical properties and 

processability (MacDiarmid, 2001). Recently, ICPs discovered were polypyrrole 

(Ppy), polythiophene, polyparaphenylene (PPP) and polyparaphenylene vinylene 

(PPV) (Bhadra et al., 2009).  

Polyaniline (PANI), known as “aniline blac ” was rediscovered in  980s 

(Ćirić, 20 3).  PANI emerged as the promising material in the family of conducting 

polymers which allow the construction of polymer modified electrodes to be used as 

sensors, biosensors, and substrates for metallization (Ahmed, 2004). PANI has 

controlled conductivity within 10
-10

 – 10
1
 S cm

-1
 range with ionic and proton 

conductivity, redox activity, electro- and solvatochromism, electrical storage, stable 

in extreme condition, high thermal stability and easy to synthesize (Ahmed, 2004; 

Yu and Shishov, 2012). The synthesis of PANI has expanded over the years and it 

became the most studied conducting polymer. Under different conditions, PANI can 
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exist in three main oxidation states as shown in Figure 1.8. The oxidation states on 

the other hand, are denoted by the y values as shown in Figure 1.9 whereby y = 1, 0.5 

and 0 corresponding to the fully reduced polyaniline (benzenoid diamine), the half 

oxidized polyaniline (emeraldine), and the fully oxidized polyaniline (quinoid 

diimine), respectively (Wang et al., 2013b). According to Bhadra et al. (2009), the 

mode of synthesis was varied which were based on chemical, electrochemical, 

template, enzymatic, plasma and photo approaches. The most common method, 

chemical approach can be subdivided into the following modes as shown in Table 

1.2. 

 

 

Figure 1.8: Structures of polyaniline in various intrinsic redox states (Chen, 2007) 

 

 

Figure 1.9: Molecular structure of emeraldine base of PANI (Zeng and Ko, 1998).   
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Table 1.2: Various methods for synthesization of PANI (Bhadra et al., 2009). 

Method Description 

Heterophase 

 

Polymerization includes the precipitation, suspension, micro 

suspension, emulsion, miniemulsion, microemulsion, 

dispersion, reverse micelle and inverse (Carenza and Palma, 

1985) 

 

Solution Processability is better since the prepared PANI is already in a 

solution (Kuramoto and Tomita, 1997).  

 

Interfacial Polymerization is carried out in a mixture of two immiscible 

solvents such as water and chloroform in the presence of 

different acids as dopants (Chen et al., 2007; Dallas et al., 

2007). 

 

Seeding A typical template approach whereby foreign material is used 

as a seed. PANI obtained is similar to a nanofiber with high 

conductivity which dependent on the type and concentration of 

acids, the type of seed, solvent and the relative amount of seed 

to solvent (Xing et al., 2006). 

 

Metathesis 

 

PANI is formed when p-dichlorobenzene and sodium amide is 

heated at 220 °C for 12 hours in an organic medium such as 

benzene, whereby aniline monomer is not required (Guo et al., 

2005). 

 

Self assembling 

 

The PANI films are grown on the film by polymerizing an 

aniline monomer in a vapor phase (Yang et al., 2007) 

 

Electrochemical 

 

i) Constant current (galvanostatic) 

Two-electrode assembly dipped in an electrolyte solution 

containing monomer, with specified current (Genies et al., 

1985) 

ii) A constant potential (potentiostatic) 

PANI powder adheres weakly on the electrode (Diaz and 

Logan, 1980). 

iii) A potential scanning/cycling or sweeping 

(Diaz and Logan, 1980). 

 

Sonochemical 

 

Dropwise addition of an acidic ammonium persulfate (APS) 

solution to an acidic aniline solution with the aid of ultrasonic 

irradiation. The possible reactions within the system are (Jing 

et al., 2007):   

i)  the continuous formation of primary PANI nanofibers; 

ii) the conversion of primary nanofibers into thicker fibers with 

uneven surfaces; and  

iii) the growth and agglomeration of thicker. 
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