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PENGHASILAN DAN PENCIRIAN PELEPAH KELAPA SAWIT (Elaeis 

guineensis) TERUBAHSUAI DALAM PENGOLAHAN AIR SISA  

RHODAMINE B 

 

ABSTRAK 

Proses penjerapan telah diaplikasikan dalam pelbagai rawatan air sisa, 

termasuk air sisa pewarna. Walau bagaimanapun, kajian mengenai penggunaan sisa 

pertanian seperti pelepah kelapa sawit dan pelepaj kelapa sawit terubahsuai masih 

tidak dikaji dengan menyeluruh. Dalam kajian ini, penjerapan Rhodamine B (RB) ke 

atas pelepah kelapa sawit (a) mentah (EGFF), (b) yang diubahsuai dengan asid 

fosforik (A-EGFF), (c) yang diubahsuai dengan asid fosforik dan dikarbonisasikan 

(AC-EGFF), (d) yang diubahsuai dengan asid fosforik dan dikarbonisasikan serta 

dikandungkan dengan oksida ferik (AC-EGFF-Fe3O4) telah dikaji. Untuk 

menyingkirkan sebatian organik yang menyumbang kepada keperluan oksigen kimia 

(COD), proses pencucian penjerap dengan menggunakan air suling didih telah 

dilaksanakan sebagai pengganti kepada air suling pada suhu bilik. Proses penyediaan 

penjerap telah dikaji dan dioptimumkan dengan menggunakan metodologi 

permukaan sambutan (RSM)- rekabentuk ujikaji gabungan pusat (FCCD). Kesan pH, 

kelajuan pergaulan, dos penjerap, kepekatan awal pewarna, tempoh pergaulan dan 

suhu ke atas penyahwarnaan dan penurunan peratus COD telah dikaji dan 

dioptimumkan. Keputusan menunjukkan AC-EGFF-Fe3O4 mempunyai luas 

permukaan BET yang luas dan lebih berkesan dalam penyahwarnaan dan penurunan 

COD bagi pewarna RB  berbanding dengan EGFF, A-EGFF, dan AC-EGFF. 

Keadaan penjerapan optimum bagi AC-EGFF-Fe3O4 diperolehi pada 550 mg/L 
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kepekatan awal pewarna, pH 8.49, 28.43 
o
C, 27 min dan 0.97 g dos penjerap dengan 

98.63 % penyahwarnaan dan 98.06 % penurunan COD. Luas permukaan BET bagi 

AC-EGFF-Fe3O4 ialah 797.68 m
2
/g iaitu lebih tinggi daripada EGFF mentah (13.80 

m
2
/g), A-EGFF (31.67 m

2
/g), dan AC-EGFF (555.53 m

2
/g). Isoterma penjerap, 

kinetik, dan termodinamik untuk penjerapan zat warna RB telah dikaji. Data 

isotherma penjerap pewarna RB dengan menggunakan AC-EGFF-Fe3O4 didapati 

mengikuti model isoterma Langmuir dan Freundlich. Kinetik penjerapan mengikuti 

model kinetik tertib pseudo-kedua. Kajian termodinamik menunjukkan proses 

penjerapan adalah proses endotermik. AC-EGFF-Fe3O4 yang telah digunakan boleh 

diregenerasikan dengan menggunakan 0.1 M NaOH. Kajian menunjukkan bahawa 

sisa agrikultur EGFF terubahsuai adalah bahan penjerap yang sesuai digunakan 

untuk merawat air sisa berwarna.  
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PREPARATION AND CHARACTERIZATION OF MODIFIED OIL PALM 

(Elaeis guineensis) FROND FOR THE REMOVAL OF RHODAMINE B IN 

WASTEWATER  

 

ABSTRACT  

 The adsorption process has been applied in various wastewater treatments, 

including dye wastewater. However, research on the use of agricultural waste such as 

oil palm frond and modified oil palm frond is still not thoroughly investigated. In this 

research, the adsorption of Rhodamine B (RB) from the aqueous solutions onto (a) 

raw Elaeis guineensis frond fiber (EGFF), (b) phosphoric acid modified EGFF (A-

EGFF), (c) carbonized phosphoric acid modified EGFF (AC-EGFF), and (d) 

carbonized phosphoric acid modified EGFF impregnated with ferric oxide (AC-

EGFF-Fe3O4) have been investigated. In order to remove organic compounds and to 

improve the reduction of chemical oxygen demand (COD), the raw EGFF was 

thoroughly washed with boiling distilled water instead of using room temperature 

distilled water. The preparation conditions of the adsorbents were optimized using 

response surface methodology (RSM)-face centered composite design (FCCD). The 

effects of pH, shaking speed, adsorbent dosage, initial dye concentration, contact 

time and temperature on color removal and COD reduction were studied and 

optimized. The results showed that the AC-EGFF-Fe3O4 has higher BET surface area 

and was more effective in terms of color removal and COD reduction of RB dye than 

the raw EGFF, A-EGFF, and AC-EGFF. The optimal adsorption conditions for AC-

EGFF-Fe3O4 were obtained at 550 mg/L initial RB dye concentration, pH 8.49, 28.43 

o
C, 27 min, and 0.97 g adsorbent with 98.63 % color removal and 98.06 % COD 
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reduction. The BET surface area for AC-EGFF-Fe3O4 was 797.68 m
2
/g which was 

higher than that of raw EGFF (13.80 m
2
/g), A-EGFF (31.67 m

2
/g), and AC-EGFF 

(555.53 m
2
/g). Adsorption isotherms, kinetics and thermodynamics for the 

adsorption of RB dye were determined. The equilibrium data for the adsorption of 

RB dye using AC-EGFF-Fe3O4 was best represented by Langmuir isotherm model, 

followed by Freundlich isotherm model. The adsorption kinetics was found to follow 

the pseudo-second-order kinetic model. The thermodynamic study showed that the 

adsorption process was endothermic. Spent AC-EGFF-Fe3O4 can be effectively 

regenerated using 0.1 M NaOH. The results indicated that modified agricultural 

waste EGFF is suitable to be used as adsorbent for the treatment of dye wastewater.  
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CHAPTER ONE 

INTRODUCTION 

1.1  Background  

 The textile industry is one of the most highly-consuming water and energy 

industries, causing severe pollution. Indeed, the impact of textile effluents on the 

aquatic medium has been traditionally of immense concern because its high variation 

in composition with strong color, high chemical oxygen demand (COD), varying pH 

values and relatively low biodegradability with large amount of dissolved salts and 

suspended solids (Merouani et al., 2010; Blanco et al., 2014; Pang and Abdullah, 

2013a,b). A typical example of the characteristics of textile industry wastewater is 

given in Table 1.1.  

Table1.1 Typical characteristics of textile industry wastewater (Tan et al., 2000; Lim 

et al., 2010; Pang and Abdullah, 2013a).  

Parameters Values 

pH 6.9-11.6 

Temperature (
o
C) 35-58 

Color Point (PtCo) 735-8100 

Chemical Oxygen Demand (COD) 

(mg/L) 

675-3190 

Suspended Solids (mg/L) 530-3000 

 

In addition, these effluents reduce the aesthetic value of the receiving water 

and pose significant threat to human health and the ecosystem (Sun et al., 2007; Pang 

and Abdullah, 2013b).   

 In Malaysia, the Department of Environment under the Ministry of Natural 

Resources and Environment has established an international water quality standard. 
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Tables A1 and A2 in Appendix A list the parameter limits of effluent of Standards A 

and B as stated in the Fifth Schedule of Environmental Quality (industrial effluent) 

Regulations 2009 (Environmental Quality Act and Regulation, 2010). Standards A 

and B list the limits that ought to be abided by effluent that is discharged into any 

inland waters within the catchment areas and any other inland waters, respectively 

(Environmental Quality Act and Regulation, 2010).  

 During the past few decades, a wide range of wastewater treatment 

techniques has been used. The adsorption process is one of the most effective and 

widely used techniques in decolorizing different types of coloring materials (Crini, 

2006; Su et al., 2014; Low et al., 2014).  Currently, there are many studies on the 

development of adsorbents using natural materials, biomass, and agricultural waste 

materials.  

 

1.2 Oil Palm Biomass (Elaeis guineensis Biomass ) 

Generally, biomass can be defined as compounds or organic matters either 

produced from marine life, forestry or crops (Awalludin et al., 2015). Biomass can 

also be defined as a type of hydrocarbon material comprises of oxygen, hydrogen, 

carbon, and nitrogen, and sometimes sulphur and small proportion of inorganic 

substances (Yaman, 2004).  

Oil palm (Elaeis guineensis) is nurtured at an enormous scale as a source of 

oil in Central and West Africa (where it is originated), and in Thailand, Indonesia 

and Malaysia (Wan Rosli et al., 2004).  In Malaysia, oil palm is one of the most vital 

commercial crops with world production of 19.22 million tons in year 2013 (MPOB, 

2014). The growth of oil palm plantation in Malaysia has generated large amounts of 
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waste, generating problems in replanting operations, and tremendous environmental 

concerns (Wan Rosli et al., 2004). In the palm oil mill, 10% of the total biomass 

consists of palm oil, while the remaining 90% is discarded as waste (Abdullah et al., 

2013).  

The high demand for palm oil is due to its nutritional value and cheaper price 

as compared with other vegetable oils (Ramli, 2011). Besides food uses, palm oil is 

also widely applied in non-food applications, such as in cosmetics, pharmaceuticals, 

lubricants, and various products of the oleo-chemical industries (Nurfahisza et al., 

2014).  

 The oil palm is a lignocellulosic rich material containing cellulose, 

hemicelluloses, and lignin. Oil palm frond contains a high composition of 

hemicelluloses (83.13 %), cellulose (47.76 %) and lignin (20.15 %) (Ahmad, et al., 

2011) which has made it a suitable precursor as adsorbent in wastewater treatment. 

The oil palm biomass was found to contain high amount of calcium, silica, aluminina 

and potassium that can be used to synthesize active compounds that are responsible 

for adsorption of various pollutants on the surface of the adsorbents (Zainudin et al., 

2005; Ghazali et al., 2006; Ahmad et al., 2011).  

 

1.3  Problem Statement 

Adsorption process has been widely used in dye wastewater treatment 

because this process proved to be more effective than other wastewater treatment 

technologies in terms of low cost, flexibility and simplicity of design, ease of 

operation and insensitivity to toxic pollutants (Crini, 2006). However, the use of 

commercially available activated carbon has been limited due to high cost (1-2 
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US$/pound) (Babel and Kurniawan, 2004; Tsang et al., 2008). Activated carbons are 

normally made from petroleum coke, bituminous coal, lignite, wood products, etc. 

(Drovac and Skipton, 2008). These materials are expensive and non-renewable, 

which is unjustified in pollution control applications (Ahmad and Hameed, 2010).  

Therefore, inexpensive agro-lignocellulosic material (Elaeis guineensis frond) has 

been used as adsorbent for the removal of Rhodamine B (RB) dye from aqueous 

solutions.  

In Malaysia, the most vital agro-industry is the palm oil industry (Sumathi et 

al., 2008). Starting from this decade, replanting of palm oil is likely to increase 

rapidly. Presently, Elaeis guineensis frond, a major lignocellulosic rich, agricultural 

solid waste are regularly abandoned in the field on pruning and replanting (Hameed 

and El-Khaiary, 2008) which leads to environmental issues. There are no significant 

commercial applications for the fronds, unlike trunk, empty fruit bunches (EFB), oil 

palm fibers and shells; are used as construction materials. Annually, 44.8 million 

tones of oil palm fronds were generated (Ng et al., 2012). The high chemical 

compositions of oil palm frond (83.13 % hemicellulose, 47.76 % cellulose, and 

20.15 % lignin) have made it suitable to be used as adsorbent in the wastewater 

treatment.  Consequently, economic exploitation of these fibers in wastewater 

treatment will be favorable and the disposal problem will be solved.  

Rhodamine B (RB) is an important water-soluble organic dye. RB has been 

widely used as a colorant in the textile and food industries as well as a biological 

stain in biomedical laboratories. RB has been banned to use in the food industry for 

many years due to its suspected carcinogenic nature. However, with the development 

of industry and the illegal discharge, RB still has the chances to enter the food chain 

to hazard human health. RB can cause permanent injury to the humans’ eyes, 
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irritation to the gastrointestinal tract with symptoms such as nausea, vomiting and 

diarrhea and also cause methemoglobinemia, cyanosis, convulsions and skin 

irritation (Xue et al., 2009; Muthuraman and Teng, 2009).  Thereby, the removal of 

RB from aqueous solutions is of utmost importance prior to their discharge into the 

receiving water bodies.  

Many researchers use raw agricultural waste or acid modified adsorbent for 

the treatment of dye aqueous solutions (Hameed and Daud, 2008; Jalil et al., 2012; 

Heibati et al., 2015; Aboua et al., 2015; Elmoubarki et al., 2015) which are unable to 

achieve high Brunauer, Emmett and Teller (BET) surface area. Adsorbent with high 

BET surface area gives high adsorption capacity. The present study not only used the 

conventional carbonization method (only involved two variables, i.e. carbonization 

temperature and carbonization duration  of the process) to increase the BET surface 

area of the adsorbent (Li et al., 2008; Kim et al., 2012), the influence of heating rate 

and nitrogen gas flow rate in the carbonization process were also studied. Magnetic 

nano-composite adsorbent has shown to increase the efficiency of the adsorbent in 

the adsorption of dye aqueous solutions (Panneerselvam et al., 2011; Konicki et al., 

2013).  

 Although filtration and centrifugation have been used to remove adsorbents 

from aqueous solutions, magnetic separation provides a promising method to 

perform solid-liquid separation. For magnetic separation, a magnetic component, 

such as iron oxide, is added in the composite particles. Then, once dispersed in the 

water solution during adsorption, an external magnet is used to gather the composite 

particles that were dispersed in water. When the magnet is removed, these composite 

particles may redisperse in water without any undesired magnetic aggregation 

(Zhang et al., 2014).  
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Most previous studies (Zhang et al., 2012; Lin et al., 2013; Hazzaa and 

Hussein, 2015; Tan et al., 2015a, b; Maneerung et al., 2016) applied the univariate 

method (changing one factor at a time and keeping the others constant) in adsorption 

studies, which might not attain the authentic optimal operational conditions and also 

energy and time consuming. Response surface methodology (RSM), an 

amalgamation of mathematical and statistical techniques has been used in the present 

study to develop, improve, optimize and study the interactions of two or more 

variables in the adsorption process.  

 Chemical oxygen demand (COD) is used to measure the capacity of water to 

consume oxygen during the decomposition of organic matter. COD is the primary 

index used to evaluate organic pollution in aqueous solutions (Metcalf and Eddy, 

2004; Narayanan, 2015). COD has close relation with dye concentration. However, 

many previous studies (Gil et al., 2011; Madrakian et al., 2012; Pathak et al., 2015) 

only emphasize on the color removal but no COD measurement was done. In this 

study, COD is considered as a crucial parameter to be reduced throughout the 

adsorption process.  

 

1.4  Research Scope and Objectives  

 Application and reuse of wastes have gained attention and have also been 

widely applied in various areas by researchers. The present study uses an agricultural 

waste - Elaeis guineensis frond fiber in dye wastewater treatment. Synthesis of 

effective adsorbents in terms of color removal, COD reduction and BET surface area 

for the treatment of RB dye aqueous solutions is the primary focus in this study. 

Various adsorbent modification methods such as phosphoric acid modification 
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method (A-EGFF), carbonized phosphoric acid modification method (AC-EGFF), 

and impregnation of iron oxide on AC-EGFF through co-precipitation method (AC-

EGFF-Fe3O4) were carried out and were analyzed using a statistical tool- Response 

Surface Methodology (RSM)- Faced centered composite design (FCCD). Optimal 

conditions of the adsorption process using various adsorbents (raw EGFF, A-EGFF, 

AC-EGFF, AC-EGFF-Fe3O4) were determined. To examine the practicability of the 

prepared adsorbent, the adsorbent was later on used in the treatment of textile 

industry wastewater.  

 The objectives of the present study include:  

(a) To produce and characterize adsorbents for RB color removal and COD 

reduction using an agricultural waste- Elaeis guineensis frond fiber, through 

different adsorbent modification methods such as phosphoric acid 

modification, carbonization, and co-precipitation.   

(b) To optimize the adsorbent preparation processes and the adsorption activities 

using statistical design of experiment (DOE)-Response surface methodology 

(RSM).  

(c) To determine the efficiency of using nano-composite adsorbent for the color 

removal and COD reduction of Rhodamine B dye aqueous solutions and 

industrial textile wastewater.  

(d) To determine the kinetics and propose the mass transfer mechanisms 

involved in the adsorption process.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  Dyes 

Textile industry ranks first among other industries such as rubber, paper, 

cosmetic, plastic, etc. in usage of dyes for fiber coloration (Grag et al., 2003). A dye 

is a colored, aromatic organic substance that absorbs light in the visible spectrum 

from 400-800 nm (Rangabhashiyam et al., 2013). The dye molecule contains 

delocalized electron systems with conjugated double bonds which comprise the 

chromophore and the auxochrome. The chromophore is a group of atoms principally 

responsible for the color of dye. The most imperative chromophores are the azo (-

N=N-), carbonyl (C=O), methane (-CH=), and nitro (-NO2) groups (Christie, 2001). 

The auxochrome intensifies the color of the chromophore by providing solubility of 

the dye through modification of the overall energy in the electron system. The 

common auxochrome groups are hydroxyl (OH), and amino (NR2) groups (Christie, 

2001). The distinctive dyes used in textile dyeing process are listed in Table 2.1. 

From Table 2.1, most of the dyes are water soluble except disperse and vat dyes. 

Table 2.1 Distinctive dyes used in textile dyeing process (Demirbas, 2009; 

Rangabhashiyam et al., 2013). 

Dye class Description 

Acid Anionic compounds; water soluble 

Basic Cationic compounds; water soluble; used in weakly acidic dye 

baths; very bright color 

Direct Anionic compounds; water soluble; can be used directly to 

cellulosic without mordant 

Disperse Non-ionic aromatic compounds; Water insoluble 

Reactive Anionic compounds; water soluble; largest dye class 

Sulfur Contain sulfur or sodium sulfide 

Vat Water insoluble; oldest dyes; contain complex chemical structure 
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2.2  Pollution Due to Dye Wastewater  

2.2.1  Color  

Colored wastewater is a corollary of batch processes both in the dye 

manufacturing and dye-consuming industries. According to Easton (1995), 10% of 

the dyes are lost during textile coloration process due to incomplete exhaustion of 

dyes onto the fibre. Type of dyestuff, the depth of shade needed, and the application 

route are the dependent factors that determined the amount of dye lost (Pearce et al., 

2003).  

Color pollution in aquatic environments is an escalating problem. The 

toxicity, abnormal coloration and carcinogenic properties of dyes cause severe 

effects on exposed organisms and hinder the photosynthesis reaction (Slokar and Le 

Marechal, 1998; Pearce et al., 2003). Moreover, the color of water greatly influences 

the public perception of water quality, where the presence of colors in water is 

aesthetically unpleasant and is often associated with contamination (Waters, 1995; 

Pearce et al., 2003). The recalcitrant nature of dyes causes dyes to be persistent in the 

water, leading to the imposition of strict environmental regulations.  

 

2.2.2 Chemical Oxygen Demand  

 In environment chemistry, chemical oxygen demand (COD) is generally used 

to evaluate the concentration of organic contaminants in water bodies. As 

degradation of organic compounds involves oxygen, their concentrations can be 

represented by the amount of oxygen needed (Li et al., 2003).  COD concentration in 

the unit of mg/L is largely dependent on initial dye waste concentration, chemical 
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structure of the dye and treatment duration (Tanja et al., 2003). The COD value 

indicates the amount of oxygen required for the complete oxidation of a substance in 

specific volume of aqueous solutions. When organic pollutants are high in a water 

sample, concentration of COD is high; more oxygen is required to completely 

oxidize a substance. Therefore, wastewater with high COD concentration denotes 

high pollution level (Tanja et al., 2003).  

 

2.3  Textile Wastewater Treatment Technologies 

High volumes of textile industrial effluent discharge and increasing stringent 

legislation make the search for appropriate treatment technologies a must.  On the 

whole, textile industrial wastewater treatment encompasses four processes i.e. 

pretreatment, primary treatment, secondary treatment, and tertiary treatment (Perry et 

al., 1997). Pretreatment process comprises of equalization and neutralization. In the 

primary treatment, physical or chemical separation techniques are employed to 

remove suspended solids in the textile wastewater (Gupta and Suhas, 2009). 

Secondary treatment, also known as biological treatment, exploits microorganisms to 

stabilize the dyes components before tertiary treatment (i.e. adsorption, ion-exchange, 

stripping, chemical oxidation, and membrane separation) takes place. The last steps 

for the textile wastewater treatment process are the sludge processing and disposal 

steps (Gupta and Suhas, 2009).  

 In general, textile wastewater treatment methods include physical, chemical 

and biological treatments. These methods can be applied either individually or 

together in various combinations.  
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 Physical treatment involves only particle separation processes and there is no 

chemical or biological changes carried out (Metcalf and Eddy, 2004). Example of the 

treatment processes are adsorption (Low et al., 2011; Lin et al., 2013), sedimentation 

(He et al., 2015; Walker and Narbaitz, 2016), aeration (Wu and He, 2012), filtration 

(Zuo et al., 2015; Zhao et al., 2016), etc. 

 Chemical treatment mainly involves the use of oxidizing agents such as 

ozone (O3), hydrogen peroxide (H2O2), and permanganate (MnO4) to modify the 

chemical composition of dyes (Metcalf and Eddy, 2004). The cost of this treatment 

process is largely dependent on the chemical used. Chemical treatment process has a 

satisfactory result in removing disperse, sulfur, and vat dyes (Verma et al., 2012). 

The disadvantages of the treatment process are large quantities of concentrated 

sludge produced, pH dependent, not effective for highly soluble dyes and not 

effective in treating acid and basic dyes (Hai et al., 2007). Examples of chemical 

treatment processes are ozonation (Tehrani-Bagha et al., 2010; Hu et al., 2016), 

coagulation-flocculation (Yeap et al., 2014; Lau et al., 2014), liquid-liquid extraction 

(Muthuraman and Teng, 2009, 2010), and sonolysis (Vassilakis et al., 2004; Khataee 

et al., 2015).   

 Biological treatment involves the use of microorganisms to decompose 

organic matters during wastewater treatment. It is the most economical alternative 

treatment compared to the physical and chemical processes. Examples of biological 

treatments generally used for the treatment of textile industrial effluents are 

microbial degradation, adsorption by living or dead microbial biomass and 

bioremediation systems using microorganisms (McMullan et al., 2001).  
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The biological process can be aerobic (in the presence of oxygen) (Franca et 

al., 2015; Liu et al., 2015), anaerobic (without oxygen) (Wong et al., 2009; Hahn and 

Figueroa, 2015) or combined aerobic-anaerobic (Yang et al., 2016). The main 

drawbacks of the biological treatment are less feasibility in design and operation, 

sensitivity to some chemicals, low biodegradability of the COD and dyes, larger land 

area requirement and longer time required for decolorization-fermentation processes 

(Dilaver and Kargi, 2009).  

 The present study focuses on the adsorption of Rhodamine B dye on a locally 

available biomass.   

 

2.3.1 Adsorption  

 The process of adsorption involves accumulation of a substance at the 

interface between two phases such as solid and liquid or solid and gas. It can also be 

defined as a process that transfers pollutants from the effluent to a solid phase 

thereby reducing the bioavailability of toxic species to living organisms (Bhatnagar 

and Sillanpaa, 2009; Ribas et al., 2014). Solids have been widely used for substance 

removal from either gaseous or liquid phase since biblical times. This process 

involves the preferential partitioning of substances from the gaseous or liquid phase 

onto the surface of a solid substrate.  Thus, adsorption is different from absorption, a 

process in which materials are transferred from one phase (liquid phase or gaseous 

phase) to another interpenetrates the second phase to form a solution (Weber, 1972). 

Figure 2.1 shows the definitions of adsorbent and adsorbate.  
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Figure 2.1: Definitions of adsorbent and adsorbate.  

The substance to be removed from liquid or gaseous phase at the interface is called 

adsorbate. Adsorbent can be defined as the solid, liquid, or gas phase onto which the 

adsorption takes place (Butt et al., 2011).  

 Generally, transformation of adsorbate to the porous media adsorbent follows 

four steps, (i) bulk solution transport; i.e. transportation of adsorbate from bulk 

solution to the hydrodynamic boundary layer (liquid-solid interface) surrounding the 

adsorbent. (ii) external diffusion; i.e. transportation of the asorbate from the bulk to 

the external surface of the adsorbent. (iii)  intraparticle diffusion. (iv) adsorption; i.e. 

adsorbate is attached onto the available active sites on the adsorbent surface (Wang 

et al., 2008).  

 

2.3.2 Classification of Adsorption 

 On the whole, adsorption process largely depends on the nature of force 

existing between adsorbate molecules and adsorbent. Adsorption can be categorized 

into physical adsorption (physisorption) and chemical adsorption (chemisorption).  
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2.3.2(a) Physisorption  

 Physisorption involves intermolecular forces such as van der waals and 

dipole forces between the adsorbent and the adsorbate. This process is completely 

nonspecific reversible under high temperature and pressure. A physisorption 

molecule is not attached to a specific site on the solid surface, spontaneously it can 

leave the surface after a certain time (Sawyer et al., 2003).  

 

2.3.2(b) Chemisorption  

 Chemisorption occurs as a result of the formation of a chemical linkage 

(often covalent) between the adsorbent and adsorbate giving a shorter bond length 

and higher bond energy (Montgomery, 1985). Table 2.2 presents the properties and 

characteristics of physisorption and chemisorption.  

Table 2.2 Properties and characteristics of physisorption and chemisorption (Atkins, 

1994).  

Properties/ 

Characteristics 

Physisorption Chemisorption 

Adsorption temperature Adsorption process 

decreases with the 

increase of temperature 

Adsorption process 

increases with the increase 

of temperature 

Adsorption energy Exothermic or 

endothermic, 

40-200 kJ/mol 

Merely exothermic 

< 40 kJ/mol 

Nature of adsorption Non-dissociative and 

reversible 

Frequently dissociative 

and irreversible 

Adsorption site Monolayer or multilayer Monolayer 

Adsorption process Non-activated and fast Activated and slow 

Desorption process Desorption is possible Desorption is impossible 
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 For chemisorption, the adsorption process is irreversible and increases with 

temperature. The adsorption energy is merely exothermic with the value of less than 

40 kJ/mol. However, for physisorption, the adsorption process is reversible and 

decreases with the increases of temperature. The adsorption energy has the value 

between 40-200 kJ/mol.  

 

2.4 Kinetic Study  

 Adsorption kinetic study is a vital characteristic in wastewater treatment as it 

illustrates the adsorbate uptake rate, which in turn controls the residence time of the 

adsorbate uptake at solid-liquid interface (Dąbrowski, 2001). The pseudo-first order 

and pseudo-second order models are the most commonly used kinetic models for 

studying solid-liquid interactions. In pseudo-first order kinetic model, adsorption 

process is controlled by diffusion and mass transfer of the dye molecules to the 

adsorption site, whereas in pseudo-second order kinetic model, chemisorption is the 

rate limiting step (Crini and Badot, 2008; Nair et al., 2014).  

 

2.4.1 Pseudo-First Order Model  

Pseudo-first order model was proposed by Lagergren (1898). The pseudo-

first-order equation can be written as Equation (2.1):  

)(1 te
t qqk

dt

dq
     (2.1) 

Integrating Equation (2.1) for the boundary conditions, t=0 to t=t and qt=0 to qt=qt, 

generates Equation (2.2): 
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q
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e

t
1)1ln(      (2.2) 

where 1k  is the rate constant of pseudo-first order model (min
-1

), eq (mg/g) is the 

amount of equilibrium uptake, tq (mg/g) is the amount of solute adsorbed at any time 

t, and is given by Eq. (2.3). The value of k1 can be obtained by plotting )1ln(
e

t

q

q


versus t.  

    
W

VCC
q t

t

)( 0      (2.3) 

where C0 (mg/L) is the initial solute concentration, Ct (mg/L) is the solute 

concentration at respective time, t, V is the volume of the dye solution (L), and W is 

the weight of the adsorbent (g).  

 

2.4.2 Pseudo-Second Order Model 

Pseudo-second-order equation (Ho and McKay, 1998) based on equilibrium 

adsorption can be expressed as Equation (2.4): 

tqkqq
eet

2

2

111
      (2.4) 

where 2k (g/mg.min) is the pseudo-second order rate constant. This equation can also 

be written as Equation (2.5): 

tqkqq
eet

2

2

111
      (2.5) 
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The value of k2 can be obtained by plotting 
et qq

11
 versus 

t

1
.  

 

2.5 Equilibrium Study  

The adsorption isotherm gives the relationship between mass of adsorbate 

adsorbed per unit weight of adsorbent in equilibrium and the concentration of 

adsorbate at liquid-phase equilibrium (Lata et al., 2007). It is a basic requirement for 

the design of adsorption system. A number of isotherms have been proposed and 

these include Langmuir isotherm, Freundlich isotherm, Temkin isotherm, and 

Dubinin-Radushkevich (DR) isotherm.  

  

2.5.1 Langmuir Isotherm 

Langmuir adsorption model (Langmuir, 1918) is based on the assumption that 

maximum adsorption takes place at specific homogeneous sites within the adsorbent. 

Langmuir model is given by Equation (2.6):  

eL

eL
e

CK

CKQ
q




1

0       (2.6) 

where eC  is the concentration of adsorbate remaining in the solution at equilibrium 

(mg/L), 0Q  is the amount of adsorbate adsorbed by unit mass of adsorbent that is 

required to cover an adsorbent surface completely as a monomolecular layer (mg/g), 

and LK (L/mg) is the Langmuir constant related to the affinity of the binding sites. 

The values of 0Q and LK are determined from intercept and slopes of the linear plots 
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of 
e

e

q

C
versus eC .  The Langmuir model can be represented in the linear form as 

shown in Equation (2.7):  

00

1

Q

C

KQq

C e

Le

e      (2.7) 

A linear plot of 
e

e

q

C
 versus eC  suggests the applicability of the Langmuir model for 

the system.  

An essential characteristics of the Langmuir isotherm can be expressed in 

terms of separation factor or equilibrium parameter, LR , a dimensionless constant 

(Weber and Chakkravarti, 1974), which is given by Equation (2.8):  

)1(

1

0CK
R

L

L


     (2.8) 

A value of  0< LR <1 shows unfavourable adsorption conditions;  

LR <1 shows unfavourable adsorption conditions;  

LR =1 shows linear adsorption conditions; and  

0LR shows irreversible adsorption conditions. 

 

2.5.2 Freundlich Isotherm 

Freundlich model is an empirical equation that assumes heterogenous 

adsorption due to the diversity of adsorption active sites (Freundlich, 1907). The 

Freundlich equation is given as Equation (2.9): 
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n

eFe CKq /1      (2.9) 

where FK  is Freundlich isotherm constant (mg/g (L/mg)
1/n

), an indicator for 

adsorption capacity and 1/n is the adsorption intensity. A value of 0 < 1/n < 1 shows 

adsorption surface homogeneity, as the value gets closer to 0 the adsorption process 

is heterogeneous (Hameed et al., 2007). A value for 1/n < 1 shows a normal 

Langmuir isotherm while 1/n >1 indicates cooperative adsorption (Fytianos et al., 

2000). The linear form of Freundlich equation is given in Equation (2.10): 

ln qe =  ln KF + (1/n) ln Ce   (2.10) 

The values of FK and n are calculated from the intercept and slope of the plot of 

eqln versus eCln .  

 

2.5.3 Temkin Isotherm 

Temkin isotherm (Temkin and Pyzhev, 1940) discussed on the adsorbent-

adsorbate interactions. Based on the isotherm, the heat of adsorption of all the 

molecules in the layer would decrease linearly with coverage due to adsorbent-

adsorbate interactions. The adsorption is described by a consistent distribution of 

binding energies, up to some maximum binding energy. The Temkin isotherm can be 

expressed as Equation (2.11):  

)(ln eT

T

e CA
b

RT
q                             (2.11) 

where Tb  is Temkin isotherm constant related to heat of adsorption in J/mol, TA  is 

the Temkin isotherm constant in L/g. R is the universal gas constant with the value of 
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8.314 J/mol.K and T is the absolute solution temperature in K. The values of 
Tb

RT
and 

TA are calculated from the intercept and slope of the plot of qe versus ln Ce  

 

2.5.4 Dubinin-Radushkevich (DR) Isotherm 

Dubinin-Radushkevich (DR) Isotherm is used for the analysis of isotherms of 

a high degree of rectangularity (Dubinin and Radushkevich, 1947). DR isotherm can 

be expressed as Equation (2.12): 

qe = QDR exp (-Bε
2
)     (2.12) 

where   can be correlated in Equation (2.13):  

)
1

1ln(
eC

RT      (2.13) 

The constant B establishes the mean free energy E of adsorption per molecule of the 

adsorbate when it is transferred to the surface of the solid from infinity in the 

solution. DRQ  is the Dubinin-Radushkevich constant. The equation for mean free 

energy is expressed as Equation (2.14):  











B
E

2

1
     (2.14) 

The values of DRQ  and E are calculated from the intercept and slope of ln qe versus 

2 . Table 2.3 presents the compilation of results of the applicability of kinetic and 

isotherm models for dye adsorption. Most of the dye adsorption studies followed 

pseudo-second order kinetic model and Langmuir isotherm where chemisorptions is 
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the rate limiting step and maximum adsorption takes place at specific homogeneous 

sites within the adsorbent.  

  



 
 

Table 2.3 Kinetic and isotherm studies of textile dye adsorption. 

Adsorbent Dye Kinetic model Isotherm model Reference 

 

Bagasse fly ash Orange-G  Pseudo-second order Freundlich  Mall et al., 2006 

Chitosan Remazol black 13 Pseudo-first and second 

order 

Langmuir  Annadurai et al., 2008 

Basic oxygen furnace 

slag 

Reactive Blue 19 

Reactive Black 5 

Reactive Red 120 

Pseudo-first order Langmuir and 

Redlich–Peterson 

Xue et al., 2009 

Tunisian olive waste cake Lanaset grey G Pseudo-first order Langmuir Baccar et al., 2010 

Coconut coir Malachite green Pseudo-second order Langmuir and 

Freundlich 

Uma et al., 2013 

 

Rice husk Methylene blue Pseudo-second order Langmuir Chen et al., 2013 

MgO decked multi-

layered grapheme 

Safranin O Pseudo-second order Langmuir Rotte et al., 2014 

Poly(methacrylic 

acid)/zeolite hydrogel 

composites 

Basic yellow 28 Pseudo-first order Langmuir and Temkin Panic and Velickovic, 2014 

 

Spent coal based 

activated carbon 

Methylene blue Pseudo-second order Langmuir Duan et al., 2014 

Macore fruit shell Methylene blue, 

Methyl orange  

Pseudo-second order  Langmuir and 

 Freundlich 

Aboua et al., 2015 

activated carbon/γ-Fe2O3 

nano-composite 

Alizarin red S Pseudo-second order Langmuir Fayazi et al., 2015 

Ag-doped hydroxyapatite Congo red Pseudo-second order  Langmuir  Srilakshmi and Saraf, 2016 

Malt bagasse orange solimax TGL Pseudo-second order Langmuir Fontana et al., 2016 

Cerastoderma lamarcki 

shell 

Malachite green  Pseudo-second order Freundlich Kazemi et al., 2016 

 

2
2

 



 
 

Table 2.3 (continued)  

Adsorbent Dye Kinetic model Isotherm model Reference 

 

Bagasse Methylene blue Pseudo-second order Langmuir and 

Freundlich 

Low et al., 2011 

Cogongrass Methylene blue Pseudo-second order Langmuir  Su et al., 2014 

Raphia hookerie fruit 

epicarp 

Rhodamine B Pseudo-second order Freundlich Inyinbor et al., 2016 

MIL-68(In)-

NH2/graphite oxide (GO) 

composites 

Rhodamine B  Pseudo-second order Langmuir  Yang et al., 2016  

Aleurites Moluccana 

seeds 

Rhodamine B  Pseudo-second order Sips isotherm Postai et al., 2016  

Gum Ghatti/Fe3O4 Rhodamine B Pseudo-second order Langmuir  Mittal and Mishra, 2014 

Kaolinite Rhodamine B Pseudo-second order Langmuir  Khan et al., 2012  

Carnauba palm leaves Rhodamine B Pseudo-second order Freundlich  Lacerda et al., 2015  

Lythrum salicaria L. with 

pyruvic acid 

Rhodamine B Pseudo-second order Langmuir  Huang et al., 2016 

 

 

2
3
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2.6 Activated Carbon  

 Activated carbon is a crude form of graphite, which has a highly porous, 

random or amorphous structure with broad range of pore sizes, from visible cracks, 

crevices and slits of molecular dimensions (Sun et al., 2013). In the 1940s activated 

carbon was employed as an adsorbent for wastewater treatment (Gupta and Ali, 

2013). Typically, activated carbon includes a broad range of carbonaceous materials, 

possess high surface area (that can reach 2000 m
2
/g), well defined microporous 

structure (average pore opening is about 1.5 nm), and high degree of surface 

reactivity (Streat et al., 1995). Commercial activated carbons are mainly prepared 

from coal and pine wood. However, activated carbon is expensive. This situation 

compelled scientists toward the development of low cost adsorbents i.e. alternatives 

of activated carbon (Ali et al., 2012).  

 

2.7 Development of Low-Cost Adsorbents  

Currently, there are many studies on the development of low-cost adsorbents 

using natural materials, biomass, and agricultural waste. In general, an adsorbent can 

be assumed to be “low-cost” if it requires little processing and is abundant in nature. 

It could also be waste material from an industry or it's by-products, which have lost 

economic value even after further processing (Yagub et al., 2014). The use of waste 

products which have little or no economic value for developing low-cost adsorbents 

gives advantages in waste minimization, recovery and reuse. In other words, waste 

treatment by adsorption using low-cost adsorbent is a demanding area as it has 

benefits in both water treatment and waste management (Yagub et al., 2014).  
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